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Abstract

The problem of designing a robustified Kalman filtering technique, insensitive to spiky
observations, or outliers, contaminating the Gaussian observations has been pre-
sented in the paper. Firstly, a class of M-robustified dynamic stochastic approximation
algorithms is derived by minimizing at each stage a specific time-varying M-robust
performance index, that is, general for a family of algorithms to be considered. The
gain matrix of a particular algorithm is calculated at each stage by minimizing an
additional criterion of the approximate minimum variance type, with the aid of the
statistical linearization method. By combining the proposed M-robust estimator with
the one-stage optimal prediction, in the minimum mean-square error sense, a new
statistically linearized M-robustified Kalman filtering technique has been derived. Two
simple practical versions of the proposed M-robustified state estimator are derived by
approximating the mean-square optimal statistical linearization coefficient with the
fixed and the time-varying factors. The feasibility of the approaches has been analysed
by the simulations, using a manoeuvring target radar tracking example, and the real
data, related to an object video tracking using short-wave infrared camera.

Keywords: Impulsive noise, Kalman filtering, Non-Gaussian noise, Nonlinear filtering,
Outliers, Robust estimation, Statistical linearization, Stochastic approximation, Tracking

1 Introduction

One of the most important contributions to the estimation theory is the optimal linear
Kalman filter. The simplicity of the optimal Kalman filter is contained in its linear pre-
dictor—corrector structure, making this result attractive from a practical point of view
[1-7]. The Kalman filter produces optimum on the average by minimizing the expec-
tation of a scalar-valued penalty, score or loss function, having the random estimation
error as the argument. Such a criterion function that is symmetric, convex and equal to
zero for the zero-valued argument is known as the admissible one [3, 5]. Kalman filter
is the optimal state estimator within a class of the admissible score functions, and as
a consequence, it also represents an optimal estimator in the minimum variance sense
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[1-7]. To obtain the optimal performance by the Kalman filter, it is necessary to provide
a correct a priori description of the system state dynamics and the statistics of random
observations. In this sense, if a system state dynamics and the associated observations
are confined to severe nonlinearities that cannot be described properly by linearization,
and/or if the underlying stochastic sequences are not Gaussian, the Kalman filter may
degrade its performance [8, 9]. In general, under nonlinear state dynamics and/or non-
Gaussian observations, the design of an optimal state estimator can be rather cumber-
some [1-5]. Therefore, there exists an interest in a class of estimation procedures that
is not optimal, concerning some statistical performance measure, but produces the
bounded total estimation error. A family of dynamic stochastic approximation proce-
dures offers a reasonable choice, since it produces fairly well results in many applica-
tions, including parameter and state estimation, optimization, pattern classification
and signal processing [10-14]. In this sense, any Kalman filter with an erroneous gain
sequence, owing to departure from the theoretically optimal conditions in practice, may
be considered as a dynamic stochastic approximation algorithm. On the other hand, it
is commonly assumed that real measurements are approximately Gaussian distributed,
due to the central limit theorem of the statistics [5]. Moreover, statistical analysis of
the numerous industrial and scientistic observations has shown that these contain, as a
rule, five to ten percentages of outliers [15]. Therefore, in many practical situations, the
real probability distribution function (pdf) of the random observations is similar in the
middle to the assumed Gaussian one, but differs from it by the heavier tails, generating
the spiky observations, or the outliers, contaminating the mainly Gaussian distributed
observations [15-20]. Particularly, the optimal Kalman filter is sensitive to outliers, due
to its linear dependence upon observations, or it is non-robust. Therefore, there is also
an additional practical interest in designing a class of robust filtering techniques that can
cope with outliers.

A simple concept of the robustness is the so-called censored data, where the meas-
urement data that differ sufficiently from the predicted values are discarded [15]. Such
type of the robust procedure suffers from several faults, and the principle one is that it is
often hard to distinguish an outlier from a large, but not unnatural, deviation. Therefore,
to handle the outliers more efficiently, several robust procedures are proposed in the
statistical literature [15—19]. Particularly, the Huber’s M-robust estimator is frequently
applied, because it approximates the optimal maximum likelihood (ML) estimator [17].
Thus, it can be understood and implemented easily by the practical workers. In this
sense, many various combinations of the M-robust estimator and the optimal Kalman
filter, or the linear least-square estimator, have been proposed in the literature [20-37].
In general, any estimation procedure is a combination of the criterion to be minimized,
the model of the variables to be estimated and an estimation algorithm [7]. In this sense,
the proposed robust estimators in the selected literature may be classified into the two
groups. The first one is a family of the non-recursive or offline robust schemes, where
the Kalman filtering problem is recast as a linear regression problem, which is solved by
the M-robust estimator [20-27]. The posed optimization problem is nonlinear, and an
iterative numerical method is required to solve it. Thus, the standard or the simplified
Newton’s method, as well as the iteratively reweighted least-square method, are recom-
mended [22, 24, 27, 38]. A such derived robust estimator is in a batch-mode regression
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form, processing the observations and the predictions simultaneously, that makes it
very effective in suppressing the outliers. However, the robustness in these estimators
is achieved at the cost of the increasing computational requirements. In general, a non-
recursive, or offline, estimator may also be used in a real-time application by introduc-
ing a one-step rectangular sliding window of a proper length [20]. The basic problems
in choosing the window length are related to time-varying parameter changes, together
with the influence of outliers contaminating the observations. In general, a smaller
parameter estimates variance is obtained at a longer window length, as a consequence
of a larger averaging of the measurement data. However, this is in collision with the
requirement to follow possible time-varying changes in the parameters to be estimated.
Moreover, a short window length may result in unreliable parameter estimates, because
of a high order of the underlying parameter regression model. Furthermore, a bias, of
shift, in the parameter estimates is unavoidable since the sliding window permanently
encompasses the observations contaminated by outliers. In this sense, the M-robust
procedures are efficient in suppressing the influence of outliers, thus reducing signifi-
cantly the bias and the variance of the robust estimates. Finally, as mentioned above, a
non-recursive robust estimator is rather computationally complex, and an increase in
the computational complexity basically depends on the number of necessary iterations
to solve the parameter regression problem. Therefore, to solve the posed problems, it
is more natural to use a recursive robust procedure than the non-recursive one. In this
sense, starting from the computational considerations, the second group represents a
family of the estimators that calculate an estimate recursively, because of the practical
requirements to online or real-time signal processing. Such derived robust recursive
estimator represents an acceptable balance between the computation efforts and the
practical robustness performance [20, 31-35]. A new member of this family has been
proposed in this article. The mentioned recursive robust estimators differ from the newly
proposed one by the level of models that are used for the model-based signal processing.
In this sense, the above estimators are based on the black-box models that have a para-
metric or polynomial form (FIR, AR, ARMA, etc.) [5-7]. Moreover, black-box models
are basically used as a data prediction mechanism, and the estimated parameters may
be used to extract limited physical information. However, the newly proposed recursive
robust estimator is derived from the true model-based technique, using lumped physical
model structure characterized by a state-space representation. Such a true model-based
approach is incorporating the mathematical models of both the physical phenomenol-
ogy, or system state dynamics, and measurement process, including noise, into the esti-
mation process to extract the desired information [1-7]. This, in turn, produces better
estimator performance than the black-box model-based estimation techniques. In gen-
eral, the computational requirements depend on the order of the underlying state-space
model, and for a not too large number of dynamic system states there are no significant
additional requirements to the computational resources. Moreover, a recursive weighted
least squares-type estimator, representing a combination of the Huber’s M-robust esti-
mator with a specific linear form of the dynamic stochastic approximation procedure,
has been proposed recently to redesign the measurement-update recursion in the opti-
mal Kalman filter [36, 37]. Here, the resulting state update recursion is still linear in the
observations, but insensitivity to outliers is achieved by using a nonlinear weighting



