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Abstract 

In the end-to-end image generation task, the spatial domain of pixel space cannot 
explicitly separate the low-frequency general information such as texture and color 
from the high-frequency detail information such as structure and identity. The loss 
function calculated in the spatial domain fails to effectively constrain the maintenance 
of detail information, and the generated image quality is insufficient. In this paper, 
a wavelet domain image generation (WDIG) framework is proposed to preserve the 
frequency information of images, in which the loss functions are constructed in the 
pixel space and wavelet space. In the pixel space, the low-frequency and high-fre-
quency characteristic information of the signal are obtained by setting the appropriate 
Gaussian kernel and adopting the Gaussian fuzzy method. The loss function of ℓ1 norm 
spatial domain is constructed for the low-frequency and high-frequency characteristic 
information. In the wavelet space, the corresponding channel sub-band coefficients 
are obtained by wavelet transform, and the image is explicitly separated into high-
frequency information and low-frequency information. The ℓ1 norm frequency domain 
loss function is constructed respectively for the sub-band coefficients. The WDIG can 
constrain model training more accurately and optimize model more precisely, so as 
to better maintain the details and quality of generated image. The WDIG framework is 
evaluated in the image generation applications including style transfer, image transla-
tion and Generative Adversarial Nets (GAN) Inversion. Experimental results show that 
the WDIG framework can effectively retain the details of images and generate more 
realistic images, and improve the image quality of the above applications in image 
generation.

Keywords: Image generation, Pixel space, Wavelet space, Frequency domain, Detail 
information

1 Introduction
As an important task in computer vision, image generation based on deep learn-
ing is widely used in art creation, industrial design, digital simulation and industry 
applications. General image generation usually includes image color generation, tex-
ture generation, and content generation. The related image generation tasks mainly 
include image style transfer, image translation, image repair, image attribute editing, 
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and generative adversarial nets (GAN) Inversion. Image generation is an end-to-end 
task based on autoencoder. The input and output of the network are images, which 
are encoded into latent codes during training and then decoded back to image space. 
According to Rate-Distortion theory [1], reversing a real-world image to a low-dimen-
sional latent code would inevitably lead to information loss, and the lost information 
is primarily image details which result in poor image quality obtained by decoding 
latent codes. One of the strategies to solve this problem is to design more accurate 
loss function to constrain model training. The commonly used loss functions include 
per-pixel loss, adversarial loss and perceptual loss. However, these losses are all cal-
culated in pixel space. Image generation task has a high requirement to maintain the 
detail information such as the structure and identity of the generated image. In pixel 
space, the detail information cannot be separated from the general information such 
as texture, color and contour of the image. Besides, the loss function calculated using 
pixel values cannot effectively improve the quality of the generated image.

Domain image generation has played an important role in many applications [2, 
3]. Since the low-frequency of an image represents general information such as tex-
ture, color and contour, while the high-frequency represents detail information such 
as structure and identity, decomposing the image into low and high frequency com-
ponents and calculating the loss separately will help to provide more accurate con-
straints for image generation. In the image preprocessing stage of computer vision 
tasks, even though the down-sampling operation could reduce computation com-
plexity, it also obliviously removes both redundant and salient information, which 
results in accuracy degradation. In the task of image reconstruction and synthesis, a 
big gap exists between the real and generated images in the frequency domain. Nar-
rowing gaps in the frequency domain can further ameliorate image reconstruction 
and synthesis quality. A learning-based frequency selection method is proposed to 
identify the trivial frequency components which can be removed without accuracy 
loss to reduce the size of the input image [4]. A novel focal frequency loss is proposed 
to directly optimize image reconstruction and synthesis in the frequency domain [5], 
which allows the model to adaptively focus on frequency components that are hard to 
synthesize by down-weighting the easy frequency components. To obtain better fidel-
ity and visual quality for single image super resolution, Xie et al. [6] proposed a novel 
frequency-aware dynamic network for dividing the input into multiple parts accord-
ing to its coefficients in the discrete cosine transform (DCT) domain. In order to 
solve the problem that synthesized images often over-adapt to the target domain, los-
ing important structural characteristics and suffering from suboptimal visual quality 
in the image translation task, Cai et al. [7] constructed the loss function framework 
frequency domain image translation (FDIT) to preserve the frequency information 
in both pixel space and Fourier spectral space. FDIT constrains the image translation 
models training more accurately, and effectively preserves the identity of the source 
image while producing photo-realistic image hybrids. However, in the spectrum 
obtained by Fourier transform, it is compulsory to set the mask radius to separate the 
high-frequency and low-frequency of the image. The size of the mask radius is closely 
related to the size of the image, and plays an important role for the high and low fre-
quency information separation. In the field of image generation, the size of training 



Page 3 of 22Zhu et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:66  

images is not fixed for different tasks, therefore, it is difficult to select the mask radius 
and separate the high and low frequency under the FDIT framework.

