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Abstract 

This paper proposes a novel joint decision and estimation (JDE) solution for the multi-
target detection and tracking (MDT) problem. MDT aims to jointly detect the number 
of targets and estimate their states, which is essentially a JDE problem since detection 
and tracking are highly coupled. Thus, a joint solution which can utilize the coupling is 
preferable. However, the existing JDE approach has either poor performance or exces-
sive design parameters without considering the MDT problem realities, i.e., the losses 
that different decisions may lead to. Therefore, we propose a compact conditional JDE 
(CCJDE)-based MDT method with less design parameters but superior performance. 
Specifically, we propose a CCJDE-based MDT risk which unifies the detection and track-
ing risks in a compact way. Then, we derive the joint detection and tracking solution 
accounting for their couplings, where the joint probabilistic data association filter is 
adopted due to its advantageous performance and the adaptability to the JDE frame-
work. Then, an efficient CCJDE-MDT algorithm is developed. Besides, some parameter 
designing guidelines are presented by considering the MDT realities. Simulation results 
verify the effectiveness of the proposed CCJDE-MDT method, which outperforms the 
traditional decision-then-estimation in joint performance and also beats the existing 
recursive joint decision and estimation(RJDE) method in many cases.

1 Introduction
Multi-target detection and tracking (MDT) is a challenging problem and has wide appli-
cations, especially in military and civilian surveillance [1–7]. In an MDT problem, both 
the number of targets and their states are unknown and vary with time due to targets 
appearing and disappearing. Moreover, the indetermination of measurements with miss 
detections and false alarms due to clutters makes the MDT problem much more diffi-
cult. How to detect the number of targets and track the multiple targets from a sequence 
of noisy and cluttered observation sets jointly becomes a difficult issue and is critical in 
both academic and engineering research.

MDT has been studied extensively and abundant results are available. Most traditional 
multiple target tracking formulations involve explicit associations between measure-
ments and targets. Among these methods, multiple hypothesis tracking (MHT) [8] and 
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its variations concern the propagation of association hypothesis in time. The joint proba-
bilistic data association (JPDA) [1, 9] method uses observations weighted by their asso-
ciation probabilities. These methods, however, either assume a known number of targets 
or determine the number of targets first and then estimate their states based on the 
determined number. In some other applications, tracking-before-detection (TBD) [10–
13] and detection-before-tracking (DBT) are adopted. Specifically, [12, 13] proposed and 
assessed new TBD strategies in the context of space-time adaptive processing. Except 
for the association-based methods, the random finite set (RFS) approach has attracted 
much attention in recent years and fruitful research results have been achieved [14–24]. 
RFS methods assumed the states and measurements of multiple targets as random finite 
sets, and their advantages in handling multiple targets tracking have been verified. How-
ever, this paper focuses on the traditional data association-based multiple target track-
ing, and thus, RFS methods are not discussed.

Actually, MDT is a joint decision and estimation (JDE) problem with dual goals: decid-
ing on the number of targets and estimating their states, furthermore, they are interde-
pendent. On the one hand, a correct decision on the number can help state estimation 
since accurate state estimate relies on correct judge of targets number; On the other 
hand, accurate state estimation can also provide information which benefits making a 
correct decision on the target number. In essence, this is a so-called JDE problem [25] 
involving coupled decision and estimation, and good solutions require solving them 
jointly.

Traditionally, solutions for JDE problems contain [26]: (1) separate decision and esti-
mation, which does not consider their couplings at all [27, 28]. (2) Decision then esti-
mation (DTE), in which decision is made first disregarding estimation and then do 
estimation as if the decision were surely correct [29, 30]. (3) Estimation then decision 
(ETD), in which estimation is made first and then decision is made based on it [12, 13, 
31, 32]. (4) Density-based method. This is beyond the scope of this paper, which is for 
point inference.

However, these solutions all have their respective drawbacks [36]. For the first cat-
egory, decision and estimation are handled separately using their own information 
and techniques, and the interdependence between them is completely ignored. This is 
information loss, and the final joint performance is limited due to this loss. For the sec-
ond category, the disadvantage is that: estimation is made completely on the decision 
without considering any possible decision error, where there may probably a decision 
error; meanwhile, decision is made disregarding the quality of the estimation it would 
lead to. The detection-before-tracking strategy belongs to this category, and thus has 
the above disadvantages. That is, only the effect of detection on tracking is considered 
but the effect of tracking on detection is ignored. For the third category, i.e., estimation 
then decision, it does not work well if estimation depends significantly on decision. The 
tracking-then-detection strategy belongs to this category and thus has the disadvantage, 
i.e., it does not consider the effect of detection on tracking, which limits its joint perfor-
mance. For the fourth category, it is not in the scope of this paper. In this paper, we focus 
on point estimation rather than density estimation, where the latter may suffer from 
high computational complexity.
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For JDE problems, [25] proposed an integrated paradigm based on a new Bayes 
risk, which unifies the traditional Bayes decision and estimation risks. This is inher-
ently superior to traditional methods for utilizing the couplings between decision and 
estimation [26, 34–39]. Generally, MDT is a typical JDE problem while the available 
JDE framework just committed to such problems; thus, it is promising to tackling the 
MDT problem within the JDE approach.

Although the JDE framework is advantageous in handling problems involving 
coupled decision and estimation, difficulties arise when it comes to MDT problems 
mainly because of its particularities and complexities. First, the estimation cost for 
multi-targets is not well defined, especially when the true target state and the esti-
mated target state have different dimensions. Although reference [40] proposes 
a recursive JDE (RJDE)-based MDT method by introducing a new estimation cost, 
parameter designing is especially complicated and the MDT problem realities is also 
not considered during the designing process. Here, MDT problem realties mean the 
possible losses caused by different types of incorrect decisions (in the following part, 
it has the same meaning). Second, there are already three design parameters in RJDE 
while MDT brings extra parameters. Too many design parameters are challenging to 
be determined but can definitely increase the calculation complexity, which would 
aggravate the already complicated MDT problems. Third, when designing param-
eters, the existing RJDE method does not take the MDT problem realities into con-
sideration, which is actually important information and thus it is better to be utilized.