Pavlovic et al. EURASIP Journal on Advances in Signal Processing ~ (2023) 2023:69 Page 4 of 29

factor in the Kalman gain calculation. Such a quasi-linear robust state estimator pro-
duces worse estimation performance than the proposed true nonlinear robust estimator
in this article. The last one treats the outlier more severely by both the nonlinear resid-
ual processing and the Kalman gain calculation using the nonlinear weighting factor. In
addition, many suboptimal nonlinear state estimators have been designed by applying
the Taylor series expansion to describe a nonlinear system state dynamic [1-7]. Another
frequently used method is the statistical approximation, generally producing a better
nonlinearity approximation than the Taylor series method [1-3]. The simplest form of
such method is known as the statistical linearization. Here, the linear approximation of
the nonlinearity is used and, analogously to the estimation problem, the mean-square
error (MSE) criterion is minimized to calculate the underlying coefficients. This, in turn,
assumes that the pdf of the nonlinearity random argument is known in advance, and the
Gaussian one is adopted frequently. Moreover, the statistical linear approximation can
often be made for an adopted pdf, in such a manner that the calculated coefficients pro-
vide for a more accurate result, in the statistical sense, than the truncated Taylor series
of a high order. Therefore, the statistical linearization method has a potential advantage
for designing a suboptimal nonlinear filter [1-3]. Also, the Huber’s M-robust approach
has been proposed to making a suboptimal nonlinear filter more robust [28-30].

In this article, a new combination of the Huber’s M-robust estimator and the nonlin-
ear dynamic stochastic approximation algorithm of the approximate minimum variance
type has been proposed. In this sense, the Huber’s M-robust concept is utilized to design
a family of the M-robustified dynamic stochastic approximation procedures, by mini-
mizing at each stage the general time-varying M-robust performance index, based on the
Huber’s M-robust score function. To produce fast convergence, the gain matrix of a par-
ticular algorithm is derived by step-by-step minimization of an approximate minimum
variance-type criterion. The posed nonlinear optimization problem is solved approxi-
mately, by using the statistical linearization method. Furthermore, by approximating, at
each stage, the mean-square optimal statistical linearization coefficient by the average
slope of the Huber’s M-robust influence function, representing the first derivative of the
underlying score function, a new feasible statistically linearized M-robustified dynamic
stochastic approximation procedure is derived. Moreover, by approximating the aver-
age slope of the Huber’s influence function with the current sample, an adaptive version
of the proposed robust recursive state estimator has been obtained. Starting from the
optimal Kalman filter structure, in which the prediction and the correction terms are
independent, regarding the state estimate given the predicted one and vice versa, the
derived robust recursive state estimator is used to redesign the correction phase, making
the Kalman filter more robust. The practical robustness of the designed versions of the
statistically linearized M-robustified Kalman filter has been analysed by both the simula-
tions, using an example of single target radar tracking under an impulsive noise environ-
ment, and the real data, concerning an object tracking in a video sequence, generated by
the short-wave infrared camera.

The paper organization is the next. A brief description of the Kalman filtering tech-
nique, and some discussion on the robustness issues, are presented in Sect. 2. Section 3
is devoted to the synthesis of a new statistically linearized M-robustified Kalman filter-
ing technique, by both the M-robustified dynamic stochastic approximation algorithm
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of the approximately minimum variance type and the statistical linearization method.
Moreover, both the fixed and the time-varying suitable approximations of the mean-
square optimal statistical linearization coefficients are considered in Sect. 3. Experimen-
tal results obtained by both the simulations, using a manoeuvring target radar tracking
scenario, and the real data, related to an object video tracking using the short-wave
infrared camera are presented in Sect. 4. The concluding remarks are given in Sect. 5.
The complete derivation of the proposed statistically linearized M-robustified Kalman
filtering technique is given in Appendix 1, while the derivation of the optimal statistical
linearization coefficients is presented in Appendix 2.

2 Problem formulation
Let us consider a linear dynamic stochastic system which is represented by the first-
order linear difference state vector equation

X1 = Frxg + Grwg (1)
and the linear algebraic measurement vector equation
Yk+1 = Hir1%k+1 + Vi1 (2)

where xy is the state vector, yy is the observation vector, wy is the zero-mean state noise
or disturbance vector with covariance matrix Qy, and v is the zero-mean observation
noise vector with the covariance matrix Ry, at the discrete time index, k. Moreover,
the time-varying matrices F, G and H are also known in advance for each discrete time
index, k.

Here, the initial random state vector, xg, is the Gaussian one with known both the
mean value, my, and the corresponding covariance matrix, Py. Also, it is assumed that
the zero-mean white Gaussian noise sequences, {wy} and {v;}, are mutually uncorre-
lated, and uncorrelated with the initial state, xq, for all discrete time indices, k.

Let X = E{xk|Yl}, (I = k —1,k) denote the optimal linear least-square estimates
of the state, xy, given the observations Y! = {yj,j < l}, where E{-|-} is underlying con-
ditional expectation, and let Py = E 5ck|15ckT|l denote the corresponding covariance

matrix of the estimation error, X; = xx — Xi;. Then, the standard Kalman filter
recursions are given by [1-7].

1) Time update (prediction phase):

Frp1k = E{xk+1|Yk} = Fikik (3)

Priax = E {5k+1|k56kT+uk} = FPyiFy + GrQiGy (4)
2) Measurement update (correction, estimation or filtering phase):

. k+1 - ) -
X 1k+1 = E{xk+1|Y } = X1k + Kir18k415 €k+1 = Yi+1 — Hrp1 X411k

(5)
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Kir1 = PevieHi 1S ©
Prijkr1 = [ — Ky 1Hir11Pryaik

Sk+1 = E{5k+15/<T+1} = 1'{/<+1Pk+1|/<1'1’k7;1 + Ri41 (7)

The Kalman filter is initialized with Xoj0 = m10, Pojo = Po. The Kalman filter opti-
mality is contained in its suitable predictor—corrector form, and the associated cal-
culation of the gain matrix, K, [1, 5]. However, as mentioned before, the Kalman
filter is non-robust, in the sense of its sensitivity to spiky observations, bad data or
outliers. In the statistical literature, there exist at least four definitions of robust-
ness, [15-20]. The two of them, named the qualitative and the min—max robustness,
respectively, are based on the strong mathematical treatments, [17, 19]. The other
two, the so-called resistant and the efficiency robustness, are primarily oriented
towards data, and are based on the empirical reasoning, [15, 16, 18]. Roughly speak-
ing, the resistant robustness means that an estimator eliminates successfully the
influence of outliers, while the efficiency robustness denotes that an estimator pro-
vides for an acceptable estimation quality under both the pure Gaussian observation,
and the Gaussian one contaminated by outliers. Both robustness features designate
the practical robustness, and are emphasized by the practitioners. Also, although
there exist several robust estimation procedures in the statistical literature, the
Huber’s M-robust approach is preferable, since it originates from the optimal maxi-
mum likelihood (ML) concept, making it more natural and easier to implement, [17].
In this sense, an estimator must not be exactly the optimal ML estimator, but has to
approximate the optimal one in such a manner to achieve the practical robustness
goals. It should be noted that the min—max robust estimation is exactly the optimal
ML estimation based on the loss or score function, p(-) = —Inpg(-), named the like-
lihood function, with pg(-) being the worst-case pdf within the given pdf’s class. The
worst-case pdf contains the minimal information about a variable to be estimated
and minimizes the Cramer—Rao lower bound. This represents a non-classical varia-
tional problem that can be solved exactly only for the static models, when the posed
problem reduces to minimizing the Fisher information, [17, 20]. In addition, the
qualitative robustness is based on the Hampel’s definition of the influence function,
as a suitable measure of the robustness capacity [19]. In this sense, the influence
function represents the first derivative, or the slope, of the robust score function, p,
used to define the Huber’s M-robust performance index. [17, 19].

