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Abstract 

Although existing super-resolution networks based on deep learning have obtained 
good results, it is still challenging to achieve an ideal visual effect for irregular texts, 
especially spatially deformed ones. In this paper, we propose a robust Bezier Curve-
based image super-resolution network (BCSR), which can efficiently handle the deg-
radation caused by deformations. Firstly, the arbitrarily shaped text is adaptively fitted 
by a parameterized Bezier curve, aiming to convert a curved text box into an annotated 
text box. Then, we design a BezierAlign layer to calibrate between the extracted fea-
tures and the input image. By importing the extracted text prior information, the accu-
racy of the super-resolution network can be significantly improved. It is worth high-
lighting that we propose a kind of text prior loss that enables the text prior image 
and the super-resolution text image to achieve cooperation enhancement. Extensive 
experiments on several standard scene text datasets demonstrate that our proposed 
model achieves desirable objective evaluation results and further immensely helps 
downstream tasks related to text recognition, especially in text instances with multi-
orientation and curved shapes.

Keywords:  Super-resolution, Bezier curve, Text prior, Scene text recognition, Arbitrary-
shape text

1  Introduction
Rich and distinctive semantic information in the text serves as a key cue for visual rec-
ognition. Despite many promising approaches have been proposed, scene text often 
encounters various degradations during image processing resulting in low resolution 
or blurring. This problem dramatically degrades the performance of downstream tasks 
such as text detection, optical character recognition (OCR), and scene text recogni-
tion. Therefore, how to improve the resolution of text areas in natural scenes is what we 
urgently need to solve now.

Previous super-resolution (SR) [1–5] methods simply learn the degradation patterns 
of HR-LR pairs, e.g., L1 or L2 loss, to recover the resolution of scene text in images. 
However, these methods do not treat text as a specific task, so they perform poorly in 
downstream tasks. Recently, some methods [6–8], tailored for the scene text image 
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super-resolution (STISR) task, benefit from the superficial properties of the scene text. 
For example, Wang et al. [9] propose Text Super-Resolution Network (TSRN) to obtain 
sequence information of text lines through a sequence residual network. In addition, 
many methods started to try to learn low level-details and high-level semantics to get 
better features [10]. Zhao et  al. [11] propose a parallel contextual attention network 
(PCAN) that can efficiently learn sequence-related features and pay more attention to 
high-frequency information for text image reconstruction. TPGSR [12] introduces pos-
sible text sequences based on TSRN and improves the quality of the generated text by 
continuous iteration. These CNN-based methods mentioned above have difficulties in 
dealing with spatial deformation, especially with severely curved or rotated text images, 
because it is a local operation. Ma et al. [13] propose TATT, which uses the global atten-
tion mechanism to align the text prior with the text image of spatial deformation and 
plays the role of semantic guidance of text in the process of text reconstruction.

By observation, semantic information in the text can help recover the shape and details 
of characters. Existing methods generally employ pre-recognizers such as CRNN [14] or 
MORAN [15] to extract text priors, which have achieved satisfactory results in recover-
ing well-aligned text, but are still challenging when dealing with spatially deformed text. 
Figure 1 shows an example where the recent approach TSRN produces wrong images 
when processing curved text and the characters are incorrectly recognized by the recog-
nizer. TPGSR is inferior to our model in terms of quantitative analysis. This is because 
TSRN ignores the semantic information that comes with the text, whereas TPGSR uses 
CRNN as a pre-trained recognizer to obtain text priors. CRNNs empirically tend to pro-
duce erroneous recognition results when recognizing severely distorted and curved text, 
which greatly affects the super-resolution reconstruction task. Thus, our motivation is 
to design a novel and effective pre-trained text recognition module for recognizing arbi-
trarily oriented and curved text in images, which ensures the generation of accurate text 
prior information to help guide low-resolution text reconstruction.