Wavelet transform has good capability to extract details and perform multi-resolu-
tion analysis, and it can explicitly separate the high and low-frequency information of 
images. Using 2D discrete wavelet transform with Haar kernels, the input image can be 
decomposed into four sub-bands: A (average low-frequency information), V (vertical 
high-frequency information), H (horizontal high-frequency information) and D (diag-
onal high-frequency information). The low-frequency general information and high-
frequency detail information can be represented separately on the sub-band, and its 
high-frequency information is low coupled and the separation is more thorough. The 
loss function calculated on the wavelet sub-bands can optimize the model accurately.

In this paper, a wavelet domain image generation framework WDIG is proposed based 
on wavelet transform. The loss function is constructed in pixel space and wavelet space 
respectively. The consistency of the generated image and the source image in low and 
high-frequency information is adjusted to enhance the quality of image generation. The 
WDIG framework is applied to image style transfer, image translation and GAN Inver-
sion, which can effectively improve the quality of generated images. The main contribu-
tions of this paper are the following:

(1) A wavelet domain image generation framework WDIG is proposed, and its superi-
ority is proved in image generation applications such as style transfer, image trans-
lation, and GAN Inversion.

(2) Gaussian blur is used to obtain the low and high frequency of the image in pixel 
space, and 2D discrete wavelet transform is used to obtain the low and high fre-
quency of the image in wavelet space. The frequency information of the two spaces 
can be complementary. The WDIG framework is used to calculate the loss in the 
low and high frequency of the explicit separation of the image to achieve accurate 
constraints on the image generation model. The details of the generated image are 
better maintained and the quality of image generation is improved.

(3) The WDIG framework is applied to style transfer, image translation, GAN Inver-
sion and other image generation tasks. Quantitative and qualitative evaluations 
on above tasks demonstrate the superiority of our framework. The experimental 
results show that when the WDIG framework is applied, the stylized image can 
retain the structure of the content image better in style transfer, the translated 
image is more photo-realistic and can preserve the identity of the source image in 
image translation, the generated reconstructed image is very similar to the input 
real image and improves the embedding accuracy of latent codes in GAN Inversion. 
In the above tasks, the WDIG framework significantly outperforms the baseline 
model, and in most cases outperforms the FDIT framework.

2  Related work
2.1  Image style transfer

Image style transfer is widely used in artistic creation, film and television entertainment 
and industrial design fields. It aligns style features in deep feature space, applies texture 
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and color styles of style images to content images, and generates stylized images with 
artistic characteristics. Image style transfer can be divided into optimization-based style 
transfer methods and feed-forward style transfer methods. The optimization-based style 
transfer methods optimize white noise images with high transfer quality but low effi-
ciency, while the feed-forward style transfer methods optimize model parameters with 
high efficiency but low transfer quality. Currently, the most commonly used style trans-
fer methods is feed-forward style transfer methods. The general process is as follows: 
Encode the content image Ic and style image Is into the content feature E(Ic) and style 
feature E(Is) in the feature space through encoder E; By aligning the mean and variance 
of the feature map [8] or whitening and coloring the feature map using the traditional 
algorithm [9], erase E(Ic) from its own style, and then render the style of E(Is) to get the 
stylized feature t; Finally, the decoder D is used to decode t back to the stylized image 
D(t) in the pixel space.

The process of erasing styles in arbitrary style transfer models will destroy the image 
structure information. As shown in Fig. 1, the content feature E(Ic) of the content image 
is subtracted by the mean and then divided by the variance to erase style, then the fea-
ture that erases style is decoded back to pixel space. It can be seen that the structure of 
the image is destroyed. As indicated by the red box part in the fourth column, the moun-
tains in the content image are continuous and smooth, while the mountains in the erased 
style image are undulating. Therefore, the process of erasing the style of E(Ic) will dam-
age its structure and further lead to structure distortion of the resulting stylized image.

