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Abstract 

The classical rank sum (RS) nonparametric constant false alarm rate (CFAR) detector 
plays an important role in the theoretical study and practical application of radar target 
detection. In order to improve the ability of the classical RS nonparametric detector to 
control the false alarm rate at clutter edges, a modified rank sum (MRS) nonparametric 
CFAR based on the mean ratio of the samples in the leading and lagging windows is 
proposed. The analytical expressions of the detection probability and false alarm rate 
of the MRS nonparametric CFAR in homogeneous background and at clutter edges 
are derived, and a comparison to the performance of the classical RS nonparametric 
detector along with some conventional parametric CFAR schemes in homogeneous 
background, multiple targets situation and clutter edges is made. The numerical results 
show that the detection performance of the MRS nonparametric CFAR in homogene-
ous background and in a moderate number of interfering targets situation is close to 
that of the classical RS nonparametric detector, and its ability to control the rise of the 
false alarm rate at clutter edges is evidently improved.

Keywords: Radar detection, CFAR, Nonparametric detection, Nonhomogeneous 
background

1 Introduction
The constant false alarm rate (CFAR) detector is one of the most important parts of mod-
ern radar signal processing. It can be used to avoid computer overloading, which is caused 
by unknown and time-varying clutter background, and obtain high detection performance. 
Although the CFAR technique has been researched for several decades, the requirement 
from diverse engineering applications still drives it to continuously develop and progress 
[1–5]. The simplest one of the CFAR detectors is the cell-averaging (CA) scheme which 
estimates the noise level in the test cell by averaging the outputs of nearby resolution cells. 
Although the CA-CFAR gives a minimum loss of detection power in a homogeneous back-
ground, it exhibits an intolerable rise in false alarm probability at clutter edges and signifi-
cant degradation in detection probability in multiple targets situation. In order to alleviate 
the problems associated with clutter power transitions and the presence of strong returns 
among the reference samples, the greatest-of (GO) CFAR and the smallest-of (SO) CFAR 
have been introduced. The GO-CFAR does a better job of maintaining CFAR at clutter 
edges at the expense of poor resolution of closely spaced targets. The SO-CFAR performs 
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very well in resolving two closely spaced targets, but experiences even more false alarms 
than the CA-CFAR in the clutter edge environment. The ordered-statistic (OS) CFAR 
selects the kth largest sample in the reference window to set an adaptive threshold, thus it 
has a special immunity to extraneous targets. However, it fails to prevent an excessive false 
alarm rate at clutter edges unless the threshold estimate incorporates the ordered sample 
near the maximum. In order to take advantage of the CA-CFAR, the GO-CFAR and the 
SO-CFAR, an excellent composite approach called as variability index (VI) CFAR was pro-
posed by Smith and Varshney [6]. The VI-CFAR exhibits low loss CFAR performance in a 
homogeneous environment, has a good false alarm regulation property at clutter edges, and 
perform robustly when interfering targets are only located at one side of the cell under test.

The CFAR algorithms can be divided into two categories depending upon whether or not 
a known distribution form is assumed for noise/clutter background: the parametric CFAR 
and the nonparametric or distribution-free detection methods. The aforementioned CFAR 
schemes belong to the parametric CFAR type. The parametric CFAR detector suffers from 
the disadvantage that the detection threshold is sensitive to changes in the background 
noise/clutter distribution. Even if the distribution of the noise data is known at some time, 
uncontrollable phenomena may cause changes such that at a later time the clutter distribu-
tion is vastly different. These changes will make the performance of the parametric CFAR 
procedure based on the “known” distribution degrade, whereas the nonparametric CFAR 
procedures will exhibit its advantage that it can maintain a constant false alarm rate in spite 
of changes in the underlying data distribution. The most commonly used nonparametric 
CFAR detection procedures are the classical rank sum (RS) detector and rank quantization 
(RQ) detector [7]. The RS nonparametric detector was first proposed by Hansen and Olsen 
[8], and it was called as the generalized sign test detector, and it also was presented in [9] 
at the same time where it was termed as detector B. The closed-form of Pfa of the RS non-
parametric detector in homogeneous background has been derived by Akimov (in Russian) 
and was also reported by Sekine and Mao [10]. The analytical expression of Pfa for the RS 
nonparametric detector at clutter edge was derived in [11], and a comparison of the per-
formance of the RS nonparametric detector in nonhomogeneous background to that of the 
CA-CFAR, the GO-CFAR and the OS-CFAR with noncoherent integration was made. It is 
shown that the ability of the RS detector to control the rise of the false alarm rate at clutter 
edge is even poorer than that of the OS-CFAR with incoherent integration in a Gaussian 
background.