To achieve this goal, we propose a robust Bezier Curve-based image super-resolution 
network (BCSR) to reconstruct spatially deformed text images. We incorporate a text 
prior generation module (TPG) that introduces the Bezier curve into the super-resolu-
tion network. Unlike previous approaches that use rectangular bounding boxes to detect 
text positions, the Bezier curve can adaptively fit curved or oriented text and remove the 
influence of the surrounding irrelevant background. In our proposed module, we adopt 
the parametric Bezier curve to adaptively fit the spatially deformed text and then realize 
the feature sharing of the text instance through BezierAlign with negligible computation. 
Since the text prior information containing rich semantic information is introduced into 
the super-resolution (SR) network, the recognition accuracy of the reconstructed text 

Fig. 1  The recognition results of super-resolution images reconstructed by different models. Below the 
image is the text recognition results, where red fonts mean different from HR image recognition results. ‘P’ 
and ‘S’ stand for PSNR and SSIM results
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with satisfactory visual effects is also improved. To further beautify the text’s appear-
ance suffered from deformation degradation, we propose a TP loss that effectively meas-
ures the similarity between the TP features generated by TPG and the HR ground-truth 
images. Our work has made the following noteworthy contributions: 

1)	 We design a toward arbitrarily oriented text image super-resolution network that 
employs a novel and effective TPG module feature-level to resolve LR images and 
serves as a prior to enhancing text recognition accuracy.

2)	 We innovatively use the Bezier curve to convert the curved text box into an anno-
tated box. Simultaneously, the detection module and the recognition module are 
connected by a lightweight recognition head, greatly simplifying the difficulty of text 
recognition.

3)	 By adding the correct semantic information to the SR network, our model signifi-
cantly boosts the recognition performance of irregular text in the TextZoom dataset 
and demonstrates its good generalization ability on other datasets.

2 � Related works
2.1 � Single image super‑resolution

Single Image Super-Resolution (SISR) attempts to reconstruct LR images with missing 
features and associated partial distortions into ideal HR images. Previous approaches 
employ artificially handcrafted image priors, including statistical prior, self-similarity 
prior, and sparsity prior. Dong et al. [3] pioneered the application of deep convolutional 
neural networks in image super-resolution. Later on, the network structure based on 
CNN has been proposed successively, such as VDSR [16], DRCN [17], ESPCN [18], and 
FSRCNN [19]. These methods typically use L norms as objective functions but ignore 
human perception. In [7] embedded Generative Adversarial Networks (GANs) in the SR 
task to minimize the distance perception correlation distribution between LR and HR 
images to address this issue. Recently, SFT-GAN [20] and FSRNet [2] introduced seman-
tic segmentation information based on the GAN network to generate visually more sat-
isfying HR images. Although existing GAN-based SISR methods can generate realistic 
texture information, these tend to generate meaningless and irrelevant noise to the input 
image.

2.2 � Scene text image super‑resolution

Unlike SISR, Scene Text Image Super-Resolution (STISR) focuses on scene text images 
to improve text readability and produce the best quality images. There is no doubt 
that the STISR method can directly adopt the SISR method. Dong team [21] expanded 
SRCNN [3] to text images and received one of the top rankings in the 2015 ICDAR com-
petition [22]. Wang et al. [23] proposed TextSR, using adversarial loss and text percep-
tion loss together as a loss function for super-resolution generation. Thus, it can more 
effectively focus image reconstruction on text regions rather than irrelevant background 
regions. To improve the performance of STISR in real-world scenarios, Wang et  al. 
[9] constructed a real-world STISR image dataset from the real SISR dataset [24, 25], 
namely TextZoom. Nakao et al. [26] proposed SRRNN handle character and text-related 
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problems and employed two super-resolution training methods on text images, 
achieving continuous improvement in the accuracy of scene images containing text. 
Furthermore, in [27] and [28] proposed to enhance the network block structure by self-
participating image features and participating channels to improve STISR performance.