As mentioned before, any Kalman filter whose gain differs from the optimal one,
owing to the errors in the presumed noise statistics, or due to an inadequate rep-
resentation of the system state dynamics, can be viewed as a dynamic stochastic
approximation algorithm, [1, 10-13]. Therefore, this algorithm may represent a
suitable substitution to an optimal estimation technique, when the assumptions on
which the latter one is based are not fulfilled in practice. Starting from the practical
limitations of the linear optimal Kalman filter, this approach can be applied further
to making the optimal Kalman filter more robust.
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3 Statistically linearized M-Robustified Kalman filtering

As mentioned above, the Huber’s M-robust approach combined with the dynamic stochas-
tic approximation method may be used to computing a robust recursive state estimates of
the dynamic stochastic system represented by (1), assuming the scalar observations, in (2).
Also, a case of the multidimensional measurements, in (2), may be considered in the same
manner by processing the individual observations one at a time. This approach assumes
that the components of the measurement vector, in (2), can be processed sequentially, as
the uncorrelated scalar observations. In this sense, one has to redefine the measurement
vector, in (2), to making the corresponding measurement errors, or the noise vector com-
ponents, to be mutually uncorrelated. This, in turn, results in a diagonal form of the meas-
urement uncertainty covariance matrix,Ry. A suitable stable numerical decomposition
method that is frequently used in practice is the Cholesky factorization, or its modification
named the UD-decomposition, [2, 3].

The Huber’s M-robust estimator minimizes an empirical average loss, being defined by
the nonlinear score function, p, to estimate the constant parameters in a linear regression
problem, [17]. To apply this robust approach to a dynamic system recursive state estima-
tion, the time-varying M-robust performance index is introduced, instead of the M-robust
performance measure in the form of the empirical average loss, that is

@) =E{p<8ksi")> 3 Yk} ®)

with E{ - |¥, Y*} being the conditional expectation under the known predicted state, ¥,

at the present stage, k, as well as the known observations up to the current stage, Yk,
where y is a scalar system output in (2), [12, 20]. Starting from (8), one can define a
family of the dynamic stochastic approximation recursive estimators, minimizing the
M-robust performance index (8) at each stage, k

X =% — Tegre B g Fx) = Vi (%) )

where I'y is the matrix gain, and % is a one-step prediction, to take into account for the
changes in the current state, xi, in (1). The term, Vx/i(+) in (9), designates the gradient
vector of the scalar-valued deterministic M-robust criterion in (8). Taking into account
(8), one obtains

i (%, 1
Vol = P — ey (%)

Sk Sk

Xk Y"}H{ (10)

with ¥ (-) being the first derivative, named the influence function, of the robust score
function, p(-), in (8). Moreover, the term, 3(-)/dx = {3(-)/dx1 - - - 3(-)/dx,} ", denotes the
partial derivative operator, where x is the # x 1 column vector.

Analogously to (5), the measurement prediction residual, or the innovation, is defined by

e = e(xg) = yx — Hyxy (11)

where yy is the scalar system output, and Hy is the observation vector in (2), at the stage,
k. In addition, s is the normalizing (scaling) factor that provides for the scale-invariant
state estimates, and represents an estimate of the corresponding standard deviation.
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In general, the conditional expectation in (10) is indeterminable and, analogously to the
dynamic stochastic approximation approach, can be approximated by the current sample,
[1, 3]. Thus, the unknown expectation, in (10), can be estimated at each stage, &, by the cur-
rent realization of the underlying random argument. This, in turn, results in the stochastic
gradient vector representation

1 &k
Sk
Furthermore, by replacing (12) with (9), a family of the M-robustified dynamic sto-
chastic approximation recursive state estimators takes the form

4 =7+ LrHTw (&
X =xp + —UpHp ¢ (13)
Sk Sk

In words, the posed optimization problem (8) reduces to finding the solution of the
equation, gi(-) = 0, at each stage, k, with g, in (9), being the so-called regression func-
tion. Since this function is unknown, it is replaced by the random sample realization,
(12), and the resulting estimation scheme (13) is known as the dynamic stochastic
approximation algorithm, [1, 10-12].

The role of an admissible score function, p, in (8) is to provide for the practical robust-
ness of the estimation procedure (13). To achieve such performance, the M-robust influ-
ence function, ¥ = p/, has to be a bounded and continuous function [15-19]. This, in
turn, produces that both the single and the grouped outliers will not have a significant
impact on the state estimates (13), satisfying the resistant robustness requirement. Addi-
tionally, to obey the efficiency robustness feature, the estimation procedure (13) has to
perform fairly well under both the pure Gaussian observations and the Gaussian one
contaminated by outliers. The Huber’s M-robust score function, py, that is quadratic in
the middle, but increases slowly than the quadratic one in the tails, obeys both the prac-
tical robustness requirements [17]. The corresponding M-robust influence function is
the monotonously non-decreasing saturation-type nonlinearity, given by

Vi (z) = py(z) = min (|z], A)sgn(z); A =15 (14)

where A is the tuning constant that controls the efficiency robustness. The choice
A = 1.5 often produces an acceptable result, and such procedure is known as the
Huber’s 1.5 M-robust approach [17]. Nonlinear data processing using the saturation
function (14) is known in the statistical literature as the winsorization [15-19]. As men-
tioned before, statistical analysis has shown that the various measurement data contain,
as a rule, 5 to 10 percentage of outliers [15]. In this sense, it is frequently assumed that
the observations are generated by the Gaussian mixture pdf

ps()=(A=ON(10,02) +8N(0,02); 0=6=lof=102>>0  (15)

where § is the contamination degree, and o2 is the unit variance of the mostly obser-
vations generated by the standard zero-mean Gaussian pdf with the unit variance,
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N (10, 1), while 02 is a large variance of outliers, generated by the zero-mean normal pdf,
N (-|0, 002). Such pdfis also known as the §-contaminated normal one [15-20].

Particularly, for the pdf class (15), with an arbitrarily zero-mean symmetric con-
taminating pdf, instead of the Gaussian one, N (+|0, 002), the worst-case pdf, py, in the
sense of the minimal Fisher information, is the Gaussian one in the middle and the
Laplace, or double exponential, one in the tails. The influence function, ¢ = p’, of the
associated likelihood function, p(-) = —In pg(-), is the saturation-type nonlinearity, in
(14), [17]. Examples of the pdf’s classes commonly used in engineering problems, and
the derivation of the worst-case pdf within the prespecified class, are presented in the
literature, [17, 20].

The role of the matrix gain, Ik, in (13) is to control the convergence speed. At this
moment, the gain, Ik, is not connected to any assumption about the random state to
be estimated, and the corresponding noise sequences. Therefore, to link the optimal
Kalman filter with the recursive robust state estimator (13), an additional optimiza-
tion criterion of the approximate minimum variance type is introduced

J1(T) = TracePy; Py = E{a(H)F] (4) s & () = ¢ — & (16)

where the matrix Py is the estimation error covariance at the stage k, with Trace being
the matrix trace. Minimization of the scalar, deterministic criterion, in (16), at each
stage, k, with respect to the gain matrix I'y, represents a complex nonlinear problem, and
an approximate optimal solution can be obtained by using the statistical linearization
technique, [1-3]. Starting from an odd v-function, in (14), where its random argument,
z, is a sample from a zero-mean white scaled measurement residual sequence, {g¢ /si} in
(13), with a symmetric pdf belonging to the class (15), the application of the statistical
linearization method results in the following approximation of the influence function

v (Z) Yo b= UIZZEWZV} 17)
with o being the mean-square optimal statistical linearization coefficient, while o2 is the
variance of the random argument z, (for more details, see Appendix 2).