In order to improve the ability of the classical RS nonparametric CFAR to control the 
false alarm rate at clutter edges, a modified RS nonparametric (MRS) CFAR is proposed in 
this work based on the mean ratio of the samples in the leading and lagging windows. The 
detection principle of the MRS nonparametric CFAR is described in Sect. 2, and its math-
ematical models for the detection probability and false alarm rate are given in Sect. 3. The 
numerical and analytical results are given in Sect. 4. Finally, we summarize and discuss the 
results obtained in this work.

2  The detection principle of the MRS nonparametric CFAR
The block diagram of the MRS nonparametric CFAR detector is shown in Fig. 1. It is 
assumed that a radar transmits several pulses per antenna beamwidth (or per beam 
position, in the case of an electronically steerable antenna). For each of M successive 
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pulses, the radar video output is sampled in range by the range resolution cells, and the 
resulting samples are stored in a shift register of length N + 1. The N + 1 samples cor-
respond to a test cell centered in N reference cells. To prevent the target signal energy 
from spilling over into the adjacent range cells, the guard cells (which are depicted in 
shadow) directly adjacent to the test cell are used. On the ith pulse ( i = 1, 2, . . . ,M ), 
the sample in the cell under test is denoted as vi , the sample in the leading window is 
represented by xij(i = 1, 2, . . . ,M, j = 1, 2, . . . ,N/2) , and that in the lagging window by 
yij(i = 1, 2, . . . ,M, j = 1, 2, . . . ,N/2) . Here, all of samples xij in the leading window form 
the set X, and all of samples yij in the lagging window form the set Y. In order to improve 
the ability of the classical RS nonparametric CFAR to control the false alarm rate at 
clutter edges, the MRS nonparametric CFAR will select the appropriate sample set for 
the noise/clutter power estimation. That is, the MRS nonparametric CFAR will choose 
either of the whole samples in the reference window X ∪ Y  , the samples in the leading 
window X or the samples in the lagging window Y for the adaptive target detection. In 
principle, the MRS nonparametric CFAR consists of two main steps in implementation, 
which is described below in detail.

Step 1 Calculation of the mean ratio (MR) statistic.
The MR [6] is defined as the ratio of the mean value of the leading reference window 

cells and that of the lagging reference window cells as given by (1)

where MX and MY  is the leading and lagging reference window mean, respectively. That 

is, MX = 2
MN

M

i=1

N/2

j=1

xij and MY = 2
MN

M
∑

i=1

N/2
∑

j=1

yij.

The MR is compared with a threshold KMR and its reciprocal K−1
MR to decide if the pop-

ulation means in the leading and lagging window are the same or different using the fol-
lowing hypothesis test:

(1)MR =
MX

MY
=

M
∑

i=1

N/2
∑

j=1

xij

M
∑

i=1

N/2
∑

j=1

yij

Fig. 1 The block diagram of the MRS nonparametric detector
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If the MR is decided to be the same, this case corresponds to homogeneous 
background. If the MR is made to be different, this means that the background is 
nonhomogeneous.

Step 2 The selection of reference window.
The MRS nonparametric CFAR will select the corresponding samples set to form 

the rank test statistic according to the outcomes of the MR hypothesis test. If the MR 
is decided to be the same, in order to enhance the detection performance of the MRS 
nonparametric CFAR in homogeneous background, the whole sample set X ∪ Y  will 
be chosen to form the rank test statistic, it is

where u(t) is the unit step function. If RX∪Y  exceeds the detection threshold T1, a target 
is declared to be present in the test cell. Otherwise, the target is absent.

If the MR is decided to be different, the MRS nonparametric CFAR will choose the 
leading reference window or the lagging one whose sample mean is larger to form the 
rank test statistic. This corresponds to the GO-CFAR processing. We have

If RX or RY  is greater than the detection threshold T2, the presence of a target in the 
test cell is declared. Otherwise, the absence of target is made.