In general, the existing MDT method within JDE framework has complex imple-
mentation but limited performance. To overcome these shortcomings, a new and 
applicable JDE approach for MDT problems is required, which needs to satisfy two 
requirements: guaranteed good joint performance and easy implementation. Within 
the JDE framework, the conditional JDE (CJDE) method has been verified to have 
superior joint performance and easy implementation by introducing the on-line data 
[36]. Based on this, a compact CJDE (CCJDE) method is also proposed with less 
design parameters [37], which is especially suitable for complex JDE problems. This is 
consistent with the above requirements for MDT problems.

Inspired by the above, we consider solving MDT problems by introducing the idea 
of CCJDE due to its performance advantages and easy implementation. To achieve 
this goal, we first propose a CCJDE-based MDT risk, which is a joint Bayes risk unify-
ing the detection and tracking risks through only one parameter. By this unification, 
the interdependence between detection and tracking is taken into consideration.

Based on the proposed CCJDE-MDT risk, we derive a joint solution containing 
a detector and a tracker, which have analytical forms. To obtain this joint solution, 
several quantities are required such as hypothesis conditioned estimates and the 
probability of each hypothesis. To determine these quantities, this paper proposes 
to introducing the JPDA filter for two main reasons. First, JPDA is widely used in 
multiple target tracking area, which is simple and effective. Second and more impor-
tantly, JPDA suits MDT problems well, i.e., it can output all the quantities required 
in the JDE framework. Besides, the parameter designing is specially studied by con-
sidering the MDT realities; subsequently, some designing guidelines are provided for 
application.
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The advantages of the proposed CCJDE-MDT method are verified through an illustra-
tive MDT example under different scenarios. They show that both the proposed CCJDE-
MDT and RJDE methods outperform the traditional DTE method in joint performance, 
and CCJDE-MDT outperforms RJDE in many cases. These demonstrate the advantages 
of CCJDE-MDT in two aspects: (1) as a joint method, CCJDE-MDT can fully utilize the 
coupling between detection and tracking in MDT problems and finally achieve a sat-
isfactory joint performance; (2) compared with RJDE, CCJDE-MDT not only has easy 
implementation, but also has performance advantages by considering the MDT problem 
realities when designing the parameters.

More specifically, the contributions of this work are summarized as follows:

• We propose a CCJDE-MDT risk for handling the multi-target detection and track-
ing problems. This is a joint risk, which unifies the detection and tracking risks in a 
compact way; therefore, the coupling between target detection and tracking is incor-
porated.

• We derive an analytical CCJDE-MDT solution based on the above joint risk. Spe-
cifically, the joint solution containing a detector and a tracker is presented, which 
fully utilizes the coupling between detection and tracking, and also accounts for the 
particularities of MDT problems. During the derivation, the JPDA filter is introduced 
since it has fine tracking performance, simple calculation, and also suits the JDE 
framework.

• Parameter designing is specially and deeply studied. We propose that parameters 
should be designed by considering the realities of MDT problems, i.e., the losses each 
incorrect decision may bring to. Then, penalize the incorrect decision which may 
lead to larger losses heavier than those lead to smaller losses so that the joint Bayes 
risk could be better minimized. Following this idea, some guidelines are provided for 
practical parameter designing.

• Simulation results demonstrate the effectiveness and advantages of the proposed 
CCJDE-MDT approach. It beats the traditional DTE in joint performance and also 
outperforms RJDE in many cases. This verifies that the proposed CCJDE-MDT 
method not only has easy implementation but also has superior joint performance 
by utilizing the coupling between detection and tracking and also the MDT realities 
when designing parameters..

This paper is organized as follows: Section 2 formulates the MDT problem. Section 3 
proposes a new CCJDE-based MDT method which contains a joint CCJDE-based MDT 
risk, a joint solution, and a joint algorithm. Also, parameter designing is deeply studied 
by considering the MDT reality. Section 4 presents an illustrative yet typical MDT exam-
ple compared with DTE and RJDE methods. Section 5 concludes the paper.

2  Problem formulation
Suppose there are multiple targets moving in the field of interests, and the goal of multi-
targets detection and tracking (MDT) is to detect the number of targets and track their 
states jointly using all available data. In MDT, detection and tracking are highly coupled: 
on the one hand, correct detection of targets number can help tracking since accurate state 
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estimation relies on correct targets number; on the other hand, accurate tracking can help 
detection since it can provide critical information about the targets number.

Specifically, consider that there are N moving targets, and the nth ( n = 1, . . . ,N  ) target is 
modeled by the following state-space equations:

where xnk and ynk are the state vector and measurement vector of the nth target at time 
k, respectively. Fn and Hn are known transition matrices. The process noise wn

k and 
the measurement noise vnk are mutually uncorrelated zero-mean white Gaussian noise 
sequences, and their covariances are Qn

k and Rn
k , respectively.

Suppose that there are totally mz
k measurements at time k. One target can only generate 

at most one measurement and one measurement only has one source, i.e., either from a 
target or a clutter. Usually, it is not easy to distinguish whether a measurement originated 
from a target or from a clutter. Denote zrk as the rth kinematic measurement at time k 
( r = 1, 2, . . . ,mz

k ), then

where each measurement zr,ck  is assumed to be uniformly distributed in the surveillance 
region.

Based on the above models, MDT aims to jointly determine the targets number N and 
their states xn(n = 1, . . . ,N ) , which are interdependent. Correct detection of targets num-
ber N facilitates the state estimation xn while accurate estimation xn also helps determine 
N. Essentially, MDT is a joint problem as is involves inference of interdependent discrete 
value (the targets number N) and continuous value (the targets states xn ) uncertainties. For 
such joint problems, exploration and appropriate utilization of the coupling information 
can help improve the joint performance of detection and tracking.

3  CCJDE‑based joint multi‑target detection and tracking
As analyzed above, MDT is a typically joint decision and estimation (JDE) problem, and 
handling detection and tracking jointly is promising to achieve a superior joint perfor-
mance. In the following, after reviewing the existing JDE framework, we propose a novel 
MDT method by fully utilizing the coupling between detection and tracking.