Another reason for the structure distortion of the stylized image is that the pre-
trained VGG with deeper network layers is selected as the encoder in style transfer task. 
Although the extracted features are refined and can express rich semantics [10], lots of 
image structure details are lost. Image decoded through the rendering style feature in 
feature layer is structurally distorted and blurry. Reducing the number of encoder net-
work layers can reduce the loss of structural details. However, the style rendering on 
shallow features can only transfer the color style rather than achieve rich stylization 
effect. To solve this problem, many scholars have designed and improved the model con-
struction to ensure the stylized effect as well as maintain the structure. Yao et al. [11] 
proposed the attention-aware multi-stroke (AAMS) model, which employed self-atten-
tion to expand the participation of salient regions as well as kept the correlation between 
distant regions, then maintained the structure of main areas in the stylized image. Liu 

Fig. 1 Effects on image structure of erasing style manipulation
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et al. [12] proposed adaptive attention normalization model (AdaAttn). The shallow and 
deep features were taken into account when calculating the attention weight. By aligning 
attention-weighted mean and variance of content feature maps and style feature maps in 
a per-point basis, the transfer quality of model was improved. Shen et al. [13] added an 
edge detection network to the neural style transfer model to extract the edge contour of 
the content image, then achieved a refined representation of the overall structure of the 
stylized image. Deng et al. [14] proposed a novel image style transfer transformer frame-
work  (StyTr2), which can preserve the structure while enriching the stylization. How-
ever, transformer uses a large number of fully connected operations with amounts of 
parameters, and the model stylization speed is slow. Therefore, the model construction 
can achieve some performance improvement in the cost of additional computational 
consumption.

Figure  2 shows the stylized images generated by classical style transfer methods [8, 
9, 11, 12, 15]. It can be seen that although the structure of stylized images generated 
by optimization-based method central moment discrepancy (CMD) [15] is well main-
tained, images are blurry and the transfer speed is far lower than feed-forward methods. 
The structure of stylized images by other methods is still commonly suffered from dis-
tortion. The proposed WDIG framework in this paper can accurately measure the lost 
structural information without additional computational consumption, and the struc-
ture of stylized images can be better maintained.

2.2  Image translation

Image translation can be applied to industrial design and digital simulation, such as the 
realization of satellite map to map conversion, real photo to sketch conversion and facial 
aging. Different from image style transfer which mainly transfers low-level styles such 
as textures and colors, image translation based on generative adversarial network can 
transform image from source domain to target domain through the adversarial train-
ing between generator and discriminator in pixel space, and the translated image is 

Fig. 2 Style transfer effects of different methods. a Content images. b Style images. c Style transfer effects 
of CMD [15]. d Style transfer effects of AdaIN [8]. e Style transfer effects of WCT [9]. f Style transfer effects of 
AAMS [11]. g Style transfer effects of AdaAttn [12]
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more realistic. Image translation requires preserving the structural identity attribute 
of the source domain image and transforming it into the semantic attribute of the tar-
get domain image. The definitions of identity attributes and semantic attributes vary 
depending on the training dataset. If both the source domain image and the target 
domain image are faces, the identity attributes include hairstyle, gender and facial lines, 
and the semantic attributes include skin color, expression, age and illumination.

Image translation can be divided into single target domain image translation and 
multi-target domain image translation. Image translation methods in single target 
domain include supervised image translation Pix2Pix [16] and unsupervised image 
translation cycle-consistent adversarial networks (CycleGAN) [17]. The semantic attrib-
utes of a single target domain are encoded into the generator by training, and input 
source domain image can realize the transformation to target domain image at the 
semantic attribute level. Classical methods of image translation in multi-target domain 
mainly include multimodal unsupervised image-to-image translation (MUNIT) [18], 
swapping autoencoder (SWAE) [19], and StarGANv2 [20]. By unwrapping and recom-
bining the structure and semantics of image in source domain and target domain, image 
translation from source domain to multiple target domain can be realized. The process is 
as follows. Given the source domain image x1 and the target domain image x2, x1 and x2 
are encoded into features E(x1) and E(x2) by encoder E. E(x1) and E(x2) can be untangled 
for their respective content codes c1, c2 and style codes s1, s2. By combining the content 
code c1 of the source domain image and the style code s2 of the target domain image, the 
translated image G(c1, s2) can be obtained by applying generator G.