2.3 � Scene text recognition

Scene text recognition (STR) technology has a wide range of application scenarios, such 
as visual search [27], license plate recognition [9], and other image understanding tasks 
based on scene text [23, 29, 30]. Some early methods mostly follow the bottom-up prin-
ciple, i.e., extracting low-level features to detect and recognize individual characters and 
then integrating these characters into words according to heuristic rules or local lan-
guage models [25]. However, these methods are only suitable for weak representations 
of semantic information. Other methods follow the top-down principle [9], which maps 
the scene text image into a feature sequence and then performs word-level classification, 
typically including CRNN [14], RARE [31], etc. Although RARE can adapt to the recog-
nition of curved text images, it requires expensive character-level or pixel-level anno-
tations. In [32], Li et al. designed a model based on a 2D attention module, which can 
locate and identify irregular characters one by one without additional supervision infor-
mation. Recently, Liu et al. [33] proposed an Adaptive Bezier Curve Network (ABCNet), 
which uses parameterized Bezier curves to reconstruct scene text images of arbitrary 
shapes, significantly saving computational time and resources. Although deep learning-
based algorithms have attained the remarkable performance, recognizing arbitrarily ori-
ented text in low-quality images remains hard. Inspired by ABCNet, we try to use cubic 
Bezier curves and BezierAlign as text prior generation modules to generate categorical 
text priors for STISR model training. The results show that introducing the text prior 
generation module into the STISR model can greatly improve the perceptual quality of 
the generated HR images, thereby enhancing the text recognition performance.

3 � Methodology
3.1 � Overall architecture

The whole structure of BCSR is depicted in Fig.  2, which consists of two major com-
ponents: (1) The text prior generation module (TPG) for extracting the TP features of 
LR images; (2) The basal super-resolution (SR) network for reproducing HR text images 
from input LR images and TP guidance features.

Denote X ∈ Rh×w×3 as the LR input image, fI ∈ Rh×w×c and fTP as the image feature 
and estimated prior information by the TPG. First, we pass a convolutional layer whose 
kernel size is 9× 9 to extract the image feature. fI is defined in Eq. (1).

On the other hand, the LR input image is passed to bicubic interpolation with the aim 
of aligning fTP and fI to facilitate subsequent computation of their correlation. Since the 
text prior information can help reconstruct the HR image, the image after bicubic inter-
polation is transmitted to TPG to obtain the sequence of text prior features. The defini-
tion of fTP is shown in Eq. (2).

(1)fI = Conv(X)
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Where fTP ∈ Rl×|A| is an l-length sequence with a classification probability vector of 
size |A| . A represents a total of 37 character including the numbers 0 through 9, the let-
ters a through z, and a blank class. The semantic information in the generated fTP will 
be assigned to the appropriate position in the spatial domain to help recover HR text 
images.

Then, the TP feature are passed to the TP Transformer. The TP Transformer con-
tains four Deconvblocks, where every Deconvblock is composed of a deconvolution 
layer, a Batch Normalization (BN) layer and a rectified linear unit (ReLU) layer. The 
exportation of the TP Transformer will be a characteristic mapping with recovery 
space dimension fTM ∈ Rh×w×c . The TP map fTM we obtain is a modulation mapping, 
and the semantics-specific part of the image feature can be improved by it.

Ultimately, the TP map fTM and the image feature fI are transmitted into TPGBs 
module, which consists of five text prior-guided blocks (TPGBs) where use element-
wise addition to merge fTM and fI , and a Sequential-Recurrent Block (SRB) for recon-
structing the HR image. Just like the previous super-resolution models, the output of 
the reconstruction module will evaluate the estimated HR images by some of these 
TPGBs.

3.2 � The text prior generation module (TPG)

Researchers have become increasingly interested in mitigating the influence of impre-
cise prior information and combining useful prior information. Following [33], the 
text prior generation module (TPG) was proposed to assist the SR process in gen-
erating satisfactory high-quality images. The structure of TPG is shown in Fig.  3. 
Specifically, we adopt ResNet 50 [34] with FPN [35] as the backbone framework and 
highlight curved text regions by using the cubic Bezier curve and BezierAlign. Next, 
we present the three crucial sections of the TPG: (1) Bezier curve detection; (2) Bezi-
erAlign; (3) Lightweight Recognition Head.

(2)fTP = TPG(Bicubic(X))

Fig. 2  The overall architecture of our proposed BCSR. TPGB represent text prior guided blocks,  denotes 
the element-wise addition. Accordingly, TP loss and SR loss are employed to train the whole network
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3.2.1 � Bezier curve detection

There are two commonly used methods for text detection of arbitrary shapes: seg-
mentation-based methods [36, 37] and regression-based methods [33, 38, 39]. 
However, existing regression-based methods [33, 37] require more parameterized 
predictions to fit text boundaries, so they are unsuitable for real-time detection. To 
solve this problem, Bezier curves are introduced.