3  The mathematical model of the MRS nonparametric CFAR
3.1  The false alarm rate of the MRS nonparametric CFAR

The MRS nonparametric CFAR selects either of the whole samples in the refer-
ence window X ∪ Y  , the samples in the leading window X or the samples in the lag-
ging window Y for the target detection. Under the null hypothesis  H0 (the test cell 
contains only noise/clutter) and in homogeneous background, the test sample vi 
( i = 1, 2, . . . ,M ) and the reference samples in the leading and lagging window xij and 
yij(i = 1, 2, . . . ,M, j = 1, 2, . . . ,N/2)  are independent and identically distributed (IID) 
with a same distribution. When the MRS nonparametric CFAR chooses the whole 
samples in the reference window, the rank test statistic takes the form of

where ri is the rank of the test sample vi on the ith pulse compared to the reference sam-
ples. It is expressed as

(2)
{

K−1
MR ≤ MR ≤ KMR ⇒ same means

MR < K−1
MR or MR > KMR ⇒ different means

.

(3)RX∪Y =

M
∑

i=1

N/2
∑

j=1

[

u(vi − xij)+ u(vi − yij)
]

(4)RX =

M
∑

i=1

N/2
∑

j=1

u(vi − xij) or RY =

M
∑

i=1

N/2
∑

j=1

u(vi − yij)

(5)RX∪Y =

M
∑

i=1

ri =

M
∑

i=1

N/2
∑

j=1

[

u(vi − xij)+ u(vi − yij)
]
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where ri is uniformly distributed on [0, 1, . . . ,N ] [11], that is

where P0
ri
(k) is the probability density function (PDF) of the rank ri under the hypothesis 

 H0.
Considering that the PDF of the sum of statistically independent variables is the con-

volution of their individual PDFs, the PDF of the rank test statistic RX∪Y =
∑M

i=1 ri for 
the MRS nonparametric CFAR is given by

where “ ∗ ” stands for the convolution. According to the convolution theorem, the appli-
cation of the Z transform to (8) yields

where Z{} represents the Z transform. Then

The region of convergence is 0 < |z| ≤ ∞.
Therefore, the PDF of the rank test statistic RX∪Y  is expressed as

where Z−1{} denotes the inverse Z transform.
Under the hypothesis H0, if the MRS nonparametric CFAR selects the whole samples 

in the reference window for target detection, the false alarm rate of the MRS nonpara-
metric CFAR takes the form of

For a given false alarm rate, the detection threshold T1 of the MRS nonparametric 
CFAR can be solved by (12). If RX∪Y  is greater than the detection threshold T1, a target is 
declared to be present. Otherwise, no target exists.

If the MRS nonparametric CFAR chooses the samples in the leading or lagging win-
dow X or Y for target detection, the PDF P0

X (k) or P0
Y (k) of the rank test statistic RX 

(6)ri =

N/2
∑

j=1

[

u(vi − xij)+ u(vi − yij)
]

, 0 ≤ ri ≤ N

(7)P0
ri
(k) =

{

1
N+1 k = 0, 1, . . . ,N

0 other
(i = 1, 2, . . . ,M)

(8)P0
X∪Y (k) = P0

r1
(k) ∗ P0

r2
(k) ∗ · · · ∗ P0

rM
(k)

(9)Z
{

P0
X∪Y (k)

}

= Z
{

P0
r1
(k)

}

· Z
{

P0
r2
(k)

}

· · · · · Z
{

P0
rM
(k)

}

=

M
∏

i=1

Z
{

P0
ri
(k)

}

(10)Z
{

P0
ri
(k)

}

=

∞
∑

k=0

P0
ri
(k) · z−k =

N
∑

k=0

1

N + 1
· z−k =

1

N + 1

1− z−N−1

1− z−1
.