Particularly, if ¥(-) in (17) is the saturation function (14), the coefficient, o, is
dependent on the linear segment of v (-), the saturation threshold, A, and the var-

iance, o2

~. In general, for the small o,-values, in comparison with the A-values, the

probability of saturation occurrence is low, resulting in the a-values close to one.
Moreover, for the higher o,-values, the a-values are significantly smaller than one,
due to a larger probability of the saturation existence. Therefore, for the prespecified
Y-function, in (14), and the different o,-values, a set of the a-coefficients from the
interval [0, 1] is obtained. Furthermore, since the normalized residual, in (17), has
the unit standard deviation that is smaller than the threshold, A, the corresponding
coefficient, o, is close to one. By substituting (17) in (13), one obtains the following
relation for the statistically linearized M-robustified Kalman state estimates, instead
of the recursions (5)—(7),

55/( = x; + Kyep; K = 51:20{ FkaT (18)
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Here, the standard deviation, si, of the measurement residual, &, in (18) may be
defined by the associated variance in (7), yielding

1/2
=52 = (HkMkaT + Rk) (19)
with the matrix, My, being the prediction error covariance defined by (4), that is
My = E{a(0F] (5} #u(-) = — (20)

Particularly, for the measurement noise model, in (15), the underline observation noise
variance in (19) is given by

Ri = (1 —8)02 + 802 (21)

In general, the contamination degree, §, is not exactly known in practice and cannot be
determined adequately from the measurement residuals, [15-20]. As mentioned before,
a reasonable choice in practice is to adopt the §-value in advance within the interval from
0.05 to 0.1, corresponding to 5 to 10 percentage of outliers in the Gaussian distributed
measurement data. Furthermore, the standard deviation of outliers, o, is also unknown,
but it is significantly greater than the unit nominal standard deviation, oy, of the mainly
zero-mean Gaussian noise samples, in (15). Taking into account (1), (2), (11), (18)—(20),
together with the convenient simplifications, one obtains an approximate optimal solu-
tion, by minimizing the adopted criterion, in (16), (for more details, see Appendix 1)

Uy = My; P = (I — Ky Hy) My (22)

In addition, starting from (13)—(22), the statistically linearized M-robustified dynamic
stochastic approximation recursive state estimator is defined by

Xk = X + Kisivy <j]/:> ; Ky = S]:2aMkH]? (23)

Here, the residual, &, scaling factor, s;, Huber’s influence factor, ¥4, and the coeffi-
cient, «, are defined by (11), (14), (17) and (19), respectively, while the estimation error
covariance matrix, Py, is given in (22). The recurrent relations (20), (22) and (23), are
similar to the measurement-update recursions, (5)—(7), in the filtering stage of the linear
optimal Kalman filter. Since the design of the prediction and the estimation processes in
the optimal Kalman filter are independent, the last one may be robustified by combining
the recursive robust estimation process in (22) and (23), instead of the measurement-
update recursions (5)—(7), with the one-step mean-square optimal prediction in (3), (4),
to derive a new M-robustified version of the optimal Kalman filter. In this sense, the
time-update recurrent relations, (3) and (4), in the prediction stage of the linear optimal
Kalman filter define also the recursive prediction process in the M-robustified statisti-
cally linearized Kalman filter. Thus, for the one-step prediction, ¥ in (23), and the cor-
responding prediction error covariance matrix, My in (20) and (23), the same recursions
as in (3) and (4) are obtained, that is
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Xk = Feo1&k—1; M = Fx 1 Pr1 FL 1 + G Q1G4 (24)

Here, Fi and Gy are the system state transition matrix and the state noise matrix, in
(1), with the state noise covariance matrix, Q.

Unfortunately, the measurement noise statistics are not exactly known in many appli-
cations, and in such circumstances the mean-square optimal linearization coefficient
« in (17) is indeterminable. Therefore, the optimal coefficient, in (17), may be approxi-
mated by the fixed coefficient, o, defined by the relation

asz{W(Z)};wiZ)%W(z) (25)

z

where ¥/ (-) is the first derivate, or the slope, of the y¥-function.

Particularly, for the Huber’s yy-function in (14), the relation (25) may serve to explain
the physical meaning of the fixed coefficient, o, and to estimate its value. Starting from
(14) and (25), one gets

af = E{y(2)} = / p(@dz=1-36 (26)
lzl=A

where p(-) is the unknown measurement noise pdf, in (15). Here is assumed that the
real pdf of the scaled residual, /s in (23), also belongs to the given pdf class, in (15), (for
more details, see Appendix 2). The integral, in (26), is equal to the probability that the
observations are generated by the nominal standard Gaussian pdf, corresponding to the
linear part of the ¥-function in (14), with the slope, ¥/;;, being equal to one. In accord-
ance with (15), the underlying probability may be estimated by (26), using the assumed
contamination degree, §. It should be noted that the calculation of the fixed coefficient,
af, in (26) may be also based on the worst-case pdf, po, within the given class (15), result-
ing in

o =E{0p@} = | miedz =20 - spera) o)
lz|<A

where erf is the error function, [17, 20]. This solution is asymptotically equal to (26),
since the value of the erf function is close to 0.5 for a large enough argument.

Thus, the relations (26), or (27), define the fixed and feasible approximations of the
optimal statistical linearization coefficient, in (17), representing an approximation of the
Huber’s M-robust influence function average slope, where the influence function, ¥, is
defined by (14).

Thus, in the absence of outliers, corresponding to the zero-valued contamination
degree, §, the a value, in (26) or (27), is equal to one, reducing the robust gain, Ky in (23),
to the optimal Kalman gain, in (6). Since the robust influence function, ¥, in (14), oper-
ates in its linear regime, corresponding to the linear influence function of the optimal
Kalman filter, (3)—(7) the robust recursive estimator, (23), (24), performs as the optimal
Kalman filter. However, in the presence of outliers, the fixed factor, ey in (26) or (27),
decreases with the contamination degree increased values, decreasing further the val-
ues of the robust gain matrix, K. in (23). Since the influence function, ¥z in (14), now
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operates in its saturation regime, the combination of these two effects suppresses the
influence of outliers to the robust recursive estimates, in (23).

On the other hand, the variable approximation of the optimal statistical linearization
coefficient, in (25), is given by

M for gk;éo ﬂndsk#o

& /Sk) = = €k /Sk 2
o(ex/sk) = ok {1 forep =0 orsy =0 (28)

where the expectation, in (26), is replaced by the current sample. This approximation
represents the current slope of the Huber’s M-robust influence function, in (14), being
approximately equal to zero or one. Thus, in the absence of outliers, the variable coef-
ficient, oy in (28), has the unit value, so the robust gain matrix, Ky in (23), is reduced to
the optimal Kalman gain, in (6). Since the Huber’s influence function, in (14), operates in
the linear regime, the robust recursive estimator, in (23), performs as the optimal linear
Kalman filter. On the other hand, in the presence of outliers, the variable a-coefficient,
in (28), is close to zero-value, decreasing significantly the robust gain, K in (23), while
the influence function, ¥y, now is confined to its saturation regime, thus suppressing
more efficiently the influence of outliers, in comparison with the application of the fixed
coefficient, in (26) or (27).

In summary, the proposed statistically linearized M-robustified Kalman filtering algo-
rithm consists of the time update, in (24), and the measurement update given by (11),
(14), (19), (22), (23) and (26), or (28). It belongs to a class of recursive stochastic proce-
dures, and some theoretical analysis of the estimates convergence is very difficult, due to
a nonlinear form of the robust recursive state estimator by itself and a time-varying sys-
tem state dynamics. Therefore, further analysis is based on both the simulations, using a
manoeuver target radar tracking example, and the real data, related to an object tracking
in the video sequence, generated by the short-wave infrared camera.

4 Experimental results and discussion

As mentioned above, the simulation example is related to the radar tracking prob-
lem in conditions close to reality. In this sense, the radar measurements usually con-
sist of range, azimuth and elevation angles, since the observation noises are uncoupled
in the spherical coordinate system (SCS). However, a requirement for simple filter-
ing implies the desirability of the uncoupled filtering in the Cartesian coordinate sys-
tem (CCS) [40]. Thus, the CCS would employ the three independent Kalman filters in
each of the coordinates, (x, Y, z). In addition, if the sampling period is larger than the
target manoeuver time constant, the computationally convenient reduction to the three
independent two-state (position and velocity components) Kalman filters in the (x, ¥s z)
directions is recommended, because the Kalman gains associated with the acceleration
terms are rather small [40]. As a consequence, the state noise covariance, Q, has to be
chosen so to compensate for the missing acceleration terms. Bearing in mind that the
measurements when transformed from the SCS to the CCS are no more uncoupled,
the proposed approach represents a trade-off between a potential performance loss and
computational feasibility. Since the obtained simulation results are very similar in each
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of the (x,7,z)- CCS directions, only the simulation results related to the x-CCS axis are
presented in the sequel.