The Bezier curve B(t) is derived from Bernstein polynomials, which can form vari-
ous shapes of curves by selecting control points. Given control points b0 , b1 , . . . , bi , 
the definition of the n− th degree Bezier curve is illustrated in Eq. (3):

where 
(
n
i

)

 is a binomial coefficient.

Inspired by [33], n is set to 3, that is, the cubic Bezier curves are sufficient for dif-
ferent types of arbitrary shape scene text images in practice. Using the cubic Bezier 
curve, text detection for arbitrarily shaped scenes can be simplified by a bounding 
box regression with a total of eight control points, the coordinates of which are the 
targets of the detection network predictions. We use a standard least squares fit for 
an arbitrarily shaped dataset with polygon annotations to calculate the best control 
points.

Assuming that the i − th annotation point is pi , annotation points on the bound-
ary of the text image can be represented by {pi}i=1

n  . All we have to do is find the opti-
mal parameters of the Bezier curve in Eq. (3) using the standard square method, as 
described in Eq. (4).

where t is the ratio of the polyline segment to the perimeter of the entire curve, m stands 
for the number of points that need to be annotated on an edge. The original multi-seg-
ment line annotation is converted into a parameterized Bezier curve through Eqs. (3) 
and (4). Considering that only four control points are required for the straight text, we 
added two additional control points at the thirds of each long edge for consistency.

(3)B(t) =

n∑
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n
i

)

bi(1− t)n−iti, i = 0, 1, 2 . . .n
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Fig. 3  The structure of the text prior generation module (TPG). First, we obtain the input image features 
through the backbone, then use the Bezier curve to annotate the text area and finally transmit the text 
features after BezierAlign to the recognition module
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Following that proposal bounding boxes are generated, and the output offset of the model 
is shown in Eq. (5).

Here xmin and ymin correspond to the minimum of the fixed points, which decouples the 
relationship between the predicted fixed control point bi and the image boundary and 
beyond. Here is a detection head that can densely predict the detection results by out-
putting feature maps. The head is composed of four stacked convolutional layers, where 
each convolutional layer stride is set to 1, and the padding is also 1, and 3 × 3 kernels. We 
only need to learn �x and �y through a convolutional layer with an output of 16 chan-
nels to get the correct prediction results. The visual comparison in Fig. 4 shows that the 
image corrected by the Bezier curve has a more satisfactory visual effect.

3.2.2 � BezierAlign

The existing sampling methods, horizontal and quadratic sampling methods, sample the 
background information for curved text, leading to aligned features containing irrelevant 
background images that interfere with recognition. To address this issue, BezierAlign [33] 
is developed, where the columns in the BezierAlign are orthogonal to the boundaries of the 
Bezier curve for text areas.

Assuming that the text region features of the input image are given, the output feature 
map consists of pixel units of hout × wout rectangle size. Taking the pixel gi at the position 
( giw , gih ), t is calculated by the formula (6):

Then, the upper boundary point tp of the Bezier curve and bp of the lower Bezier 
curve can be calculated by t and Eq. (3). With tp and bp , BezierAlign can apply bilinear 

(5)�x = bix − xmin,�y = biy − ymin

(6)t =
giw

wout

Fig. 4  Visual comparison of rectified images under different annotations. a employs polyline annotations, 
using an STN-based method to rectify the original ground truth to an approximate rectangular text. b uses 
Bezier annotation, the red points are control points, and the red dashed lines form a control polygon for each 
curve boundary. We utilize the Bezier curve and BezierAlign to revise the results. The picture below is the 
outcome of warping
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interpolation to obtain the sampling point op , and the calculation formula is shown in 
Eq. (7).

Each pixel unit gets four op coordinate values, passed through the max pooling layer to 
get the output feature map. This method allows for accurately fitting text areas without 
introducing large amounts of invalid background information.

3.2.3 � Lightweight recognition head

To better utilize the feature sharing in training, we propose a lightweight recognition head, 
equivalent to a simplified version of CRNN [14]. It consists of six convolutional layers with 
a padding size limit of 1, a bidirectional LSTM [40] layer for predicting feature sequences, 
and a fully connected layer with an output total class of 97. Based on the predicted prob-
ability of the sample points, the CTC loss [1] is adopted to align the text strings (GT) so that 
we can directly obtain the features of the region of interest through the GT of the generated 
Bezier curve.