However, the classical multi-target domain image translation methods have some 
shortcomings. Limited by the ability of feature resolution, translated images obtained 
by feature recombination are over-adapted to the target domain, which cannot maintain 
the identity of the image in the source domain, and the visual quality is poor. Figure 3 
shows the translation effects of the classic image translation method StarGANv2 [20]. 
As shown in the red box, the images translated by StarGANv2 lose their identity infor-
mation. For example, gender and hairstyle change, male is translated into female, and 
short hair becomes long hair. The proposed WDIG explicitly separates the image into 
low-frequency and high-frequency. The high frequency represents the structural iden-
tity property of the image, and the loss calculated at the high-frequency can accurately 
measure the lost identity information. Together with the generative adversarial loss of 
image translation itself, the model training is constrained to realize the transformation 
of semantic attributes without loss of identity attributes.

2.3  GAN inversion

Image attribute manipulation is also an image generation task, which is different from 
image translation and image style transfer. Instead of training the generative model, 
the latent codes are edited in the latent space, and the trained generative model is used 
to decode the latent codes back to the image, so as to edit the image attributes such 
as the expression and skin color in the face image. Image attribute editing is based on 
generative adversarial network GAN. However, a key limitation is the lack of a coding 
mechanism for making inferences about real images. The latent codes z correspond-
ing to a given real image x cannot be directly derived, which limits the application of 
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image attribute manipulation. The classical image generation method style-based gen-
erator architecture for generative adversarial networks (StyleGAN) [21] can generate 
high-resolution images through latent codes as well as generate style mixing images by 
editing and mixing the elements of two latent codes. However, due to the lack of mecha-
nism to encode the real image into latent codes, style mixing of two real images is not 
possible. Therefore, many studies are devoted to GAN Inversion, a method for embed-
ding real images into latent codes in latent space [22–24]. The more accurate the latent 
codes embedded in GAN Inversion, the more accurate the attribute of real images will 
be edited. Wang et al. [10] proposed a novel GAN inversion framework which consulted 
the observed distortion map as a high-rate reference to enhance the basic encoder model 
with high-quality reconstruction. Zhou et al. [25] presented an outfit generation frame-
work COutfitGAN which used a silhouette and style fusion strategy for image synthesis 
and can overcome the spatial misalignment issue.

Currently, GAN Inversion methods fall into two categories, as shown in Fig. 4. The 
first type is to learn the encoder that can map a given real image to latent codes in 
latent space. A large number of latent codes are initialized and input into the pre-
trained generator to generate corresponding images, and the training dataset is con-
structed. A large number of paired images and latent codes are used for training, 
and the loss is calculated by encoding latent codes and label latent codes. Then the 
encoder can learn to accurately encode the real image into latent codes. The second 
type of methods directly optimizes the latent codes and inputs the real image x as 
the label. In the training step, latent code z is initialized and input to the pre-trained 

Fig. 3 Image translation effects of StarGANv2 [20] on CelebA-HQ [34]. The first row shows the source domain 
images, and the first column shows the target domain images
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generator G to generate the reconstructed image G(z). The difference between G(z) 
and x is calculated by the loss function to iteratively optimize z. When the loss is as 
small as possible and G(z) is similar to x, the latent code z is equivalent to the latent 
code of x.

The second type of GAN Inversion method will generate images through latent codes 
and the labels are real images, and the WDIG framework can be applied. Image2Style-
GAN [22] is a classic GAN Inversion method based on latent codes optimization which 
using StyleGAN pre-trained on the Flickr Faces HQ (FFHQ) dataset as a generator. 
However, it is highly sensitive to the initialization of latent codes. As the iteration pro-
gresses, the latent codes will continuously lose information and the generated recon-
structed image will be quite different from the input real image. The embedded latent 
codes cannot accurately represent the input real image. The proposed WDIG calculates 
the loss in the frequency domain, which can reduce the difference between the recon-
structed image generated by Image2StyleGAN and the input real image, and the embed-
ded latent codes are more accurate.

2.4  Other important tasks

Besides image style transfer, image translation, and GAN inversion, there are many other 
important tasks in image generation such as image denoising and dehazing. In practi-
cal applications, denoising is an essential preprocessing step to recover improved image 
with high quality. Mahdaoui et  al. [26] proposed an original image denoising method 
based on compressed sensing, which provided improved performance in terms of 
denoising efficiency and visual quality. Zhou et al. [27] proposed a novel effective dehaz-
ing method to restore a clear image, which can estimate transmission map and remove 
noise simultaneously.