(11)P0
X∪Y (k) = Z−1

{

M
∏

i=1

Z
{

P0
ri
(k)

}

}

= Z−1

{

1

(N + 1)M
(1− z−N−1)M

(1− z−1)M

}

(12)PX∪Y
fa =

∞
∑

k=T1

P0
X∪Y (k)
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or RY  can also be obtained by (11), except that N is replaced by N/2. Accordingly, the 
false alarm rate of the MRS nonparametric CFAR when the leading or lagging window is 
selected for target detection can be given by PX

fa =
∑∞

k=T2
P0
X (k) or PY

fa =
∑∞

k=T2
P0
Y (k) , 

respectively. It is noted that the detection threshold T2 is used here.
Since the MRS nonparametric CFAR selects either of the sample set X ∪ Y  , X or Y to 

make the target decision, the whole false alarm probability of the MRS nonparametric 
CFAR can be expressed as

where P(X ∪ Y ) , P(X) and P(Y ) is the probability of the MRS nonparamet-
ric CFAR to choose the sample set X ∪ Y  , X or Y, respectively. When the design 
false alarm rate is required at Pfa = α , setting PX∪Y

fa = PX
fa = PY

fa = α , then 
Pfa = [P(X ∪ Y )+ P(X)+ P(Y )]α = α . Since P(X ∪ Y )+ P(X)+ P(Y ) = 1 , the whole 
false alarm probability of the MRS nonparametric CFAR is still Pfa = α . Therefore, the 
MRS nonparametric CFAR can maintain a constant false alarm rate in a homogeneous 
background, which is irrelevant to the distribution of background clutter.

3.2  The detection probability of the MRS nonparametric CFAR

In order to analyze the detection performance of the MRS nonparametric CFAR, Gauss-
ian distributed background and Swerling II target fluctuation model are considered here. 
In a homogeneous background, it is assumed that the square-law detected outputs for 
any range cells in each pulse are independent and identically distributed. Under the 
alternative hypothesis  H1 (the presence of a target in the test cell), the PDF and cumula-
tive distribution function (CDF) of the sample in the test cell containing target signal is 
given by, respectively

and

where µ is the total clutter-plus-thermal noise power, � is the average signal-to-noise 
power ratio (SNR) of the target. In a homogeneous background, letting � = 0 , the 
PDF and CDF of the noise sample f (t) and F(t) can be obtained from (14) and (15), 
respectively.

Under the hypothesis  H1, when the MRS nonparametric CFAR selects the whole sam-
ples in the reference window for target detection, the probability of the rank of the test 
sample ri = k is obtained by

(13)Pfa = P(X ∪ Y )PX∪Y
fa + P(X)PX

fa + P(Y )PY
fa

(14)g(t) =
1

µ(1+ �)
exp

[

−
t

µ(1+ �)

]

u(t)

(15)G(t) = 1− exp

[

−
t

µ(1+ �)

]

u(t)
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Under the hypothesis  H1, by means of the convolution theorem, the PDF of the rank test 
statistic RX∪Y =

∑M
i=1 ri when the MRS nonparametric CFAR selects the whole samples in 

the reference window is given by

Therefore, under the hypothesis  H1, when the MRS nonparametric CFAR selects the 
whole samples in the reference window for target detection, the detection probability of the 
MRS nonparametric CFAR is obtained as

Under the hypothesis H1, if the MRS nonparametric CFAR chooses the samples in the 
leading or lagging window X or Y for target detection, the PDF P1

X (k) or P1
Y (k) of the rank 

test statistic RX or RY  can also be obtained by (17), except that N is replaced by N/2. Simi-
larly, the detection probability of the MRS nonparametric CFAR with the choice of the 
leading or lagging window can be given by PX

d =
∑∞

k=T2
P1
X (k) or PY

d =
∑∞

k=T2
P1
Y (k) , 

respectively.
Since the MRS nonparametric CFAR selects either of the sample set X ∪ Y  , X or Y for 

target detection, the whole detection probability of the MRS nonparametric CFAR is for-
mulated as

3.3  The false alarm rate of the MRS nonparametric CFAR at clutter edge

The clutter edge occurs when the total noise/clutter power received within the reference 
window changes abruptly. The clutter edge is modeled as a step function discontinuity in 
the background power here. We assume that there are L cells coming from heavy clutter 
region, whereas N-L cells from weak noise. The CDF of the weak noise sample is shown as

and the CDF of the strong clutter sample has a form of

(16)

P1
ri
(k) =

∞
∫

0

(

N

k

)

[F(t)]k [1− F(t)]N−kg(t) dt

=
1

µ(1+ �)

∞
∫

0

(

N

k

)[

1− exp

(

−
t

µ

)]k

×

[

exp

(

−
t

µ

)]N−k

exp

(

−
t

µ(1+ �)