3.3 � Loss functions

During training, our BCSR model contains a super-resolution loss LSR and a text prior loss 
LTP.

SR loss function We make the following settings: ˆIH represents the estimated the HR 
image of the input LR image, IH represents the actual value of HR image, and LSR repre-
sents the loss function of SR, which is generally the L norm distance between ˆIH and IH . 
The mathematical formula is shown in Eq. (8).

Text prior loss function In the network design, TP sequences generated by the TPG play 
a significant role in the final result of SR. What is more, TP sequences similar to authen-
tic HR images are what we need, so we use TP sequences extracted from real HR images 
to supervise network learning. Text prior loss consists of L1 loss and KL divergence loss. 
The TP extracted from LR images IL and the ground truth images IH , respectively, are 
denoted by tL and tH . With the text prior tH , tL ∈ RL×|A| of the pair of LR and HR images, 
the DKL(tL‖tH ) can be calculated as follows:

Where tijH and tijL  represent the elements in the ith position and the jth dimension in tH 
and tL . ε is a small real number that avoids numeric errors in division and logarithms.

Combined with the SR loss function, the overall loss function of the network is defined as 
Eq. (10):

(7)op = bp ·
gih

hout
+ tp

(

1−
gih

hout

)

(8)LSR =

∣
∣
∣ÎH − IH

∣
∣
∣

(9)DKL(tL�tH ) =

L∑

i=1

|A|∑

j=1

t
ij
H ln

t
ij
H + ε

t
ij
L + ε

(10)L = LSR + α|tH − tL| + βDKL(tL�tH )
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where α and β are the balancing parameters.

4 � Experiments
4.1 � Implementation details

In this experiment, we adopted TSRN as the SR module. Inspired by FasterRCNN [41], 
the backbone of the proposed TPG module utilize ResNet 50 [34] and a Feature Pyramid 
Network (FPN) [35] for extracting image features. The detection head uses ROI align-
ment on feature maps with input resolutions of 1

8
 , 1
16

 , 1
32

 , 1
64

 , 1
128

 , while the recognition 
branch calculates feature maps with the size of 1

4
 , 1
8
 , 1
16

 by BezierAlign. The pretrained 
model is executed on the Coco-text dataset [42]. We also performed data augmentation 
to make the model more robust to minor changes, e.g., rotate 90Â°, 180Â°, 270Â°; scale 
images according to the ratio of 0.5 and 0.8; and randomly crop (make sure that the size 
of the cropped image is not less than half of the original).

Our proposed model is trained on Telsa P100 GPUs with image batch size of 32. The 
optimizer takes Adam with a momentum of 0.9. Training lasts 500 epochs with a learn-
ing rate of 10−3 . m in Eq. (4) is set to 3 in TextZoom and 5 for other datasets. In Eq. (10), 
the weights α and β are both set to 0.9, while ε in Eq. (9) is set to 10−6.

4.2 � Dataset

TextZoom TextZoom dataset [9] contains 21,740 paired LR-HR images in real scenes, 
among which 17,367 samples are used for training. The remaining samples can be 
divided into three categories for testing, namely easy (1619 samples), medium (1411 
samples), and difficult (1343 samples).

Total-text Total-text dataset [43] collects 1555 images from various scenes, which 
contain texts containing more than three categories: horizontal text, oblique text, and 
curved text. Each image in the dataset has its own annotated text.

ICDAR2015 ICDAR2015 [44] has 2077 scene text images for testing. Most of them 
are low-resolution images and perspective distorted images, making them extremely 
challenging.

CTW1500 CTW1500 [39] contains 1500 images, mainly taken from Google Open-
Image and camera shots, with a large amount of horizontal and multi-directional text. 
There are various forms of text in the dataset, such as blur, perspective, distortion, and 
noise. In addition, this dataset is multilingual, mainly in Chinese and English.

4.3 � Ablation studies

To better illustrate our model, we investigate the impact of TPG in SR reconstruction, 
the effect of tuning TPG and the effectiveness of the SR module in our BCSR framework. 
All evaluations in this section are performed on the dataset TextZoom.