3.1  Review of joint decision and estimation (JDE)

The basic idea of the JDE approach is to minimize the following generalized Bayes risk [25]

where Di stands for the ith decision while Hj stands for the jth hypothesis; cij is the cost 
of deciding on Di while the truth is Hj ; P{Di,Hj} is the joint probability of decision 
Di and hypothesis Hj ; C(x, x̂) is the cost of estimating x by x̂ ; E[C(x, x̂)|Di,Hj] is the 
expected cost conditioned on the fact that Di is decided but Hj is true; αij and βij are the 

xnk+1 = Fnxnk + wn
k

ynk = Hnxnk + vnk

zrk =

ynk

zr,ck

if zrk is from target n

if zck is from clutter

(1)R̄ =
∑

i,j

(αijcij + βijE[C(x, x̂)|D
i,Hj])P{Di,Hj}
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weight coefficients of decision and estimation costs, respectively. Generally, the joint risk 
R̄ is a generalization of the traditional Bayes risks for decision and estimation.

JDE is theoretically superior to the existing separate decision and estimation or two-
stage methods by explicitly accounting for the interdependence between decision and 
estimation. Within the JDE framework, we develop a conditional JDE (CJDE) approach 
by introducing the on-line data, which inherits the theoretical superiorities of JDE but 
has simpler calculation. Specifically, the CJDE risk is as follows:

where CJDE risk differs from JDE risk by introducing the data z.
Note that in CJDE, there are parameters αij , cij ,βij need to be designed, which is spe-

cifically difficult for complicated JDE problems. Therefore, we further proposed a com-
pact CJDE (CCJDE) algorithm with less parameters. Specifically, let αij = 0 in the CJDE 
risk, and assign βij dual function—tuning the relative weight of decision and estimation, 
and also tuning different types of errors. More details about CCJDE can be found in [37].

3.2  Motivation

As is analyzed in Introduction, MDT is essentially a JDE problem, and good solutions 
require solving detection and tracking sub-problems jointly. For such joint problems, the 
available JDE framework provides an effective joint solution, which has advantageous 
performance by accounting for the interdependence between decision and estimation.

However, when it comes to MDT problems, difficulties arise due to particularities and 
complexities caused by multi-targets. Specifically, the estimation cost E[C(x, x̂)|Di,Hj] 
for multi-targets is not defined originally, especially when the hypothesized target num-
ber and decided number is mis-matched. For example, what is the error of an estimator 
(x̂1, x̂2) assuming two targets, each with a state dimension of n, while there is only a sin-
gle target with an n-dimensional state x?

Although [40] presents a RJDE method with a new estimation cost, there are exces-
sive design parameters. Too many design parameters are challenging to be determined 
but can definitely increase the calculation complexity, which would aggravate the already 
complicated MDT problems. Specifically, there are four parameters in RJDE: αij ,βij , cij 
and η , where αij ,βij , cij are explained in (1), and η is a constant denoting the estimation 
cost for the mis-matched case. It is obvious that parameter designing is already compli-
cated in RJDE, not to mention that detection and tracking multiple targets (e.g., MDT 
problems) is much more complex than single target.

Furthermore, the MDT problem realities are not considered when designing param-
eters in RJDE, i.e., the losses that different types of incorrect detections may lead to. 
Actually, this MDT problem realities contain useful information and taking them into 
consideration may help improve the algorithm performance. The essential reason is that 
by doing this, the particularities of the MDT problems can be captured and the coupling 
between detection and tracking can be further explored, which may lead to better joint 
performance.

Based on the above, a simplified joint solution for MDT is promising, which satisfies 
three requirements: it accounts for the coupling between detection and tracking; it is easy 

R̄C(z) =
∑

i,j

(αijcij + βijE[C(x, x̂)|D
i,Hj , z])P{Di,Hj , z}
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for implementation; it can accounts for the MDT problem realities when designing param-
eters. Considering that CCJDE satisfies all the three requirements, we propose to solve the 
MDT problem by introducing the idea of CCJDE.

3.3  Joint CCJDE‑based MDT Risk

Denote by X the true target state, which is a stacked vector comprised by the states of all 
targets. Hj denotes the hypothesis that there are j targets while Di denotes that there are 
i targets being detected. The maximum total targets number is N. The target label is not 
considered in this paper, therefore, Hj contains all the combinations of hypothesized targets 
with total number j, and Di contains all combinations of detected targets with total number 
i. Based on these denotations, we propose the following CCJDE risk for MDT:

where γij is the only parameter unifying the detection and tracking risks, X̂ is the esti-
mate of true target state X, and Z denotes all the available measurements. The expected 
estimation cost is defined as follows [40]:

where η is the estimation cost parameter for the case when hypothesized targets num-
ber and the detected targets number are mis-matched. It is intuitive that η should be a 
large constant so that the incorrect decision can be penalized. mse(X̂k |D

i,Hj) denotes 
the estimation mean square error of X̂k conditioned on hypothesis Hj and decision Di.
τ (i) is a non-increasing positive function of i and τ (1) = 1 . τ(i)i  is the normalization fac-

tor, which is a ratio between the determined number of targets and an adjustment func-
tion.  This is reasonable because the more targets being tracked, the greater estimation 
error usually being resulted in. For example, if   an algorithm tracking 10 targets has the 
same average mse (i.e., normalized only by factor i) as an algorithm tracking only 1 target, it 
makes much sense to say the first algorithm does a better job than the second. Therefore, τ 
(i) is introduced to favor the algorithms tracking more targets.

 Remark 1
The proposed CCJDE–MDT risk RC(z) is reasonable. Take γij as decision cost and εij as 
estimation cost, the joint risk RC(z) =

∑

i,j γijεijP{D
i,Hj|Z} can be considered as a prod-

uct of decision cost and estimation cost. This differs from the original JDE risk R̄ , which is 
summation of decision cost and estimation cost. In general, both R̄ and RC(z) unify the 
traditional decision and estimation but in different ways. RC(z) inherits the virtues of R̄ 
by accounting the coupling between decision and estimation.

(2)RC(z) =

N
∑

i,j=1

γijE[C(X , X̂)|D
i,Hj ,Z])P{Di,Hj|Z}

(3)

εij � E
[

C
(

X , X̂
)

|Di,Hj ,Z
]

=

{

τ(i)
i mse

(

X̂k |D
i,Hj

)

if i = j

η if i �= j
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 Remark 2
The proposed CCJDE-MDT risk RC(z) is a generalization of the traditional risks for detec-
tion and tracking, which is not only advantageous in performance but also simple in 
implementation, as follows:

First, the proposed CCJDE-MDT is advantageous in joint performance. That’s 
because RC(z) is essentially a JDE risk which unifies the traditional detection and 
tracking risks into one framework in a compact way. By doing this, the interdepend-
ence between detection and tracking can be utilized, which is critical information in 
joint problems but usually ignored traditionally. This appropriate utilization helps the 
proposed approach achieving a good joint performance.