Fig. 4 Two types of GAN Inversion methods
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2.5  Wavelet transform in deep learning

Some works have combined wavelet transform with deep learning for reducing the com-
plexity of model calculation or improving the quality of image generation. In traditional 
U-Net, pooling layer and transposed convolution are often used as down-sampling and 
up-sampling layers. Liu et  al. [28] embedded discrete wavelet transform (DWT) into 
CNN architecture, where DWT is introduced as a down-sampling operation without 
information loss and is helpful for preserving detail texture when using multi-frequency 
feature representation. Xue et al. [29] observed that most studies focused on designing 
deeper and wider architectures to improve the quality of image super-resolution at the 
cost of computational burden and speed. Therefore, a wavelet-based residual attention 
network was proposed. The input and label of network are four coefficients generated by 
the two-dimensional wavelet transform, which reduces the training difficulty of network 
by explicitly separating low-frequency and high-frequency details into four channels. 
Xin et al. [30] proposed an efficient and time-saving wavelet transform-based network 
architecture, where the image super-resolution processing is carried out in the wavelet 
domain. It can effectively guide the extraction of image feature maps by describing the 
high-frequency details in the wavelet domain. Ma et al. [31] used a scheme based on the 
frequency domain to reconstruct the high-resolution image at various frequency bands 
to achieve the most advanced performance in terms of super-resolution of remote sens-
ing images. Guo et al. [32] designed a deep CNN to predict the missing details of wave-
let coefficients of the low-resolution images to obtain the super-resolution results. To 
the best of our knowledge, no work has applied wavelet transform to the applications of 
image style transfer, image translation and GAN Inversion.

3  Proposed method
In this paper, a wavelet domain image generation framework WDIG is proposed based 
on the complementarity of Gaussian kernel and wavelet transform to preserve image fre-
quency information. In the WDIG framework, loss functions are constructed in pixel 
space and wavelet space. In the pixel space, the low and high-frequency characteristic 
information of the signal are obtained by setting the appropriate Gaussian kernel and 
adopting the Gaussian fuzzy method. The loss function of ℓ1 norm spatial domain is 
constructed for the low-frequency and high-frequency characteristic information. In the 
wavelet space, the corresponding channel sub-band coefficients are obtained by wave-
let transform, and the image is explicitly separated into high-frequency information 
and low-frequency information. The ℓ1 norm frequency domain loss functions are con-
structed respectively for the sub-band coefficients.

As shown in Fig. 5, taking the image style transfer task as an example, the specific 
process of the proposed WDIG framework is as follows. For the content image X, 
reconstructed image X′ and stylized image XY are obtained by style transfer model, 
and high-frequency and low-frequency of X, X′ and XY are separated respectively. In 
pixel space, Gaussian kernel convolution is used to separate X, X′ and XY into high-
frequency and low-frequency images respectively. In wavelet space, wavelet transform 
is applied to decompose X, X′ and XY into sub-bands A, V, H, D respectively, where 
A represents low-frequency information, V represents the vertical high-frequency 
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information, H represents the horizontal high-frequency information, and D repre-
sents the diagonal high-frequency information. The pixel space loss includes recon-
struction loss and structure loss. The reconstruction ℓ1 loss is calculated at the high 
and low frequencies of X and X′ respectively, and then summed. The structural ℓ1 
loss is calculated at the high frequencies of X and XY. The wavelet space loss includes 
reconstruction loss and structure loss. The reconstruction loss concatenates the four 
sub-bands which represent the high and low frequencies of X and X′ into [A,V ,H ,D] , 
respectively, then the ℓ1 loss is calculated. The structure loss concatenates the three 
sub-bands which represent high frequencies of X and X′ into [V ,H ,D] , then the ℓ1 
loss is calculated.

When applying the WDIG framework to image translation and GAN Inversion, the 
operation in pixel space and wavelet space is consistent with the image style transfer 
task, but the object which is used to calculate the loss needs to be slightly adjusted. In 
image translation, the reconstruction loss is calculated by source domain image and 
generator reconstructed source domain image, and the structure loss is calculated by 
source domain image and translation image. In GAN Inversion, the reconstruction 
loss is calculated by the input image and the generator reconstruction image. Since 
there is no domain transformation, the structural loss is not used in GAN Inversion.