)

dt

=
1

1+ �

(

N
k

)

Ŵ[N − k + 1/(1+ �)]Ŵ(k + 1)

Ŵ[N + 1+ 1/(1+ �)]

(17)P1
X∪Y (k) = Z−1

{

[

Z
{

P1
ri
(k)

}]M
}

(18)PX∪Y
d =

∞
∑

k=T1

P1
X∪Y (k)

(19)Pd = P(X ∪ Y )PX∪Y
d + P(X)PX

d + P(Y )PY
d

(20)F(t) =

[

1− exp

(

−
t

µ

)]

u(t)



Page 8 of 17Xiangwei and Yuan  EURASIP Journal on Advances in Signal Processing         (2023) 2023:75 

where γ denotes the power ratio between the heavy clutter and the weak noise. When 
the MRS nonparametric CFAR selects the whole samples X ∪ Y  in the reference window 
for target detection, the expression of the false alarm rate at clutter edges in this situa-
tion is given by [11]

where

In a clutter boundary environment, if the MRS nonparametric CFAR selects the sam-
ples in the leading or lagging window X or Y for target detection, the corresponding false 
alarm rate PX

fa and PY
fa can also be obtained by (22), except that N is replaced by N/2 and 

T1 by T2.
Considering that the MRS nonparametric CFAR selects either of the sample set X ∪ Y  , 

X or Y for target detection, the whole false alarm rate of the MRS nonparametric CFAR 
at clutter edge is formulated as

4  Performance analysis and numerical result
Here, we make use of the analytical expressions derived in the previous section and the 
importance sampling technique to evaluate the performance of the MRS nonparamet-
ric CFAR in homogeneous background, multiple targets situation and clutter edges, and 
make a comparison to that of the classical RS nonparametric CFAR along with some 
conventional parametric CFAR detectors.

4.1  Performance analysis in homogeneous background and in multiple targets situation

In order to fairly analyze the performance of the CFAR detectors considered here, the 
same nominal false alarm rate Pfa = 10−6 , the length of the whole reference window 
N = 36, and the number of the multiple pulses M = 8 are selected for them. A special 
parameter of the MRS nonparametric CFAR is the threshold parameter KMR. As KMR 
increases, the error probability such that the means in the leading and lagging windows 
in homogeneous environment is decided as different decreases, and the sensitivity to 
distinguish them at clutter edges also decreases. On the other hand, as KMR decreases, 
the leading or lagging reference window will be used more frequently in homogene-
ous background and in multiple targets situation, thus, the additional CFAR loss will 

(21)F(t) =

[

1− exp

(

−
t

γρ

)]

u(t)

(22)P
X∪Y
fa =

∞
∑

k=T1

Z−1
{

[

Z
{

Pri
(k)

}]M
}

(23)

Pri(k) =

min(k ,N−L)
∑

j=max(0,k−L)

(

N − L
j

)(

L
k − j

) j
∑

i1=0

(

j
i1

)

(−1)i1

×
Ŵ[γ (i1 + N − L− j)+ L− k + j + 1]Ŵ[k − j + 1]

Ŵ[γ (i1 + N − L− j)+ L+ 2]
(k = 0, 1, . . . ,N )

(24)Pfa = P(X ∪ Y )P
X∪Y
fa + P(X)P

X
fa + P(Y )P

Y
fa
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increase. Therefore, there is a compromise for the selection of KMR. As suggested in [6], 
the error probability of the means in the leading and lagging windows in homogeneous 
environment being decided as different takes 0.1, this corresponds to a parameter value 
of KMR = 1.35 in our situation. For the nominal false alarm rate Pfa = 10−6 , the detection 
threshold of the MRS nonparametric CFAR takes T1 = 267 or T2 = 135 which can be cal-
culated by (11) and (12).

In the case of M = 8, N = 36 and KMR = 1.35, Fig. 2 gives the probability of selecting 
the sample set X in the leading window, the sample set Y in the lagging window and 
the whole sample set X ∪ Y  for the MRS nonparametric CFAR in homogeneous back-
ground. In the figure, the probability of selecting the sample set X in the leading win-
dow, the sample set Y in the lagging window and the whole sample set X ∪ Y  is denoted 
by P(X), P(Y) and P(X ∪ Y  ), respectively. It can been seen that the MRS nonparametric 
CFAR selects the whole sample set X ∪ Y  at nearly probability 1, and it selects the sam-
ple set X or Y at approximate probability 0 inhomogeneous background.