Second, the proposed CCJDE-MDT is simple in implementation. It is known that 
compared with single target, detection and tracking multiple targets is already com-
plicated. However, in the original RJDE, extensive design parameters make it more 
complicated, i.e., there are parameters αij ,βij and cij . In the proposed CCJDE-MDT 
risk, the design parameters are greatly reduced, i.e., only one parameter γij.

Specifically, in the original RJDE, there are two steps in designing parameters. First, 
we need to first balance the contributions of decision and estimation by adjusting 
αijcij and βijεij . This is important and not easy since cij and εij usually have very differ-
ent orders of magnitude. Therefore, we need to tune αij and βij appropriately to make 
αijcij and βijεij equivalent in terms of order of magnitude. By doing this, decision cost 
and estimation cost contribute equally into the joint risk. Second, we need to further 
design βij for different (i, j)s to penalize different incorrect decisions according to the 
cost they may bring to (the larger cost an incorrect decision may bring, the heavier 
penalization to such incorrect decision).

However, in our proposed CCJDE-MDT, only γij needs to be designed appropriately. 
We just need to find a good trade-off between decision and estimation by tuning γij 
for the sake of good joint performance. This simplification is very meaningful espe-
cially for the already complicated MDT problems.

Actually, the main advantage of using product of decision cost and estimation cost 
in the CCJDE risk rather than using their summation is simplicity. The former is sim-
pler than the latter, as is analyzed above. This simplification is especially meaning-
ful for complicated problems such as MDT. That’s because such JDE problems are 
already complex, let alone adding complex design parameters.

 Remark 3
In this joint risk RC(z) , εij is defined as a large constant η . The clarifications are as follows:

Since X and X̂ have different dimensions if Di does not match Hj , it is difficult to 
define in a unified way, as is analyzed in Motivation part. Intuitively, εij should be related 
to i and j; however, it is hard to provide a strict mathematical definition for εij when i  = j.

Theoretically, εij(i  = j) should be large so as to facilitate decision-making. There-
fore, defining εij by a large constant η is reasonable and effective way. Besides, this 
definition simplifies the joint risk and its solution (presented next). In general, this 
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definition is reasonable, easy in implementation, and it provides an effective solution 
for the mis-matched case of decision and estimation.

 Remark 4
The followings are more explanations about the target state X.

First, the capital X is a stacked vector comprised by the states of all targets. Therefore, 
X has different dimensions under different hypothesis Hj . Specifically, under hypothesis 
Hj(j = 1, 2, . . . ,N ) , X is a stacked vector of the states of j targets.

Second, X under Hj and Hi ( i  = j ) cannot be directly subtracted from each other since 
they have different dimensions. This has already been stated above. Furthermore, this 
mis-match is one of the motivation of this paper. More specifically, suppose the hypoth-
esized target number is one and the corresponding target state is ( ̂x1 ), and the decided 
number is two and the corresponding state is ( ̂x1, x̂2 ). Then, how should we define the 
state estimation error between ( ̂x1 ) and ( ̂x1, x̂2)?

Third, due to the above, we define the estimation cost εij by (3). That is, use a large 
constant η to denote the estimation cost for the mis-matched case. Although simple, it 
is reasonable that the estimation cost is large when the hypothesized target number and 
the decided target number are different.

3.4  Solution of CCJDE‑MDT

The goal of MDT is to obtain the detection and tracking results, specifically, jointly infer 
the number of targets and their states. To achieve this goal, we need to minimize the 
above CCJDE-MDT risk. In the following, we focus on deriving the joint detector and 
tracker.

3.4.1  CCJDE‑MDT detector and tracker

Let Zk = {Z1,Z2, · · · ,Zk} denotes the set of all measurements up to time k. Here, 
Zk = {z1k , z

2
k , · · · , z

mz
k

k } is the set of measurements at time k, where zik is the ith measure-
ment and mz

k is the number of total measurements at k. Xk and X̂k denote the true state 
and the estimated state at time k, respectively. In the following, i, j = 1, . . . ,N  , where N 
is the maximum number of targets.

Given any expected estimation cost E[C(Xk , X̂k)|D
i,Hj ,Zk ] , the CCJDE-MDT detec-

tor Dk is

where the posterior cost is

Given any decision Di
k , with the quadratic estimation cost C(Xk , X̂k) = X̃ ′

k X̃k , where 
X̃k = Xk − X̂k , the CCJDE-MDT tracker for RC(z) is:

(4)Dk = Di
k , if C

i
C(Z

k) � Cl
C(Z

k),∀l

Ci
C(Z

k) =
∑

j

γijε
k
ijP{H

j|Zk}
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where the generalized posterior probability

For clarification, X̂ (j)
k  is the target state estimate under hypothesis Hj while X̌ (i)

k  is the tar-
get state estimate under decision Di.

Specifically, to obtain the detector Dk , the key is to calculate the posterior cost 
Ci
C(Z

k) =
∑

j γijε
k
ijP{H

j|Zk} ( i = 1, . . . ,N  ). Note that Ci
C(Z

k) is mainly deter-
mined by the expected estimation cost εkij and the posterior hypothesis probability 
P{Hj|Zk}(j = 1, · · · ,N ) . Furthermore, for εkij (defined in (3)), it can be seen that it is η 
and mse(X̂k |D

i,Hj) that affect εkij , where η is a constant parameter given in advance while 
the estimation mean square error mse(X̂k |D

i,Hj) requires to be calculated. Note that 
mse(X̂k |D

i,Hj) is required in εkij only when i = j , therefore, mse(X̂k |D
i,Hj) = mse(X̂k |H

j) . 
Here, mse(X̂k |H

j) denotes the state estimation mean square error under hypothesis Hj . In 
the following, for the sake of simplicity, we use mse(X̂k |H

j) for denotation.
To obtain the tracker X̂k = X̌

(i)
k  (given in (5), which is a weighted sum of each hypoth-

esis conditioned estimate X̂ (j)
k  , we need to calculate the hypothesis conditioned estimate 

X̂
(j)
k  and the corresponding hypothesis probability P{Hj|Zk} ( j = 1, . . . ,N  ). Note that since 

εkij(i  = j) = η , which is a larger constant denoting the expected estimation error for the 
mis-matched case, it is actually X̂ (j)

k (i = j) contributes to X̌ (i)
k .