Impact of TPG in SR reconstruction Since TPG aims to improve text recognition per-
formance by generating probable text sequences, we compare it with other strategies, 
e.g., using CRNN as models of character recognition module. According to Table 1, the 
SR performance of pre-recognition classifiers like MORAN and ASTER [45], which can 
efficiently handle curved or rotated text, is better than that of CRNN. Our proposed 
TPG obtains the highest PSRN/SSIM (21.67/0.7991), which also implies the best per-
formance. The experiments and comparisons demonstrate that our text prior generation 
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module improves the resolution of text images and reconstructs semantically correct 
texts.

Impact of tuning the TPG To demonstrate the significance of tuning the TPG, we eval-
uate the average correct recognition rate (ACC) by tuning the model’s TPG. The text 
recognition accuracy is shown in Table 2. Compared with TSRN, the BCSR model with-
out fine-tuning improves the recognition ability of SR images by 5.1% . The tuned model 
can increase the text recognition accuracy rate from 46.5 to 54.9% , achieving an 8.4% 
increase. It evidently shows that tuning the TPG can effectively improve the text rec-
ognition accuracy. We observe that the computation of our proposed method is more 
complex than that of TSRN due to the usage of ResNet50 and FPN in the TPG, which 
increases the complexity of convolution computation. This network makes certain com-
putational efficiency sacrifices even if it produces better reconstruction outcomes.

The effectiveness of SR module in BCSR It is necessary to determine whether the 
expected generated HR images are helpful for the final text recognition tasks because 
one of the objectives of the SR module is to increase text recognition performance by 
HR image recovery. Thus, we use LR and HR images as inputs to evaluate the BCSR 
model with fixed and tuned TPG. From (a) of Fig. 5, we can see that the average ACC 
results with HR as input are higher than those with LR as input among all cases, and (b) 
emphasizes that adjusting TPG is beneficial for text recognition performance, and (c) 
illustrates that the more complex images become, the more noticeable they improve text 
recognition accuracy by adjusting the TPG on the LR images. Such results indicate that 
our SR module can effectively boost the final SR text recognition performance.

4.4 � Comparison with state of the arts

In this section, we compare the proposed BCSR network with other excellent 
approaches, including SRCNN [3], SRResNet [7], HAN [46], TSRN [9], TBSRN [12], 
PCAN [47], TPGSR [12] and TPGSR-3 [12]. For a fair comparison, all models are trained 

Table 1  Ablation study for TPG

Backbone Strategies for extracting prior PSNR/dB SSIM

TSRN [9] With CRNN 20.37 0.7719

TSRN [9] With MORAN 20.92 0.7823

TSRN [9] With ASTER 21.20 0.7916

TSRN [9] With TPG (ours) 21.67 0.7991

TSRN [9] Without 19.70 0.7157

Table 2  Tuning the TPG

’Tuned’ means whether the TPG is fine-tuned or not

Approach Tuned ACC (%)

TSRN [9] – 41.4

Ours × 46.5

Ours 54.9

HR – 71.2
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on the same dataset with the same settings. The reconstructed high-resolution images 
are all used for text recognition by CRNN.

Results on TextZoom The objective evaluation index values of each model are shown 
in Table 3. From the two objective metrics of PSNR and SSIM, our model achieves rela-
tively good results on all three types of data from TextZoom and even achieves the best 
average, proving our model’s superiority in enhancing visual quality.

To further investigate the generalization ability of our model to irregular text images, 
we artificially selected 804 samples of rotated and curved shapes from TextZoom as 
inputs to compare models. As reflected in Table 4, our BCSR model obtains the highest 

Fig. 5  Ablation on the impact of SR module. ILR and IHR represent using the LR image and estimated HR 
images as recognizer input, respectively, while t  in the subscript means the recognition with tuned TPG