The first simulation task is to model the system state dynamics, using the kinematic
equations of motion [40]. Thus, if xx, v and g indicate the target position, velocity
and acceleration, respectively, at the discrete time, & = kT, k =0, 1,..., x-CCS axis,
with T being the uniform sampling period, and assuming that the acceleration is con-
stant over the sampling interval, fx <t < #;41, one obtains, by integrating the acceler-
ation twice time over the given interval, the following set of equations (the equivalent
equations may be written for the y and z-CCS directions)

1
xe = i+ Vi(t — ) + Sar(t — te)?

Ve =V +ar(t — ) (29)

ar = ay

A particular target position trajectory may be obtained from (29), by defining in
advance a piece-wise constant acceleration profile. The model (29) with the zero-val-
ued acceleration term is known as the constant velocity (CV) one. Thus, any target
movement that cannot be represented by the CV-model may be considered as the
target manoeuvre [40]. An example of such target position trajectory, used in the sim-
ulations, is presented in Fig. 1. The measurement sequence is simulated using the lin-
ear position sensor, represented by

Yk = Xk + Vi (30)

where the zero-mean white measurement noise sequence, {v¢}, is confined to the pdf
(15).

In a mono-pulse radar, such heavy-tailed feature of the underlying observation
noise pdf is associated with the large target glint spikes, representing the outliers [40].
A sample of the random variable, v, with such pdf may be generated by firstly taking
a sample, u, belonging to the (0,1)-uniform pdf. Thus, if the sample, u, is greater than
the §-value, the sample, v, is generated from the standard zero-mean Gaussian pdf
with the unit variance; otherwise, the sample, v, is generated from the contaminating

zero-mean Gaussian pdf with the assumed huge variance o2

- >> 1. Observations are

generated in a separate computer program from a set of the true kinematic equations

1200 T T T T T T T T T

1000f-

x [m]
g

0 2 4 6 8 10 1?2 14 16 18 20
t[s]

Fig. 1 The exact target position trajectory used in simulations
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Fig. 2 Atypical observation noise sample, from §-contaminated Gaussian pdf, Eq. (15)

of the target motion, (29) and (30), and the previously obtained noise sample, vi. A
typical observation noise record is depicted in Fig. 2. Besides, the filter world is repre-
sented by the two-dimensional, discrete, time-invariant state-space model in the form
(1), (2), given by

Xpr1 = Fxp + Gwy | 1T 0
3 F = , G= , H=110
Y = Hxp + v [ ] (31)

The state transition matrix, F, follows directly from (29) by taking ¢ = #,; and
neglecting the acceleration term, while the observation or information vector, H, follows
from (30). The zero-mean white state noise sequence, {wy}, is introduced artificially to
compensate for the unmodelled system dynamics, associated with the unknown target
manoeuvre. The variances of the noise sequences, {vi} and {w;}, are given by Q = 0.1 and
R =1, respectively. Moreover, the uniform time-step T = 0.02s is used. The following
algorithms have been compared: the linear optimal Kalman filter (3)—(7), designated as
A1; the statistically linearized M-robustified Kalman filter (11), (14), (17), (19), (22)-(24)
with the variable statistical linearization coefficient in (28), designated as A2; the statisti-
cally linearized M-robustified Kalman filter (11), (14), (17), (19), (22)—(24) with the fixed
statistical linearization coefficient in (26), designated as A3; and the quasi-linear approx-
imation of the algorithm A2, based on the linear residual transformation, in (23), instead
of the nonlinear one in (14), together with application of the same nonlinear residual
processing in computing the adaptive gain matrix, Kx, as in A2, designated as A4.

Here, the initial state estimate, X, and the corresponding covariance, Py, are calculated

using a suboptimal procedure based on the first two observations, [40]

N Y2 |, _ 1 1/T
o= 2= | yr g4y 2

The performances of the analysed filters are compared both in terms of the estimated
and the true position profiles, as well as the cumulative estimation error criterion
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Fig. 3 Comparison by CEE measure (33) of different algorithms under pure Gaussian observations, Eq. (15)
withé =0

CEE

CEE

(b)
Fig. 4 Algorithms comparison by CEE criterion (33) under §-contaminated Gaussian observation noise pdf
(15):a8 =0.07;b 8 = 0.15

CEE(k) = zk: [ = (33)
k= fal?
with ||-|| being the Euclidean norm, where the true target position trajectory, xy, is

depicted in Fig. 1. The CEE criterion values obtained for different algorithms and dif-
ferent measurement noise realizations in (15) are presented in Figs. 3 and 4. The results
plotted in Fig. 3 have shown that the robustified Kalman filters A2-A4 satisfy the
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Fig. 5 The parts of the true and the estimated target trajectories, generated by the algorithms A1 and A2

efficiency robustness requirement, since the obtained values of the criterion (33) for
these algorithms are not significantly larger, in comparison with the optimal Kalman fil-
ter, Al, under the pure Gaussian observations. In addition, the state estimators A2-A4
also satisfy the resistant robustness requirement, producing significantly smaller values
of the criterion (33) than the optimal Kalman state estimator, Al, in the presence of out-
liers within the Gaussian observations, as depicted in Fig. 4. The parts of the true and
the estimated target trajectories, generated by the algorithms Al and A2, are depicted
in Fig. 5. Similar results are obtained for the algorithms A3 and A4. However, an analysis
of the estimator performances using the true and the estimated profiles is not suitable,
since the target positions on the trajectories are expressed in much larger units, in com-
parison with the values of the underlying estimation errors. Therefore, the adopted CEE
criterion in (33) is a more suitable factor of goodness, concerning the estimation quality.
In this sense, the simulation results presented in Figs. 3, 4, 5 have shown that the pro-
posed robust filters A2-A4 obey the practical robustness requirements.

Moreover, extensive Monte Carlo simulations have shown that the robustified versions
A2-A4 of the optimal linear Kalman filter, A1, perform fairly well for the contamination
degree § < 0.3, since for greater §-values the observation noise model (15) is no more
adequate. Furthermore, the best performances are obtained for the algorithm A2, owing
to the common effects of the nonlinear residual transformation, in (14), and the calcula-
tion of the gain matrix, in (23), using an adaptive robustifying linearization coefficient,
in (28). In words, these effects result in the values of the gain matrix large enough to pro-
duce a good tracking feature, but also small enough to provide for the noise reduction.
The algorithm A4 produces a slightly worst result than A2. A disadvantage of the algo-
rithm A3 is the application of the fixed linearization coefficient, in (26), depending on
the exactly unknown contamination degree, §, in (15) that cannot be estimated properly
from the residuals, [15, 17]. Additionally, in the presence of outliers, the fixed lineariza-
tion coefficient, in (26), reduces the gain matrix values, in (23), but the so-obtained gain
factor values are larger than the gain values generated by the adaptive factor, in (28).
This, in turn, makes the underlying state estimates more sensitive to impulsive noise,
or outliers, in comparison with the algorithms A2 and A4. In this sense, although the
algorithm A4 is linear in the observations, as Al, it utilizes the nonlinear robust data
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processing in calculating the gain matrix, as in A2, suppressing efficiently the influence
of outliers.