In summary, it is mainly the hypothesis probability P{Hj|Zk} , the hypothesis condi-
tioned estimate X̂ (j)

k  and the corresponding estimation mean square error mse(X̂k |H
j) 

( j = 1, . . . ,N  ) that affect the CCJDE-MDT detection and tracking results. In other 
words, P{Hj|Zk}, X̂

(j)
k , and mse(X̂k |H

j) are critical prerequisite quantities for obtain-
ing the CCJDE-MDT solution. Therefore, we focus on determining P{Hj|Zk}, X̂

(j)
k  , and 

mse(X̂k |H
j) in the following parts.

3.4.2  Detailed derivation of CCJDE‑MDT detector and tracker

Given the hypothesis Hj , determining the target state X̂ (j)
k  is actually a multi-target track-

ing problem with a known number of targets. This has been widely studied with abundant 
results. Among these, we propose to use the JPDA (joint probabilistic data association) algo-
rithm for its effectiveness, simplicity, popularity, and also the adaptability to our problem.

The fundamental idea of JPDA filter is to compute the probabilities of all feasible meas-
urement-to-target association events θ ik jointly. The track update is obtained by the proba-
bilistic average over all θ ik . Details of JPDA are given in the Appendix.

Following the Bayesian formula and the JPDA filter, the probability P{Hj|Zk} at each time 
k can be updated by

where

(5)X̌
(i)
k =

∑

j

X̂
(j)
k P̄i{H

j|Zk}

P̄i{H
j|Zk} = γijP{H

j|Zk}/
∑

l

γilP{H
l |Zk}

(6)P{Hj|Zk} =
1

c
f (Zk |H

j ,Zk−1)P{Hj|Zk−1}
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is the likelihood of Hj ; the summation is over all possible θ lk , which l denotes the lth meas-
urement-to-target association event. c is a normalizing constant. f {Zk |H

j , θ lk ,m
z
k ,Z

k−1} 
and P{θ lk |H

j ,mz
k} are obtained by JPDA filter.

Based on the above, all the hypothesis conditioned estimate X̂ (j)
k  with the correspond-

ing estimation mean square error matrix P(j)
k  (by the JPDA filter), and the hypothesis 

posterior probability P{Hj|Zk} (by Eq. (6)) are obtained, which are all required in deter-
mining the CCJDE-MDT solution. Here, P(j)

k  is the estimation mean square error matrix, 
and tr(P(j)

k ) = mse(X̂k |H
j) , where tr(· ) means the trace of a matrix.

Remark 5
The reasons for adopting the JPDA filter are as follows: First and most important, JPDA 
can output all quantities required in the CCJDE-MDT detector and tracker, i.e., the state 
estimation X̂ (j)

k , the estimation mse P(j)
k ,and the hypothesis probability P{Hj|Zk} . Second, 

JPDA has guaranteed estimation performance and is also easy for implementation, which 
have been illustrated in [1].

3.4.3  CCJDE‑based MDT algorithm

Based on the above CCJDE-MDT detection and tracking results, we propose the follow-
ing CCJDE-MDT algorithm.

Note that in step (b), with data Zk available, the detailed state estimate X̂ (j)
k  and the 

corresponding estimation MSE P(j)
k  under hypothesis Hj can be determined by the JPDA 

filter, which is presented in Appendix A.

Remark 6
With this efficient algorithm, the number of targets and their states are inferred jointly 
without iterations. Moreover, the couplings between detection and tracking is fully 
accounted for.

Specifically, detection and tracking affect each other as follows: on the one hand, 
tracking affects detection through the expected estimation cost εkij , which can be output 
by tracking but is basically required in detection; on the other hand, detection affects 
tracking through the hypothesis probability P{Hj} , which can be output by detection but 
is critical for tracking.

Remark 7
In general, the proposed CCJDE-MDT solution is a joint solution in the following sense.

f (Zk |H
j ,Zk−1) =

∑

l

f {Zk |H
j , θ lk ,m

z
k ,Z

k−1}P{θ lk |H
j ,mz

k}
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Firstly, detection and tracking are interdependent, as is analyzed in Remark 5. In other 
words, we can neither obtain detection without tracking nor obtain tracking without 
detection. This influence is mutual.

Second, the proposed CCJDE-MDT method completely differs from the traditional 
“detection-then-tracking” or “tracking-then-detection” methods. That’s because in 
“detection-then-tracking”, detection is done first and then tracking is done secondly. 
When handling detection, we do not consider anything about tracking since detection 
does not depend on tracking at all. Similarly, in “tracking-then-detection”, tracking is 
done first without any consideration of detection, and then detection is done based on 
the tracking result. However, in our proposed method, we cannot determine detection/
tracking without tracking/detection.

Third, Table 1 also clearly shows that in the proposed CCJDE-MDT algorithm, detec-
tion and tracking are obtained jointly rather than sequentially. From Table 1, the steps 
(a), (b), (c) are all preliminary calculations for the final joint solution. Based on these 
steps, the final joint solution containing a detector and a tracker can be output jointly. 
This significantly differs from the “detection-then-tracking” or “tracking-then-detection” 
strategies since in such “two-steps” strategies, there must be “detection step” then/before 
“tracking step” which are sequentially. However, in our proposed method, the CCJDE-
MDT detector and tracker are determined jointly/simultaneously at the last step.

3.5  Analysis of parameters

As the only parameter in CCJDE-MDT, γij tunes the relative weight of detection and 
tracking, which is a design parameter. Since γij is problem-dependent, appropriate 
designing strategy with the MDT problem realities being considered is preferable. Here, 
MDT problem realities denote the losses that different types of incorrect decisions may 
bring to (it has been explained in Introduction). The following are guidelines for design-
ing γij.