We assume a Swerling II fluctuation model for interfering target and it has the same 
SNR as the primary target. When the number of interfering target in the leading window 
is IL = 1 and that in the lagging window is IR = 0 (This interfering targets situation is 
denoted by (IL = 1, IR = 0), the same in the following), Fig. 3 illustrate the probability for 
the MRS detector selecting the sample set X, Y or X ∪ Y  versus SNR in this case. It can 
be observed that if SNR is small, the MRS nonparametric CFAR most probably selects 
the whole sample set X ∪ Y  for target detection, if SNR gets large, the MRS nonpara-
metric CFAR most likely selects the sample set X in the leading window for target detec-
tion as expected.

In homogeneous background and in multiple targets situation (IL = 1, IR = 0), 
for M = 8, N = 36 and KMR = 1.35, Fig.  4 gives the detection probability of the MRS 
nonparametric CFAR versus SNR (dB), with a comparison to that of the classical 
RS nonparametric CFAR. In the figure, notation “MRS(1,0)” denotes the detection 

Fig. 2 The probability for the MRS detector selecting the sample set X, Y or X ∪ Y versus SNR in 
homogeneous background
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probability of the MRS nonparametric CFAR with IL = 1 and IR = 0. It can be seen 
that the curve of the MRS nonparametric CFAR and that of the RS nonparametric 
CFAR almost overlap together in homogeneous background. In multiple target situa-
tions (IL = 1, IR = 0) and (IL = 1, IR = 1), the detection performance of the MRS non-
parametric CFAR approximates to that of the classical RS nonparametric CFAR.

If more interfering targets enter the leading window or the lagging window, for 
M = 8, N = 36 and KMR = 1.35, Fig. 5 shows the detection probability of the MRS non-
parametric CFAR versus SNR (dB), compared with that of the classical RS nonpara-
metric CFAR. The maximum number of the interfering targets such that a reference 
window can accommodate can be estimated by INT{(MN − T )/M} , where INT{x} 

Fig. 3 Probability for the MRS detector selecting the sample set X, Y or X ∪ Y versus SNR (IL = 1, IR = 0)

Fig. 4 The detection probability of the MRS detector versus SNR in homogeneous background
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rounds x to the nearest integer, and the N is the sample number in the reference win-
dow. For the leading or lagging window, the allowable number of interfering targets is 
1, and that is 3 for the whole reference window here. In Fig. 4, the number of interfer-
ing targets in the leading window or lagging windows is not exceed 1, therefore, the 
detection performance of the MRS nonparametric CFAR approaches that of the RS 
nonparametric CFAR. In Fig.  5, the number of interfering targets is more than the 
allowable number for the MRS nonparametric CFAR, thus the detection performance 
of the MRS nonparametric CFAR greatly degrades relative to that of the RS nonpara-
metric CFAR. If the allowable number of interfering targets exceeds that of the MRS 
and RS nonparametric CFAR detectors, i.e., (2, 2) or (3, 2), the detection performance 
for the MRS and RS nonparametric CFAR detectors substantially deteriorates.

4.2  Performance analysis at clutter edge

Here, we analyze the false alarm performance of the MRS nonparametric CFAR at 
clutter edge. We model a clutter boundary as a step function discontinuity in clutter 
power. Figure 6 gives the probability for the MRS detector selecting the sample set X, 
Y or X ∪ Y  versus the number L of the reference cells immersed in heavy clutter, for 
M = 8, N = 36, γ = 10 dB and KMR = 1.35. It can be seen that when the clutter bound-
ary moves into the reference window, the MRS nonparametric CFAR gradually selects 
the leading window for target detection, and when a large proportion of the reference 
window enter the heavy clutter, the MRS nonparametric CFAR eventually selects the 
whole reference window for target detection with a high possibility. Figure 7 shows 
the false alarm probability Pfa of the MRS nonparametric CFAR as a function of the 
number L of the reference cells immersed in heavy clutter for M = 8, N = 36 and 
γ = 5 dB,10 dB,15 dB. In the figure, the false alarm probability Pfa of the classical RS 
nonparametric CFAR is added for a comparison. It can be seen that if L ≤ N/2 , the 