The second part of the experimental results is devoted to the real data, concerning
to object tracking in the video sequence using the short-wave infrared camera. In this
sense, the goal of the video tracking is an estimation of the location of a moving object
in the video sequence. For the experimental analysis of a single moving object track-
ing in the video sequence, a kernelized correlation filter (KCF), [41], is used as a basic
tracker since it is the one of the fastest trackers that does not require the graphics pro-
cessing unit for real-time processing, [42]. In video tracking, the occlusions are among
the most challenging problems, [43]. Although the KCF algorithm performs very well
under the regular conditions, its performance decreases in the presence of occlusions. In
this sense, when the tracked object disappears, due to the full occlusion, the KCF tracker
will get stuck at the position of occlusion and continue to track the background, as the
object of interest. To overcome this problem, the prediction and the estimation of the
object’s motion dynamics are required. Thus, the KCF tracker is synced with the Kalman
filter to improve the tracking performance when the object is occluded. Furthermore,
during the occlusion period, the tracked object may perform a manoeuver. However, in a
case of the object manoeuvre under the occlusion, it may be happened that the object is
not re-detected after the occlusion, [44]. In this sense, the search area (window) used by
the KCF tracker is not sufficient for object re-detection after occlusion, [41]. Therefore,
when the occlusion is detected, the extended search area is used for the possible object
re-detection after occlusion. Here, for occlusion detection, the peak-to-sidelobe ratio
(PSR) metrics is used, [44]. The extended object search area is implemented by replicat-
ing the search windows around the central one, [45]. The dynamics of the tracked object,
and those of the central search window position, are estimated by the Kalman filter,
defining at the same time the central position of the extended search area. In this way, by
estimating the dynamics of the object’s motion, and by expanding the object search area,
it is possible to overcome occlusions, and re-detect the object after occlusion, providing
for continued tracking.

The object being tracked is represented by a bounding box, which is defined with the
centre (x.,Y,) in the image plane, and the corresponding height and width. To approx-
imate the inter-frame object position (bounding box centre) displacements, the linear
constant velocity model, in (31), is applied in the two directions, x and y, yielding the
state-space model in the form (1), (2). Thus, the system state vector, X, and the corre-
sponding system matrices, F, G, and H, are given by

X 1700 00
|| .. _|0100]| ,, [1000 |10

X= Ve F = 001T’H—[001o}’G— 00 (34)
Ve 0001 01

with %, §, being the first derivative, or the velocity, of the state vector components, x
and y, respectively, and T is equal to one. Thus, the two independent two-state (posi-
tion and velocity components) Kalman filters in the x and y directions are used, in (34).
Kalman filter, defined by (34), is initialized on the first video sequence frame with the
ground-truth object position. The corresponding estimation error covariance matrix, P,



Pavlovic et al. EURASIP Journal on Advances in Signal Processing ~ (2023) 2023:69 Page 18 of 29

the state noise covariance matrix, Q, and the observation noise covariance matrix, R, are

defined as follows:

100 0 0
0 100 0 0 001 0 10

Po=14 0 10 0 ’Q:{ 0 0.01}13—{01} (35)
0 0 0 100

Particularly, the object tracking in infrared imagery is considered in the sequel. For
this purpose, the two characteristic video sequences are recorded, using the “Vlatacom
electro-optical surveillance system,” [46]. The video sequences are recorded using the
short-wave infrared camera, with the resolution of 576 x 504 pixels and the 25 frames
per second. The recorded scenarios cover the typical urban scenes in real-life surveil-
lance applications, including the single moving object and the various type of occlu-
sions, such as static and moving, partial or complete, and short-term and long-term
occlusions. The objects of interest for tracking are pedestrians. The first video sequence
contains 825 frames with the partial and the full static occlusions. The second one has
225 frames, and the tracked object is occluded by the partial moving and the full static
occlusions.

Starting from the two recorded sequences, and analysing the moving object tracking,
using the combination of the improved KCF algorithm, with an extended search area
and the standard Kalman filer, it can be concluded that the appearance of different types
of occlusions results occasionally in large intensity errors, which may be treated as out-
liers. Thus in Fig. 6 are shown the position errors for the vertical, y, and the horizon-
tal, x, directions. The position measurement errors, which deviate significantly from the
majority of the population in the central cluster, in Fig. 6, present the outliers, caused
by various occlusions. As mentioned before, the standard Kalman filter has the linear
influence function, so that it is sensitive to outliers or non-robust. As a consequence,
these errors in the measurement data can lead to the object loss and the tracking failure.
Therefore, the M-robustified statistically linearized Kalman filter with the variable lin-
earization coefficient, denoted above as A2, is proposed to supress the influence of outli-
ers in the video tracking applications.
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Fig. 6 Object position errors on the created video sequences with occasionally large errors caused by the
occlusions, representing outliers
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Fig.9 The first test video sequence. Pedestrian tracking in scenario with partial and full static occlusions.

Comparison of bounding boxes obtained by standard Kalman filter (blue box) and robust Kalman filter (red
box) to ground-truth (green box) bounding box

Fig. 10 The second test video sequence. Pedestrian tracking in scenario with partial moving and full static
occlusions. Comparison of bounding boxes obtained by standard Kalman filter (blue box) and robust Kalman
filter (red box) to ground-truth (green box) bounding box
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The position errors of the different algorithms, based on the combination of the
improved KCF tracker with the standard and the M-robustified adaptive Kalman filters,
are shown in Fig. 7 (the first recorded video sequence) and in Fig. 8 (the second recorded
video sequence). To clearly demonstrate tracking performance on real data in Fig. 9 (the
first video sequence) and Fig. 10 (the second video sequence) are shown frames from
these sequences with ground-truth bounding boxes, and bounding boxes generated
by the standard and the robust Kalman filter. Figures 9 and 10 show that in the case
of occlusions, the algorithm using the standard Kalman filter significantly deviates from
the ground-truth position. In the scenario in Fig. 9, there is a complete loss of the object
of interest, which can also be seen in Fig. 7. In the scenario in Fig. 10, although there is
no loss of the object, at the moment of occlusion, the error of the algorithm is very large,
which is confirmed by the graphic in Fig. 8. In the system with a camera on the pan-tilt
[46], these large position errors may lead to a sudden movement of the system and the
loss of the object from the field of view. On the other hand, the robust Kalman filter
approach successfully overcomes occlusions and continues tracking more smoothly. The
obtained results, based on the real data, confirm the earlier derived conclusions from
the simulation results. The presented experimental results also indicate a possibility
of designing an efficient robust tracking system in the video surveillance applications,
being a combination of the KCF tracker and the proposed adaptive M-robustified ver-
sion of the optimal Kaman filter.

5 Conclusion

Kalman filter produces the optimal state estimates of a linear dynamic stochastic system
in the presence of the Gaussian distributed both the random input, the so-called state
noise and the additive measurement noise. The optimality of Kalman filter is related to
its predictor-corrector recursive form and the computation of the gain sequence. How-
ever, presence of the erroneous noise statistics and/or miss modelling may cause signifi-
cant deviations from the theoretically optimal performances.

Starting from these practical limitations of the optimal Kalman filter, a new class of
the statistically linearized M-robustified Kalman filtering algorithms has been proposed
in this article. The proposed robust algorithms are feasible and provide for the recursive
dynamic system state estimation. The article also produces the complete derivation of the
algorithms to be handled. In this sense, the time-update recursion is designed accord-
ingly to the optimal Kalman filter, and the measurement-update recursion is designed
as the nonlinear dynamic stochastic approximation procedure, generated by minimiz-
ing at each stage the generalized time-varying Huber’s M-robust performance index.
Thus, the optimal Kalman filter robustification is obtained by nonlinear transformation
of the scaled residuals through Huber’s M-robust influence function. Analogously to the
standard Kalman filter, the robust recursive estimator gain matrix is computed from an
additional optimization procedure of the minimum variance type. The posed nonlin-
ear optimization process applies the statistical linearization technique to provide for a
suboptimal robust version of the Kalman gain matrix. Since the determination of the
mean-square optimal statistical linearization coefficient assumes the exact knowledge of
the observation noise statistics, both the fixed and the variable approximations of the
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optimal coefficient are proposed. Thus, the fixed approximation of this coefficient repre-
sents an approximation of the average slope of the Huber’s M-robust influence function
that is estimated further by the assumed probability of outliers occurrence. A variable
version of such fixed coefficient is obtained by approximating the expectation by the
current sample, resulting in the present slope of M-robust influence function.