Firstly, the incorrect decision should be penalized heavier than the correct one, i.e., 
γijεij(i  = j) > γijεij(i = j) . This is natural and reasonable because it can avoid incorrect 
decision and also benefits the correct decision. Actually, this is a condition that must be 
satisfied so as to ensure the correctness of decision-making.

Table 1 CCJDE-MDT algorithm

(a) Initialization Conditioned on each hypothesis Hj , initialize the state X̂ (j)0  and its MSE P(j)0
Initialize the hypothesis probability P{Hj} = 1/N.

(b) Update At time k, with data Zk available:

Update the state estimate X̂ (j)k  and its MSE P(j)k  under each hypothesis Hj;

Update the posterior probability of each P{Hj |Zk} according to (6)

(c) Further Compute the expected estimation cost εkij according to (3);

computation For each candidate Di , compute the estimate X̌ (i)k  according to (5)

(d) Output The optimal CCJDE-MDT detection result is Di
k : C

i(Zk) ≤ Cl(Zk), ∀l;

The corresponding CCJDE-MDT tracking result is X̌ (i)k
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Secondly, the penalization for different types of decision errors should be different 
according to the losses they may bring to. Take the CCJDE-MDT decision for illustra-
tion, which aims to minimize the Bayes decision risk R̄D =

∑

i,j γijεijP{H
j} . Assume that 

there are at most two targets ( i, j = 1, 2 ), misjudging one target into two targets (the 
corresponding parameter is γ21 ) and misjudging two targets into one target (the corre-
sponding parameter is γ12 ) should have different penalty costs.

More specifically, suppose this is an MDT problem on the battlefield, where targets 
are enemies and we would like to destroy them after detection and tracking. In this case, 
misjudge one target into two targets is called false alarm while misjudge two targets into 
one is called a miss.

In this MDT problem, a miss causes greater losses than a false alarm. That’s because, a 
miss would let an enemy target by, which is rather dangerous for us since the enemy may 
probably attack us. While the false alarm only wastes some materials. For example, we 
need missiles to destroy the targets, and suppose one missile is needed to destroy each 
target. Therefore, the more targets detected, the more missiles are needed for destroy-
ing. Based on these, for false alarm, it is detected that there are two targets (although the 
truth is only one target), and thus we launch two missiles for destroying. This is obvi-
ously a waste of missiles. In summary, a miss would lead to greater losses to us than a 
false alarm in this problem.

Therefore, it is reasonable to penalize miss heavier than false alarm so as to avoid miss. 
Note that within the Bayesian framework, the final goal is to minimize the Bayes risk, 
e.g., the joint Bayes risk RC(z) in this paper. Therefore, punishing such incorrect deci-
sions that are likely to cause greater Bayes risk heavily is preferable because this is ben-
eficial for reducing the final Bayes risk.

In general, taking the MDT problem realities into consideration when designing 
parameters can help improve the algorithm performance. The essential reason is that 
by doing this, more useful information about the problem can be explored and utilized. 
With more information, the algorithm performance is definitely improved.

4  Simulation and analysis
4.1  Basic assumptions

To illustrate our proposed CCJDE-MDT method, we apply it to a simple yet representa-
tive joint multi-target detection and tracking (MDT) problem. Our goal is to jointly 
detect the number of targets and track their states, and then take actions based on the 
result, e.g., destroy the targets. In this MDT problem, what we care about most is the 
joint performance since both correct target number judgement and accurate target state 
estimation are critical to us.

For simplicity, we have some basic assumptions [40]: (a) the number of targets mt
k � N  

is unknown but constant over time k. (b) A target can generate at most one measure-
ment—no multipath; a measurement can have originated from at most one target—no 
unresolved measurements. (c) The number of false measurements is Poisson distributed. 
The false measurements are i.i.d and uniformly distributed in the surveillance region of a 
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volume V. (d) All targets follow CV models with a linear measurement equation. To save 
space, the dynamic and measurement models are omitted.

4.2  Compared methods

The compared methods are as follows:
(a) The traditional decision then estimation (DTE) method. Specifically, in DTE, the 

optimal Bayes decision on the number of targets is made first following the Bayesian 
decision rule:

where P{Hi|Zk} is posterior probability of hypothesis Hi , cij is the cost of deciding on Di 
while Hj is true. Then, based on this decision, the corresponding target state estimate are 
obtained.

(b) The RJDE method in [40].
(c) The proposed CCJDE-MDT method.
(d) Known number, in which the true target number is known. This is the ideal case 

and it sets a lower bound for the joint performance.

4.3  Performance evaluation

For a joint problem, the performance of algorithms require jointly evaluation [33]. In 
evaluating the performance of MDT algorithms, the goal is to measure the distance 
between two sets of tracks: the set of ground truth and the set of estimated tracks output 
by the algorithms. The OSPA (Optimal Sub-patten Assignment) metric proposed by [41] 
is widely used and also suitable for such problems.

OSPA measures the distance between two sets, which is defined as follows: Denote by 
d(c)(x, y) = min(c, d(x, y)) the distance between x, y ∈ W  cutoff at c > 0 , where W is a 
closed and bounded observation window and W ∈ R

N . �k is the set of permutations on 
{1, 2, . . . , k} for any k ∈ N = {1, 2, . . .} . For 1 � p < ∞, c > 0 , and arbitrary finite subsets 
X = {x1, . . . , xm} and Y = {y1, . . . , yn} of W, where m, n ∈ N0 = {0, 1, 2, . . .} , define

if m � n , and d̄(c)p (X ,Y ) = d̄
(c)
p (Y ,X) if m > n . The function d̄(c)p  is called the OSPA met-

ric of order p with cutoff c. In (7), p determines the sensitivity of d̄(c)p  to outlier estimates, 
and c determines the relative weighting of how the metric penalizes the cardinality error 
as opposed to the localization error. Generally, OSPA considers both the cardinality 
error and the localization error, and its superiority is demonstrated in [41]. It can evalu-
ate the tracking and detection performance jointly. Therefore, OSPA is adopted as the 
joint performance evaluation metric in this paper.