3.1  Pixel space loss

In the pixel space, Gaussian kernel function is applied to filter out high-frequency fea-
tures and retain low-frequency information. As shown in Fig. 6, Gaussian blur is used 
to decompose the image into high-frequency and low-frequency parts with Gauss-
ian kernels of different sizes. The first row is the low-frequency part, which mainly 
retains the texture, color and contour information of the image. The second row is 
the high-frequency part, which mainly retains the structure and identity informa-
tion of the image. The larger the size of the Gaussian kernel is, the more blurred the 

Fig. 5 Flowchart of the WDIG framework
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low-frequency image is and the clearer the high-frequency image is. In order to avoid 
distortion in the high-frequency and low-frequency regions, the size of Gaussian ker-
nel k is set to 21 according to [7].

By using Gaussian blur, image x is converted into low-frequency image xL and high-
frequency image xH, and the sizes of the three image are the same. Gaussian kernel is 
defined as Eq. (1).

where [i, j] represents the spatial position of the image, and σ 2 represents the variance 
of the Gaussian which is proportional to the size of the Gaussian kernel. Applying the 
convolution of Gaussian kernel on the input image x, fuzzy low-frequency image xL is 
obtained, as shown in Eq. (2).

where [m, n] is the index of the 2D Gaussian kernel, m, n ∈ − k−1
2 , k−1

2  , ⊗ represents 

the convolution operation. After x is converted to the gray scale, the low-frequency 
information is subtracted to obtain the high-frequency xH which represents the edge 
structure and identity of x, as shown in Eq. (3).

where rgb2gray represents the method of converting a color image to a gray scale image. 
Since the structural identity information is independent of color and illumination, the 
image is transferred to gray scale image to eliminate this information.

3.1.1  Reconstruction loss in the pixel space

The following ℓ1 reconstruction loss term is employed for content image X and image X′ 
reconstructed using autoencoder. The similarity between both low-frequency and high-
frequency components of X and X′ are enforced to enhance the ability of decoder to gen-
erate images. As shown in Eq. (4).

(1)kσ [i, j] =
1

2πσ 2
e
− 1

2

(

i2+j2

σ2

)

,

(2)xL[i, j] =
∑

m

∑

n

k[m, n] ⊗ x[i +m, j + n],

(3)xH = rgb2gray(x)− (rgb2gray(x))L,

Fig. 6 Using Gaussian kernel to separate high and low frequencies
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3.1.2  Structure loss in the pixel space

In order to make the stylized image XY retain the structure information of content 
image X, the ℓ1 structure loss is employed to adjust the high-frequency component 
which represents the structure information, as shown in Eq. (5).

3.2  Wavelet space loss

In addition to the constraint of pixel space, the loss term of wavelet space is also intro-
duced. Specifically, two-dimensional DWT is used to map image X from pixel space 
to wavelet space. As shown in Fig. 7, DWT has four convolutional filters, i.e. low-pass 
filter fLL and high-pass filters fLH, fHL, fHH to decompose x into four sub-band images, 
i.e. A, V, H and D. Taking Haar wavelet as an example, four filters are defined as

The operations of DWT are defined as

(4)Lrec,pix =
∥

∥XL − X ′
L

∥

∥

1
+

∥

∥XH − X ′
H

∥

∥

1
.

(5)Lstru,pix = �XH − (XY )H�1.

(6)
fLL =

[

1 1

1 1

]

, fLH =

[

−1 − 1

1 1

]

,

fHL =

[

−1 1

−1 1

]

, fHH =

[

1 − 1

−1 1

]

.

Fig. 7 Schematic diagram of two-dimensional wavelet transform for a image



Page 13 of 22Zhu et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:66  

where ⊗ denotes convolution operator, ↓2 represents the standard down-sampling oper-
ation with factor 2. In other words, DWT mathematically involves four fixed convolu-
tion filters with stride 2 to implement down-sampling operation.

3.2.1  Reconstruction loss in the wavelet space

The following ℓ1 reconstruction loss of the wavelet space is employed. The four sub-band 
images of the content image X and the reconstructed image X′ are spliced into matrix [A, 
V, H, D] respectively to calculate the loss, as shown in Eq. (8).

3.2.2  Structure loss in the wavelet space

Similar to Eq. (5), the ℓ1 structure loss in the wavelet space is also employed. Only the 
sub-band images V, H, D of content image X and the stylized image XY represent high-
frequency structure information are used, and V, H, D are spliced into matrix [V, H, D] 
to calculate the loss, as shown in Eq. (9).