Theoretical convergence analysis of the proposed robust algorithms is difficult, due
to both their nonlinear forms and a time-varying multidimensional system dynamics.
Therefore, practical robustness of the derived state estimators, including the resist-
ant and the efficiency robustness, is analysed by simulations, using a single manoeu-
vring target tracking example. The experimental results also allow understanding of the
algorithms operations, with and without outliers, where each case is accomplished by
an adequate robust gain matrix. Additionally, it indicates to the conclusion that both
the nonlinear transformation of the scaled measurements residuals, using the Huber’s
M-robust influence function, and the robustified computation of the gain matrix, apply-
ing an adaptive statistical linearization coefficient, provide for a good compromise
between the tracking performance and the noise immunity. In words, the variable coef-
ficient is adapted properly to the nonlinear form of the M-robust influence function,
reducing the effects of outliers. Moreover, the fixed statistical linearization coefficient
results in a slower decrease in the gain matrix, in comparison with the variable one. This,
in turn, eliminates the effects of outliers worser than in the case of the variable statisti-
cal linearization coefficient. A quasi-linear approximation of the proposed statistically
linearized M-robustified Kalman state estimator, based on the linear residual trans-
formation, together with the adaptive nonlinear residual processing in calculating the
robust gain matrix, produces a slightly worse performance than the starting nonlinear
robust estimator. Moreover, the experimental results based on real data, concerning a
video tracking, using short-wave infrared camera, are also analysed. The real data con-
sist of the two recorded video sequences, representing the typical urban scenes in the
real-life surveillance applications including the pedestrian as an object of interest in the
scenarios with various types of occlusions (static or moving, partially or complete, short
and long term). The application of the proposed video tracker, being the combination of
the improved kernelized correlation filter and the M-robustified statistically linearized
Kalman filter, provides an efficient, robust method for tracking of manoeuvring object in
the presence of occlusions. These results are in accordance with the conclusion derived
from the simulations and indicate to a possibility of designing an efficient robust video
tracking algorithm.

The proposed statistically linearized M-robustified filtering technique can be also
applied to some redescending influence function that may be better in eliminating the
influence of outliers. However, the robust score function associated with such influence
function, and determining the M-robust performance measure to be minimized, is not
the convex one. Therefore, there could be convergence problems during the robust filter
initialization. The problem may be circumvented by applying the two-step estimation
procedure, where in the first step the proposed M-robust version of the Kalman filter,
based on the Huber’s monotonously non-decrease influence function, is applied. This,
in turn, generates the good initial guesses to the M-robust version of the Kalman filter,
based on a redescending M-robust influence function, in the second step.
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Finally, an approximation of the nonlinearities in the motion and measurement equations
of a nonlinear stochastic dynamic system by the statistical linearization technique can be
combined with the proposed statistically linearized M-robustified Kalman filter to obtain
a robust recursive state estimator of the approximate minimum variance type. Although
these equations look like those of the proposed statistically linearized M-robustified
Kalman filter, they are much more complex. In this sense, much auxiliary computation is
needed to obtain the various vectors and matrices of the corresponding expectations, defin-
ing the statistical linearization coefficients. Thus, the degree of difficulty in calculating the
underlying coefficients is a significant argument in deciding whether to apply this method
in practice. However, calculated values of the required quantities can be stored for “look-
up” during the state estimation, greatly reducing the computation efforts.

In summary, since the most industrial and scientistic data contain unavoidable outliers,
owing to metre and communication errors, incomplete measurements, errors in math-
ematical models, etc., the proposed recursive robust estimator may be applied in different
problems, including system identification, state estimation, signal processing and adaptive
control.

Appendix 1 Derivation of the statistically linearized M-robustified versions
of the Kalman filter (algorithms A2, A3 and A4)
Starting from (1) and (2), one obtains for the prediction error in (20) the relation

X (—) = Fr_1Xp—1(H) + Groiwi—1 (36)

where the estimation error, X;(+), is defined by (16), while the variable, wy, is a sample
from a zero-mean white state noise, in (1). Furthermore, taking into account (1), (2), (11)
and (18), the estimation error in (16) is given by

X (+) = X (=) — KiHix (=) — Kyvg (37)

where the variable, v, is a sample from the zero-mean white measurement noise, in (2).
Analogously to the linear optimal Kalman filter, the initial condition defined in Sect. 2
guarantees that the prediction and the estimation errors are unbiased at each stage, &,

resulting in
E{zr(—)}=0; E{&(HH)} =0 k=1,2,.. (38)

The proof is based on the mathematical induction, [1-5]. In addition, under the
assumed hypothesis in Sect. 2, the random errors, x;(+) and x;(—), are uncorrelated
with the state and the measurement noises, producing the underlying cross-covariances

Efaaowl_y} =0 E{&-n] | =0 (39)

where 0 denotes a zero matrix. Starting from (A1), (A2) and (A4), one obtains for the
prediction error covariance in (20) the relation (24), that is identical to the time update
in (3), (4). Moreover, due to (A2) and (A4), the estimation error covariance in (16) can be
calculated at each stage by the recursive relation
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Py = My — KpHpMy — MHEKE + R G K (40)

where Ry is the scalar measurement noise variance. By substituting the gain, Kj, from
(18) into (A5), and applying the matrix trace operation, one obtains for the approximate
minimum variance criterion, in (16), the following expression

J1(T) = Trace My — 2s; o Trace Uy H Hy My + s; *oa* Ry Trace TyHE H T (41)

where the scaling factor, sy, is defined by (19). In deriving (A6) is used the fact that the
third matrix term in (A5) represents the transpose matrix of the second one, yielding the
same matrix trace. Further step in the derivation is based on the usage of the rules for
the partial derivate of trace of product of matrices, [1-5].

3 3
o4 [race BAC = BTcT, ﬂ:rmce,axBAT =24B; if B=BT (42)

By comparing (A7) with (A6), one concludes that B=1, A=T} and C = HkTHkMk
for the second term in (A6), while A =T and B=H ,(THk for the third one. Taking into
account these equivalences, one obtains, by partially differentiating (A6) and equating
the resulting matrix equation with the zero matrix, the following algebraic equation

o (T'x) -2 T ) T
o = =25 “a MiHy Hy + 25, "a"Ri T Hy H = 0 (43)

The matrix equation (A8) requires further simplifications, to generate a feasible sub-
optimal solution for I'. Firstly, since the value of the optimal statistical linearization
coefficient, , in (17) is close to one, one can replace o? in the second term of (A8) by .
Moreover, by using (19), it further follows

25 _ -1 T -1 ~
Sk Ry = Rk HkMka +1 ~ 1 (44)

Namely, the first term in brackets of (A9) is proportional to the uncertainty in the pre-
diction, expressed by the covariance, My, in (20) and (24), but inversely proportional
to the measurement noise average power, Ri. Moreover, the proposed nonlinear filter,
based on the winsorization technique, in (14) and (23), obeys the efficiency robustness
requirement. In this sense, it is almost efficient as the optimal linear Kalman filter under
the pure Gaussian observations, but retains a good efficiency under the existence of out-
liers within the Gaussian observations. Therefore, the estimation error covariance, P, in
(24) is rather small, so that the uncertainty in the prediction, My, is directly proportional
to the state noise average power, Q. Moreover, the measurement noise variance, R, deter-
mined by (21), is significantly larger than the state noise variance, Q. As a consequence,
the equation (A9) reduces to the unit value, as it is expressed by its right-hand side.
Under the adopted two approximations, the relation (A8) takes the form

o (Tx) ~

-2 T

Bearing in mind (18) and (A10), it further follows
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My = Ty; Ki = s; *aM H! (46)

Finally, by replacing (A11) into (A5), one obtains the estimation error covariance
expressed by

Py = My — asp *MH! HiMy — osp *MH HiMy + s R M HE HeMe— (47)

By applying the mentioned two approximations, «? ~ « and (A9), as well as by sub-

tracting the gain, K, from (A11) into (A12), the last relation reduces to (22).