P{H1|Zk}

P{H0|Zk}

D1

≷
D0

c10 − c00

c01 − c11

(7)d̄(c)p (X ,Y ) �

(

1

n

[

min
π∈�n

m
∑

i=1

d(c)(xi, yπ(i))
p + cp(n−m)

])1/p
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4.4  Simulation

4.4.1  Parameters setting

The maximum number of targets N = 2 . The target number is uniformly and randomly 
distributed from 1 to N and remains constant in each run. The number of false measure-
ment at each time step k is sampled from a Poisson distribution

where � is the clutter density and V is the volume of the surveillance region. All the false 
measurements are uniformly distributed within the region and independent of each 
other.

The covariances of the process noise and measurement noise are Q = diag[1m2,

0.01(m/s)2, 1m2, 0.01(m/s)2] and R = diag[100m2, 100m2] , respectively. The ini-
tial position of two targets are [−100m, 1m/s,−100m, 1m/s] and [−150m, 1.5m/s,

−150m, 1.5m/s] , respectively. The parameters in RJDE are chosen as αij = 1,

βij = 1(i �= j),βij = 0(i = j), cij = 1(i �= j), cij = 0(i = j) . In CCJDE-MDT, the only 
parameter γij = [0, 1; 2, 1]′ . All results were obtained from 5000 Monte Carlo (MC) runs.

For performance evaluation, two evaluation metrics are used: the incorrect 
decision rate and the OSPA metric. Specifically, the incorrect decision rate is cal-
culated as: Nincorrect/NMC , where NMC is the number of total Monte Carlo runs 
while Nincorrect is the number of incorrect decisions. The incorrect decision rate 
actually reflects the percentage of the incorrect decisions in total decisions and is 
adopted as the decision performance metric in this paper. Obviously, the lower the 
Nincorrect/NMC is, the better the decision performance is. Besides, OSPA evaluates 
the joint performance, as is presented above. In the OSPA metric, we choose p = 2 
and the cutoff value c = 20.

Pf {m} =
e−�V (−�V )m

m!

Fig. 1 Simulation results of MDT, scenario 1. � = 5/m3 , Pd = 0.75
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4.4.2  Simulation results

 Scenario 1
In this scenario, the clutter density � = 5/m3 , and the detection probability Pd = 0.75 . 
Here, � = 5/m3 means there are 5 clutters per cubic meter of volume. Simulation results 
are presented in Fig. 1. It can be seen that for the decision performance, both RJDE and 
the proposed CCJDE-MDT methods beat the traditional DTE method. This verifies that 
in JDE approach (both RJDE and CCJDE-MDT belong to JDE approach), tracking facili-
tates detection by utilizing their couplings.

For joint performance, CCJDE-MDT performs best. This verifies that CCJDE-MDT can 
take advantage of the couplings between detection and tracking, and finally achieves 
superior joint performance. Furthermore, compared with RJDE, CCJDE-MDT is simpler 
in implementation and superior in performance, where the reasons lie in fewer param-
eters and also the consideration of MDT problem realities.

Fig. 2 Simulation results of MDT, scenario 2. � = 20/m3 , Pd = 0.75

Fig. 3 Simulation results of MDT, scenario 3. � = 20/m3 , Pd = 0.65
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 Scenario 2
The clutter density � = 20/m3 , which is heavier than that in scenario  1 while all other 
parameters are the same as in scenario 1. Simulation results are presented in Fig. 2. Simi-
lar to scenario 1, they show that CCJDE-MDT performs best in both decision and joint 
performance.

 Scenario 3
The clutter density � = 20/m3 , the detection probability Pd = 0.65 , and all other param-
eters are the same as in scenario 1. That is, the clutter density becomes heavier and the 
detection probability becomes lower compared with scenario 1. The simulation results are 
presented in Fig. 3.

Figure  3 shows that CCJDE-MDT significantly outperforms other methods in both 
decision and joint performance. Comparing with scenarios 1 and 2, although the per-
formance of all three algorithms deteriorate, the advantages of CCJDE-MDT over other 
methods are more obvious. In other words, CCJDE-MDT has more significant advan-
tages than other methods in scenario 3. Note that in this scenario, the time step is longer 
than that in other scenarios since in this “complex” scenario, detecting and tracking are 
difficult for all methods.

 Scenario 4
The detection probability Pd = 0.9 , which is higher than that in Scenario 1, and all other 
parameters are the same. The simulation results are presented in Fig. 4. They show that 
when the detection probability is high, both RJDE and CCJDE-MDT perform well, which 
are better than DTE. This still make sense as it demonstrates the effectiveness of CCJDE-
MDT in “simple” scenario, i.e., the detection probability is high.

Fig. 4 Simulation results of MDT, scenario 4. � = 5/m3 , Pd = 0.9
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 Remark 8
The above simulations fully demonstrate the effectiveness and advantages of the proposed 
CCJDE-MDT method. It outperforms the traditional DTE in both decision and joint per-
formance (OSPA). The essential reason is that CCJDE-MDT can fully utilize the coupling 
between detection and tracking, and finally results in superior joint performance.

Furthermore, the advantages of CCJDE-MDT over RJDE are also demonstrated. 
Firstly, the complexity of CCJDE-MDT is greatly reduced compared with RJDE. This 
mainly results from less design parameters in CCJDE-MDT. Second, the performance of 
CCJDE-MDT is better than RJDE in many scenarios. This mainly results from the con-
sideration of the MDT problem realities when designing parameters in CCJDE-MDT.

Specifically, in RJDE, βij is designed equally for any i and j, whose underlying assump-
tion is that the penalization for different types of decision errors are the same. This 
design strategy does not consider the MDT problem realities. Actually, different types 
of incorrect decisions may cause different losses, and the penalization should be set 
according to the losses they may lead to, as is analyzed in Section III.E. In CCJDE-MDT, 
however, the only parameter γij is designed skillfully by taking the reality into considera-
tion. We choose γ12 > γ21 in this MDT problem since miss usually brings heavier losses 
than false alarm. Finally, CCJDE-MDT outperforms RJDE in joint performance.

 Remark 9
By comparing the simulation results in different scenarios, it can be seen that the more 
complex the scenario is, the more obvious the advantages of CCJDE-MDT are. Here, 
“complex” means the clutter density is high and the detection rate is low, which are not 
conductive to detection and tracking. In other words, in such “complex” scenarios, target 
detection and tracking are difficult.

Specifically, scenario 3 is a complex scenario, i.e., the clutter density is high and the 
detection probability is low. However, simulation results show that the performance 
advantages of CCJDE-MDT over other methods are more obvious in scenario  3 than 
in scenario 1/2/4, where in the latter, the clutter density is lower and detection rate is 
higher than in the former.