3.3  Overall loss

Considering all the above loss, the overall loss function is defined as follows.

where Lorg is the loss function of the image generation model itself, and �1, �2, �3, �4 are 
the weighting coefficients of the losses, which are set as �1 = �2 = �3 = �4 = 1 in the 
experiment for simplicity. Gaussian kernel and wavelet transform are complementary 
for preserving frequency information. Gaussian kernel extracts local frequency features 
through convolution, while wavelet utilizes the information from all pixels to obtain 
the wavelet value for each spatial frequency, characterizing the frequency distribution 
globally. We will show in ablation study in Sects. 4.2 and 4.3 that the ability to preserve 
frequency information of both Gaussian kernel and wavelet transform is effective in 
improving the quality of generated images in image generation tasks.

4  Experiments
In this section, the performance of the proposed WDIG framework is evaluated on sev-
eral classical image generation methods such as Image Style Transfer AdaIN,  StyTr2, 
Image Translation StarGANv2, and GAN Inversion Image2StyleGAN. The experimental 
environment is PyCharm and Pytorch, the graphics card model is Nvidia GeForce RTX 

(7)

[A,V ,H ,D] = DWT(x),

A = (fLL ⊗ x) ↓2

V = (fLH ⊗ x) ↓2

H = (fHL ⊗ x) ↓2

D = (fHH ⊗ x) ↓2

(8)Lrec,wav =
∥

∥DWT(X)[A,V ,H ,D] − DWT(X ′)
[A,V ,H ,D]

∥

∥

1
.

(9)Lstru,wav =
∥

∥DWT (X)[V ,H ,D] − DWT (XY )[V ,H ,D]

∥

∥

1
.

(10)LWDIT = Lorg + �1Lrec,pix + �2Lstru,pix + �3Lrec,wav + �4Lstru,wav,
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2080Ti with 12G video memory, and the processor model is Core i7-9700 K with 32 GB 
running memory.

Qualitative and quantitative experimental results show that the WDIG framework 
can preserve the structure in image style transfer task, retain the identity information of 
source domain in image translation task, and improve the embedding accuracy in GAN 
Inversion task.

4.1  Applying WDIG to image style transfer

Most image style transfer models use the framework of CNN-based autoencoder. 
Recently, Deng et  al. [14] proposed  StyTr2, a Transformer-based style transfer model, 
which can better maintain the structure of stylized image compared with CNN-based 
models. In this subsection, FDIT framework and WDIG framework are applied to the 
classical CNN-based style transfer model AdaIN and Transformer-based style transfer 
model  StyTr2. In the experiments, models are trained using dataset MS-COCO [33] as 
content images and a dataset of paintings mostly collected from WikiArt [34] as style 
images. On the AdaIN, during training, the learning rate size is 1 ×  10–4, the aspect ratio 
of image is preserved and the size of the image is rescaled to 512 × 512 pixels, and then 
randomly crop to 256 × 256 pixels. A batch size of 8 content-style image pairs for 160 k 
iterations. Since  StyTr2 is based on Transformer structure, the number of parameters 
is large and amounts of the video memory is required. To reduce video memory usage, 
during training, the learning rate size starts at 5 ×  10–4 and then decays slowly. The 
aspect ratio of the image is preserved and the size of the image is rescaled to 512 × 512 
pixels, and then randomly crop to 128 × 128 pixels. A batch size of 8 content-style image 
pairs for 160 k iterations.

Style transfer effects are shown in Fig. 8. As shown in Fig. 8c, the structure distortion 
is serious in the stylized images of AdaIN. In Fig. 8d, applying FDIT to AdaIN, the struc-
ture of stylized images is maintained, but the style rendering is not sufficient. In Fig. 8e, 
applying WDIG to AdaIN, the structure of stylized images is maintained and the style 
rendering is more sufficient, especially the part of the sky framed in the second, third 
and fifth rows. In Fig. 8f,  StyTr2 is based on the structure of relational modeling Trans-
former and has strong ability of feature representation. It can avoid the details loss in 
the process of feature extraction and can well preserve the structure of stylized images. 
However, there are artifacts in some areas of stylized images, such as the sea surface in 
the third row and the sky in the fifth row. In Fig. 8g, applying FDIT to  StyTr2, the arti-
facts are alleviated, but the style rendering is not sufficient. In Fig. 8h, applying WDIG to 
 StyTr2, the artifacts are alleviated and the style rendering is more sufficient, such as the 
face area in the first row and the sky in the fourth row.