Fig. 5 The detection probability of the MRS detector versus SNR in multiple targets situation
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Pfa of the classical RS nonparametric CFAR decreases, whereas if L > N/2 , that of 
the classical RS nonparametric CFAR exhibits a sharp increase. The latter case seri-
ously degrades the performance of a detector since it violates the CFAR constraint. 
However, in the case of L > N/2 , the rise of the false alarm rate for the MRS nonpara-
metric CFAR is more gently than that of the classical RS nonparametric CFAR, and 
the highest value of the false alarm rate for the MRS nonparametric CFAR is within 
an order of magnitude for the nominal false alarm rate. From the numerical results, 
it can be seen that the ability of the MRS nonparametric CFAR to control the rise of 
false alarm rate at clutter edges is evidently improved relative to that of the classical 
RS nonparametric CFAR.

Fig. 6 The probability for the MRS detector selecting X, Y or X ∪ Y versus the number L of cells entering the 
strong clutter region ( γ = 10 dB)

Fig. 7 The false alarm probability for the MRS detector versus the number L of cells entering the strong 
clutter region
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4.3  The comparison with several conventional parametric CFAR detectors

In order to have a relatively complete analysis of the performance for the MRS nonpara-
metric CFAR, a comparison of the detection performance and false alarm rate in homo-
geneous background and nonhomogeneous situation caused by interfering targets and 
clutter edges with that several conventional parametric CFAR, i.e., the CA-CFAR, the 
GO-CFAR and the OS-CFAR with M pulses integration, is made in this section. The 
same M = 8, N = 36, the nominal false alarm rate Pfa = 10−6 and the Gaussian distrib-
uted background are considered for these CFAR schemes. For the MRS nonparametric 
CFAR, the KMR = 1.35 is taken as before. For the OS-CFAR with incoherent integration, 
the representative ordered sample k = 32 is used to set an adaptive detection threshold. 
Figure 8 shows the detection performance of the MRS nonparametric detector as a func-
tion of SNR in homogenous background. As a comparison, the Pd the CA-CFAR, the 
GO-CFAR and the OS-CFAR with M pulses integration are also added. It can be seen 
that the Pd curves of the CA-CFAR, the GO-CFAR and the OS-CFAR with incoherent 
integration almost overlap together, and the detection performance of the MRS detec-
tor exhibits an evident loss in SNR. It is noticed that an additional loss of nearly 5 dB is 
required for the MRS nonparametric detector to reach Pd = 0.5 relative to the parametric 
CFAR detectors. This is the price for the MRS nonparametric CFAR to have a virtue that 
its false alarm rate is irrelative to the distribution type of background clutter.

In multiple targets situation (1, 1), i.e., the number of interfering targets in both the 
leading and lagging window is 1. Figure 9 illustrates the detection performance of the 
MRS nonparametric detector as a function of SNR. In order to evaluate the ability of 
the MRS nonparametric detector to accommodate the interfering targets, the interfering 
target to noise power ratio (INR) is assumed as INR = 30 dB here. It is observed that the 
CA-CFAR and the GO-CFAR with incoherent integration almost lose their detection 
abilities in the strong interfering targets situation. It can be seen that the Pd of the CA-
CFAR or the GO-CFAR with incoherent integration is nearly equal to 0 at SNR = 20 dB, 

Fig. 8 The comparison of Pd of the MRS detector with several parametric CFAR detectors in homogeneous 
background



Page 14 of 17Xiangwei and Yuan  EURASIP Journal on Advances in Signal Processing         (2023) 2023:75 

whereas the Pd of the MRS nonparametric detector gives a value of Pd = 0.86 in this case. 
The best detection performance in multiple targets situation is obtained by the OS-
CFAR with incoherent integration as expected.