In summary, the advantages of the proposed CCJDE-MDT method are especially obvi-
ous in complex scenarios. This is of great significance because in practice, it is always 
such “complex” scenarios that requires more efforts and are also the focus of research.

 Remark 10
In this paper, only simple simulation scenarios are presented for illustration since this 
paper focuses on verifying the effectiveness and superiorities of the newly proposed JDE-
based MDT method. The focus of this paper is the utilization of the coupling between 
detection and tracking so as to improve the joint performance. What we most want to 
express through this paper is that the proposed method is superior in handling the inter-
dependence between detection and tracking compared with the traditional methods.
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Specifically, we did not consider the birth and death of the target, and the target num-
ber is assumed to be constant over time. Also, we adopted only N = 2 for illustration. 
These are all used for illustration. For more practical and complicated applications of 
our proposed method, we will investigate them in the future. Actually, for more targets 
( N � 3 ) and considering the birth and death, our proposed method will definitely work 
since they will not fundamentally change the problem but only increase the computa-
tional complexity.

 Remark 11
The computational complexity of the proposed method is discussed as follows:

First, the proposed CCJDE-MDT method is point estimation-based method rather 
than density estimation-based method. Therefore, it has much lower computational 
complexity compared with the density estimation methods, such as random finite set 
(RFS) methods.

Second, the main computation comes from the JPDA filter. As is stated in the CCJDE-
MDT method, many required quantities in our method can be output by the JPDA filter-
ing. With these basic quantities, we only need to do Bayes optimization by minimizing 
the proposed CCJDE-MDT risk. The CCJDE-MDT detection and tracking results show 
that detection can be determined following the Bayes decision rule while tracking can 
be determined by the weighed combination of hypothesis conditioned state estimates. 
These are all basic operations which will only increase very few calculation. Therefore, 
the computational complexity of DTE, RJDE, and the proposed CCJDE-MDT is basically 
the same without essential difference.

5  Conclusions
This paper proposed a CCJDE-based multi-target detection and tracking (MDT) method 
for handling MDT problems, which involve interdependent detection and tracking. We 
first propose a joint CCJDE-based MDT risk, which unifies the detection and tracking 
risks for multi-targets through a compact way. Based on this risk, we derive the joint 
solution with an analytical form, where the coupling between detection and tracking is 
fully utilized. Specifically, JPDA filter is adopted due to its advantageous performance, 
easy implementation, and also the adaptability to the JDE framework. Also, a CCJDE-
MDT algorithm is presented. Finally, parameter designing is systematically and deeply 
studied, and some important guidelines are provided for practical application.

Simulation results verify the effectiveness and advantages of the proposed CCJDE-
MDT method. CCJDE-MDT outperforms the traditional DTE method in joint per-
formance and is also better than RJDE in many cases.  The essential reason is that 
CCJDE-MDT can fully utilize the coupling between detection and tracking, and also 
take the MDT problem realities into consideration. Finally, it performs best in joint per-
formance. Applications to more complicated MDT problems will be investigated in the 
future.
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Appendix
Denote by mt

k the targets number in the surveillance region, and denote by ntk the num-
ber of true measurements at time k. mz

k denotes all the measurements are received at 
time k, which contains both the measurements from targets and the measurements 
from clutters or false alarm measurements. Suppose mt

k is unknown but constant over 
time k and its maximum number is N; one target can only generate at most one meas-
urement; one measurement can only come from one target or one clutter. Denote by 
Zk = {z1, z2, · · · , zk} the set of all measurements up to time k, and zk = {z1k , z

2
k , · · · , z

mz
k

k } 
is the set of measurements at time k. Here, zik is the ith measurement and mz

k is the num-
ber of measurement at k.

For each θ lk , its posterior probability can be computed as:

Assuming that each measurement is conditional independent, we have

and

where f it (·) and ff (·) are the probability density functions of the true and false 
measurements.

Given mz
k and ntk , assume that each event θ lk has equal probability, P{θ lk |m

z
k} can be 

derived by

where P{θ l
k
|nt

k
,mz

k
} = (mz

k
− n

t

k
)!/mz

k
!,P{nt

k
|mz

k
} = (PdPG)

n
t

k (1− PdPG)
m

t

k
−n

t

k Pf {m
z

k
− n

t

k
} , and 

Pf {·} is the probability mass function of the number of false measurements. Pd and PG 
are the detection and gate probabilities, respectively.

The track update is obtained by the probabilistic average over all θ ik . Suppose that all 
P{θ lk |Zk} are computed, the probability µij

k (denotes the probability of associating zjk to tar-
get i) is obtained by summing up all the probabilities of θ lk that contains this association. 
Then, the track of the target i can be updated by

P{θ lk |zk ,Z
k−1} = P{θ lk |zk ,m

z
k ,Z

k−1}

=
1

c
f (zk |θ

l
k ,m

z
k ,Z

k−1)P{θ lk |m
z
k}

f {zk |H
j , θ lk ,m

z
k ,Z

k−1} =

mz
k

∏

j=1

f (z
j
k |θ

l
k ,m

z
k ,Z

k−1)

f (z
j
k |θ

l
k ,m

z
k ,Z

k−1) =

{

f it (z
j
k), if z

j
k is associated with target i

ff (z
l
k), if z

j
k is not from any target

P{θ lk |m
z
k} = P{θ lk , n

t
k |m

z
k}

= P{θ lk |n
t
k ,m

z
k}P{n

t
k |m

z
k}

x̂k = x̂k|k−1 + Kk˜zk

Pk = P0
kµ

i0
k + (1− µi0

k )P
KF
k + ˜Pk
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where µi0
k = 1−

∑mz
k

j=1 µ
ij
k is the probability that no measurement is associated with the 

target, ˜zk =
∑mz

k
j=1 ˜z

j
kµ

ij
k is the average measurement residual,

and

Kk is the KF gain at time k, β =
Ŵγ/2(nz/2+1)

nz/2Ŵγ/2(nz/2)
 , and Ŵ is the incomplete Gamma function. 

The derivation for P0
k is the MSE matrix for the case that none of the measurements is 

associated with the target. More details about the JPDA filter can be found in [40].
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