Finally, starting from the approximation of « by @? in (18), the relation (23) is obtained
by substituting 'y from (22) into (18), and including in the so-obtained equation the ¥/
-function, in (14), instead of its statistical linear approximation in (17). Thus, if one uses
the variable « in (28), having the value close to zero or one, the above approximation
of & with o2 is reasonable. On the other hand, the fixed approximation of «, in (26) or
(27), is equal to the probability of the regular observations, and for a small or moderate
contamination degree, § in (15), the probability value is close to one, justifying the above
approximation. Of course, this value decreases with the contamination degree increased
values, reducing the gain factor values, K in (23), supressing the influence of outliers.

A class of statistically linearized M-robustified Kalman filtering algorithms, with o
being the free parameter, is defined by the prediction recursions (24), and the estima-
tion, or filtering, recursions defined by (11), (14), (19), (22) and (23). Particular robust
algorithm is defined by choosing a suitable approximation of the indeterminable mean-
square optimal statistical linearization coefficient, ¢, in (17). Thus, the choice of the fixed
approximation, in (26) or (27), of the optimal coefficient, «, in (17) results in the algo-
rithm A3. Furthermore, one obtains the algorithm A2 by choosing the variable approxi-
mation, in (28), of the optimal coefficient, «, in (17). The algorithm A4 follows from the
algorithm A2 by replacing the nonlinear M-robust influence function, v, in (23) with the
linear one, but the robust mechanism to generating the gain matrix, K, in (23), remains
unchanged, as in A2. The derivation of the proposed recursive robust algorithms is thus
completed.

Appendix 2 Derivation of the optimal statistical linearization coefficients
Statistical linearization is a type of the statistical approximation techniques, where the
basic principle is to approximate a given vector-valued function, v (z), of a random vec-

tor argument, z, by the linear matrix form
V() =az+p (48)

Here, the parameters, o and $, are some matrix coefficients that have to be deter-
mined. Analogously to the estimation problem, by defining the function representation

error
e=VY(@) -p—-az (49)

these coefficients may be calculated by minimizing the mean-square error (MSE)
criterion
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J(o, B) = TmceE{eeT} = E{eTe} = E{||e||2} (50)

Here, Trace is the matrix trace, with ||-|| being the Euclidian norm, while E{-} denotes
the mathematical expectation, [1-5]. Substituting (B2) in (B3), and changing the order
of linear operators, Trace and Ef{-}, together with the application of the rules in (A7), one
obtains

dJ(a, B)
B

=2E{Y/(2) — B — az} (51)

By setting (B4) equal to zero, it further follows
B =E{Y(2)} — aE{z} (52)

Moreover, by substituting the coefficient, 8, from (B5) into (B2) and (B3), and differen-
tiating again the so-obtained equation with respect to the matrix «, using the rules (A7),

one obtains

0/ (@)
Jo

= 2E{a22T +ElY (@) — w(z)]zT}; 5= Elz)—z (53)
Setting (B6) equal to zero, and solving the resulting equation, it further follows
o = [E{v@:"} - By} Pt P = E{2T} (54)

If Y (z) is a vector-valued function of the multidimensional argument, z, then the sta-
tistically linearized solutions in (B5) and (B7) require evaluations of the multidimen-
sional integrals, following from the definitions of the corresponding multidimensional
mathematical expectations. This assumes the joint pdf for the components of random
vector, z, to be given in advance. Moreover, the most frequently adopted joint pdf is the
multidimensional Gaussian one. The computation may be much simplified for nonlin-
earities with a small number of argument variables. Particularly, if both the random vari-
able ¢ and the random variable z are scalars with the zero-mean values, then $ in (B5)
and « in (B7) reduce to the scalar-valued deterministic quantities, given by

e e (55)
with o2 being the variance of the random argument, z. More precisely, the equation (B8)
assumes that the argument, z, is a zero-mean random variable with a symmetric pdf,
while v is an odd real function of the scalar argument, z.

Particularly, the second assumption is fulfilled for the Huber’s robust influence func-
tion, ¥ (-), in (14). Moreover, the random argument, z, in (B9) corresponds to the nor-
malized scaled measurement residual, & = &;/sg, in (17), where the residual, &, is given
by (11), with s; being its standard deviation calculated in (19). Therefore, by substituting
the current measurement, yx, from (2) into (11), one gets

- . 1/2
&k = ex/sk = (Hidr (=) + vie) /s sk = (HkMkaT +Rk) ;s Re=1 (56)
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where the prediction error, Xx(—), in (Al) is a zero-mean random variable with the
covariance My, computed by (24). Analogously to the optimal Kalman filter, the zero-
mean error, X;(—), in (B9) is the Gaussian distributed if both the zero-mean white
Gaussian noises, wg and v, and the Gaussian initial state vector, x, are also Gaussian
distributed. In this sense, one can write

X (=) ~ N (|0, My) (B10)

where N (-], a, b) denotes the Gaussian pdf with the mean a and the covariance b. More-
over, starting from (B10), the random variable, Hyx; (—)/sx, in (B9) has the zero-mean
Gaussian pdf, defined by

Hidia (=) /s ~ N (10, HiMiH] /57 ) (57)

Furthermore, a zero-mean observation noise, v, is confined to the Gaussian mixture
pdf in (15), yielding the unit nominal variance, Ry, in (B9). This, in turn, results that the
scaled random variable, v /sg, in (B9) has the following Gaussian mixture pdf

v Jsp ~ (1 — 5)N(~|0, 1/52) + 8N(-|O, ag/sg) (58)

Thus, normalized residual, &, in (B9) is defined by the sum of the zero-mean Gaussian
random variables, so that its conditional pdf given the past observations, p(&| Yk_l), is
defined by the convolution between the underlying Gaussian pdfs, to which the random
addends in (B9) are confined. Additionally, since the convolution between the Gauss-
ian pdfs yields also the Gaussian one, with the corresponding mean and covariance, one
gets from (B9), (B11) and (B12) the conditional pdf of the scaled residual given the past

measurement
p<§k|y’<*1) - N(.|0,HkMkaT/s§) ® {(1 _ S)N(.|0, 1/s§) + 8N(~|0, ag/sg)}
(59)

where ® denotes the convolution integral, [5]. Since the convolution is a linear operator,
the relation (B13) can be rewritten

p(gkwk—l) —(1- 8)N(-|0, (HkMkaT + 1)/s§) +8N<-|0, (HkMkaT + 002>/s,2<)
(60)
Taking into account (19), the variance of the second normal pdf in (B14) can be

approximated by

03 (o5 2HkMHT +1)

. ~od Ry =1 (61)
R (R; HMHT + 1)

The right-hand side approximation in (B15) follows from the approximate relation
(A9), yielding

o SHMHE +1~ RO HMHT +1~ 1 (62)
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By substituting (B15) into (B14), one obtains
p(EYT) = (= ON(EI0, 1) + 6N (810, (63)
Since (B17) is a symmetric pdf, the first assumption under which the expression (B8)

is derived is also fulfilled, justifying the application of (B8) to the relation (17). Thus, the
derivation is completed.

Abbreviations

Al Linear optimal Kalman filter algorithm

A2 Statistically linearized M-robustified Kalman filter algorithm with the variable statistical linearization
coefficient

A3 Statistically linearized M-robustified Kalman filter algorithm with the fixed statistical linearization coefficient

A4 Quasi-linear approximation of algorithm A2, based on the linear residual transformation, together with
application of the nonlinear residual processing in computing the gain matrix

Ccs Cartesian coordinate system

CEE Cumulative estimation error criterion

cv Constant velocity

KCF Kernelized correlation filter

ML Maximum likelihood

MSE Mean square error

pdfP Probability distribution function

PSR Peak-to-sidelobe ratio

SCS Spherical coordinate system

SWIR Short-wave infrared
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