Although the classical RS nonparametric detector has the advantage that its false 
alarm rate is irrelative to the distribution type of background clutter, its false alarm 
rate still shows a sharp rise at clutter edges. In order to improve its false alarm perfor-
mance at clutter edges, the MRS nonparametric detector is proposed by introduction 
of VI-CFAR idea to the classical RS nonparametric detector. Here, we consider a pos-
sible practical situation of clutter edge that the Weibull clutter with a shape parameter 
c = 1.2 shifts into a noise dominating background (c = 2.0). The nominal false alarm rate 
of these detectors is originally set at Pfa = 10−6 according to a Gaussian background 
with c = 2.0. Figure 10 makes a comparison of the false alarm performance for the MRS 
detector to that of the CA-CFAR, GO-CFAR and OS-CFAR with incoherent integration, 
as a function of the number L of the reference cells immersed in clutter. The clutter to 
noise power ratio is γ = 10 dB . It can be seen that when the heavy clutter with c = 1.2 
moves into the reference window, the false alarm rate of the CA-CFAR, GO-CFAR and 
OS-CFAR with incoherent integration increases more than three orders of magnitude 
and can not return to the nominal false alarm rate Pfa = 10−6 . However, the rise of the 
false alarm rate for the MRS nonparametric detector changes smoothly and is within 
1 order of magnitude for the nominal false alarm rate, and also return to the original 
design value.

5  Conclusion
The classical RS nonparametric CFAR plays an important role in the practical applica-
tions of radar target detection. In order to improve the false alarm performance of the 
RS nonparametric CFAR at clutter edges, a modified rank sum (MRS) nonparametric 
CFAR based on the mean ratio of the samples in the leading and lagging windows is 

Fig. 9 The comparison of Pd of the MRS detector with several parametric CFAR detectors in multiple targets 
situation, INR = 30 dB
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proposed. The analytical expressions of the detection probability and false alarm rate of 
the MRS nonparametric CFAR in homogeneous background along with that of the false 
alarm rate at clutter edges are derived, and a comparison to the performance of the clas-
sical RS nonparametric CFAR as well as that of the CA-CFAR, GO-CFAR and OS-CFAR 
with incoherent integration in homogeneous background, multiple targets situation and 
clutter edges is made. It is shown that the detection performance of the MRS nonpara-
metric CFAR in homogeneous background and a moderate number of interfering tar-
gets situation is close to that of the classical RS nonparametric detector, and its ability 
to control the rise of the false alarm rate at clutter edges is evidently improved. Since 
the classical RS nonparametric CFAR has the virtue of the simplicity of hardware imple-
mentation, and the only additional operation of the MRS nonparametric CFAR relative 
to the classical RS nonparametric CFAR is the MR hypothesis decision, thus the MRS 
nonparametric CFAR is also easy to be implemented. The parameters KMR, K−1

MR , T1 and 
T2 can be determined in advance and stored in a look-up table in a practical system with 
programmable signal processing. There are 2 cases for the computational complexity of 
the MRS nonparametric CFAR, if the MRS nonparametric CFAR selects the whole sam-
ples in the reference window for the target detection, the computational complexity of 
the MRS nonparametric CFAR needs M · N − 2 addition operations, 1 division opera-
tion, M · N + 3 comparisons and 1 accumulator; if the MRS nonparametric CFAR takes 
the samples in the leading or lagging window for target detection, it needs M · N − 2 
addition operations, 1 division operation, M · N/2+ 3 comparisons and 1 accumulator.

It should be noted, the variability index generalized sign (VI-GS) which combines 
the VI-CFAR and the RS nonparametric CFAR is proposed in [12]. Also, the variabil-
ity index modified rank squared (VI-MRS) nonparametric detector is proposed in [13], 
which combines the VI-CFAR with the modified rank squared (MRS) nonparametric 
detector. However, both of them lack the analytical expressions for the detection prob-
ability and the false alarm rate for the VI-GS or VI-MRS in homogeneous background 
and nonhomogeneous environment caused by multiple targets and clutter edge, and lack 
the performance analysis of the VI-GS or VI-MRS in clutter boundaries. It is noted that 

Fig. 10 The comparison of Pfa of the MRS detector with several parametric CFAR detectors at clutter edges, 
γ = 10 dB
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the idea to enhance the performance of the classical RS and RQ nonparametric detectors 
in nonhomogeneous background caused by multiple targets and clutter edge by means 
of the sub-window technique was first given in [14], and a detail description of detection 
scheme for the MRS nonparametric CFAR and the modified rank quantization (MRQ) 
CFAR by means of the VI-CFAR and the ODV technique [15] has been presented in the 
application form of “The theory and application of nonparametric CFAR detection” (The 
National Natural Science Foundation of China, No. 61179016) in Mar. 2011.
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