Table 3  Evaluation of competitive SISR and STISR models on TextZoom datasets

Bold represents the highest value

Approach PSNR/dB SSIM

Simple Medium Hard Average Simple Medium Hard Average

Bicubic 22.35 18.98 19.39 20.35 0.7884 0.6254 0.6592 0.6961

SRCNN [3] 23.48 19.06 19.34 20.78 0.8379 0.6323 0.6791 0.7227

SRResnet [7] 24.36 18.88 19.29 21.03 0.8681 0.6406 0.6911 0.7403

HAN [46] 23.30 19.02 20.16 20.95 0.8691 0.6537 0.7387 0.7596

TSRN [9] 25.07 18.86 19.71 21.42 0.8897 0.6676 0.7302 0.7690

TBSRN [12] 23.46 19.17 19.68 20.91 0.8729 0.6455 0.7452 0.7603

PCAN [47] 24.57 19.14 20.26 21.49 0.8830 0.6781 0.7475 0.7752

TPGSR [12] 23.73 18.68 20.06 20.97 0.8805 0.6738 0.7440 0.7719

TPGSR-3 [12] 24.35 18.73 19.93 21.18 0.8860 0.6784 0.7487 0.7774

Ours 25.35 19.02 20.93 21.67 0.8901 0.6763 0.7507 0.7991

Table 4  PSNR and SSIM of competing SISR and STISR models for irregular samples on the TextZoom 
dataset

Method PSNR/dB SSIM ACC (%)

Bicubic 19.68 0.6658 18.1

TSRN [9] 19.10 0.7066 26.6

TBSRN [12] 19.70 0.7157 38.3

TPGSR [12] 19.79 0.7293 42.5

Ours 20.31 0.7875 43.8
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PSNR (20.31), SSIM (0.7875) and ACC ( 43.8% ). It is evident that when encountering 
arbitrarily oriented and curved text images, our model will open a large gap with other 
models such as TBSRN and TPGSR.

We also provide a visual comparison result for regular samples as well as spatially 
deformed samples as shown in Fig.  6. The deep learning-based method has been sig-
nificantly improved in terms of visual effects compared with the bicubic interpolation 
algorithm. STISR models such as TSRN and TPGSR are still unstable in recovering spa-
tially deformed images. Notably, our proposed model performs best in recovering text 
semantics in all case samples, and the generated image visual effects are also closest to 
high-resolution images. This fully proves that introducing Bezier curves to the text rec-
ognition module is practical and beneficial in upgrading the performance and robust-
ness of the model.

To further explore the value of our BCSR, we also compare the computational con-
sumption with TSRN and TPGSR. In Table  5, the experimental results show that our 
model increases the complexity of the convolutional computation due to the use of 
ResNet 50 [34] with FPN [35] in the TPG module, but its reconstructed image performs 
5.1% better when compared to TPGSR. It is humble to conclude that introducing the 

Fig. 6  Visual comparison of different STISR models on TextZoom. The text recognition result is at the top of 
each image, black for correct characters and red for missed or incorrect. Zoom in for better visualization

Table 5  Cost versus performance

ACC means the average recognition accuracy

Approach Flops Parameters Eatency/s ACC (%)

TSRN [9] 0.91G 885.83 MMac 3.71 41.4

TPGSR [12] 1.61G 897.25 MMac 4.35 49.8

Ours 1.72G 907.33 MMac 4.82 54.9



Page 13 of 18Shi et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:82 	

TPG module to generate textual priors in our model is more valued than offset by the 
additional consumption it brings.

Generalization to other datasets We evaluate the robustness of our BCSR network to 
other datasets, including Total-text [43], ICDAR2015 [44] and CTW1500 [39]. These 
datasets contain a large amount of arbitrarily oriented and curved texts. As shown in 
Table 6, our model achieves better results on other datasets, which demonstrates that 
our model has good generalization capabilities despite being trained on TextZoom, 
and that the high-quality images generated by our model can boost the performance of 
downstream tasks.

Visual comparison of competing STISR models on Total-text is shown in Fig. 7, where 
two examples are exhibited: curved (top) and rotated (bottom). It can be observed that 
although the bicubic interpolation algorithm can roughly restore the original image, 
it cannot reconstruct more details and give a vague feeling. TPGSR can reconstruct a 
sharper image, but the output boundary is blurred. Obviously, our proposed model can 

Table 6  Evaluation of competitive STISR models on other datasets

Bold represents the highest value

Method

Bicubic TSRN [9] TBSRN [12] TPGSR [12] Ours

Total-text [43]

PSNR/dB 19.22 20.9 21.56 21.84 22.25
SSIM 0.5542 0.6664 0.6879 0.7264 0.7157

ICDAR2015 [44]

PSNR/dB 21.75 22.86 23.12 23.94 24.12
SSIM 0.6712 0.7222 0.7654 0.7872 0.7912
CTW1500 [39]

PSNR/dB 17.52 18.39 19.01 19.38 21.67
SSIM 0.6309 0.6831 0.7111 0.7635 0.7663

Fig. 7  Comparison of visual effects of different models in Total-text, where the right is the detail image 
magnified by ×2
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generate sharper image edges and more satisfying visual effects, which indicates that our 
BCSR is more suitable for solving text images with arbitrary shapes.

To better understand the generalization ability of our model, we picked low-quality 
text images (i.e., recognition score≤0.6) from the testing set with 420 samples (241 
from ICDAR2015, 20 from Total-text and 159 from CTW1500). In this test, we adopt 
the recognition accuracy of the SR results as the evaluation standard. As can be seen 
from Table 7, it is evident that although TSRN [9] and TPGSR [12] can improve the 
recognition accuracy of the original image, BCSR shows excellent performance in all 
types of datasets. In particular, our model grew by 16.7% compared to the original 
images in the CTW1500 dataset.

Most of the text images in the ICDAR2015 dataset are arbitrarily oriented text 
images generated from arbitrary shooting angles and perspective distortion. From 
Fig. 8, we can see that our model’s generated image recognition results are similar to 
those of the original images. This is because the BCSR text annotation box is closer 

Table 7  Text recognition accuracy on the LR scene images in other datasets

Datasets ICDAR2015 [44] Total-text [43] CTW1500 [39]

No. of images 241 20 159

Original 21.5% 18.1% 19.2%

TSRN [9] 24.5% 20.2% 23.1%

TPGSR [12] 27.1% 22.4% 29.8%

Ours 31.2% 25.3% 35.9%

Improve + 9.7% + 7.2% + 16.7%

Fig. 8  Comparison of recognition results of different models. The first two rows are taken from the 
ICDAR2015 dataset, and the last two rows are from the CTW1500 dataset. Zoom in for better visualization
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to the shape of the text and therefore produces a more pronounced text edge. On the 
other hand, our model achieves more accurate recognition results on both curved and 
horizontal text in the CTW1500 dataset. These demonstrate that our model can gen-
erate text images with higher resolution to help the text recognition task.

4.5 � Limitations

Some examples of failures are shown in Fig. 9, where we observe that our method has 
weaker performance when dealing with long and dense text, the former because its 
native character-to-character connections are then blurred, and in the latter case, there 
is crossover when text regression box annotation is performed, hence the problem of 
text sticking, which leads to degradation of the quality of the generated images. Addi-
tionally, the uneven illumination and more severe perspective also made the experiment 
difficult. We will mitigate these problems in our future work.

5 � Future work
In the future, we will continue perfecting BCSR in followings directions:

Continuous improvement in the structure itself In this paper, we demonstrate the 
results of only one stage. There are many potential improvements, such as using progres-
sive super-resolution reconstruction.

More lightweight According to tabel1, the model is still somewhat computationally 
intensive. Various lightweight techniques can be adopted into BCSR, such as network 
cropping, lightweight regularization, or lightweight activation functions.

More application scenarios The dataset we have used is primarily English characters, 
and it is worth exploring whether BCSR performs better in other texts, such as German 
and Chinese.

6 � Conclusion
In this paper, we presented a super-resolution network model named BCSR for recog-
nizing arbitrarily oriented text images in natural scenes. Text images differ from other 
natural scene images and have their unique text classification information. To better uti-
lize the prior information of the text, a text prior generation module is developed, by 
introducing a parameterized Bezier curve to reformulate arbitrarily shaped scene text 
images. Subsequently, we add TP features generated by TPG based on reconstructing 
text images using image features, which can generate more precise details for text rec-
ognition. In addition, we proposed a TP loss to realize the collaborative enhancement 

Fig. 9  Some examples of failures. a shows the visualization and text recognition results of our method on 
extremely compressed and severely distorted text samples, while (b) represents the results of Bezier curve 
generation. Zoom in for better visualization
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of the text prior image and the restored super-resolution text image. With such a model, 
we can not only solve the low-resolution text problem but also significantly strengthen 
the readability of text, especially for those text images with arbitrary shapes such as dis-
torted and stretched.
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HR	� High resolution
TP	� Text prior
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