In this part, quantitative evaluations are adopted. The goal of the style transfer is 
that the stylized image should be consistent with the content image in terms of seman-
tic structure. Structural similarity (SSIM) is a metric to measure the similarity of two 
images. The closer the SSIM value is to 1, the more similar the structure is. Peak sig-
nal-to-noise ratio (PSNR) is often used as a matric for signal reconstruction quality in 
image compression and other fields. The higher the value, the better the reconstructed 
image quality. However, due to the subjectivity of human vision, sometimes images with 
low PSNR values may have better visual effects than images with high PSNR values. 
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Fig. 8 Comparison of Style transfer effects. a Content images. b Style images. c Style transfer effects of AdaIN. 
d Style transfer effects of FDIT-AdaIN. e Style transfer effects of WDIG-AdaIN. f Style transfer effects of  StyTr2. g 
Style transfer effects of FDIT-StyTr2. h Style transfer effects of WDIG-StyTr2

Table 1 Structural similarity SSIM, PSNR, style transfer time comparison between stylized images 
obtained by AdaIN and content images

The best results are highlighted in bold

Methods SSIM PSNR Time (s)

AdaIN 0.281 10.8 0.056

FDIT-AdaIN 0.457 62.6%↑ 13.1 21.3%↑ 0.056

WDIG-AdaIN 0.463 64.8%↑ 12.9 19.4%↑ 0.057

Table 2 Structural similarity SSIM, PSNR, style transfer time comparison between stylized images 
obtained by  StyTr2 and content images

The best results are highlighted in bold

Methods SSIM PSNR Time (s)

StyTr2 0.415 11.4 0.552

FDIT-StyTr2 0.624 50.4%↑ 13.8 21.1%↑ 0.556

WDIG-StyTr2 0.600 44.6%↑ 13.7 20.2%↑ 0.547
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Therefore, higher PSNR value as well as that the stylized image with artistic beauty is 
preferred in Style Transfer. In this paper, 10 content images and 10 style images are 
selected, and 100 stylized images are obtained by using the models trained with different 
frameworks. The average SSIM and PSNR are calculated on the corresponding images, 
and the stylized execution time is also calculated. As shown in Tables 1 and 2, for the 
style transfer method AdaIN, WDIG increases SSIM by 64.8% and PSNR by 19.4%. For 
the style transfer method  StyTr2, WDIG increases SSIM by 44.6% and PSNR by 20.2%. 
The improvement of WDIG in SSIM is higher than that of FDIT, which indicates that 
the structures of stylized images produced by WDIG are more similar to the structure 
of content images. WDIG renders the style more fully, which causes stylized images to 
have more artistic beauty, however, also with more noise. Therefore, the improvement in 
PSNR of WDIG is slightly lower than that of FDIT. It can also be seen from Tables 1 and 
2 that FDIT and WDIG could provide improved performance without further increasing 
the style transfer time.

4.2  Applying WDIG to image translation

StarGANv2 is an advanced image translation model, which generates translation images 
guided by target domain images or latent codes. The proposed WDIG can be used to 
optimize the performance of StarGANv2. In this subsection, dataset CeleBA-HQ [35] 
is employed to train StarGANv2 with the FDIT framework and the WDIG framework. 
During training, the learning rate size is 1 ×  10–4, the aspect ratio of the image is pre-
served and the size of the image is rescaled to 512 × 512 pixels, and then randomly crop 
to 128 × 128 pixels.

A batch size of 6 content-style image pairs for 30 k iterations. The goal of image trans-
lation is to keep the identity attributes of the image in the source domain such as gender 
and hair style, and transform the semantic attributes of the image in the target domain 

Fig. 9 Comparison of image translation effects on CelebA-HQ [28]
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such as expression, skin color and illumination. Image translation effects are shown in 
Fig. 9. The identity attribute of source domain cannot be maintained when StarGANv2 is 
applied. FDIT and WDIG can strictly preserve identity features while modifying seman-
tic attributes of faces. As shown in the first and second rows, in the translated images 
of StarGANv2, the gender changes, while both FDIT and WDIG can ensure that the 
gender remains unchanged after translation. As shown in the fourth row, StarGANv2 
changes the hairstyle, while both FDIT and WDIG can ensure that the hairstyle remains 
the same. Compared with FDIT, the image translated by WDIG is more realistic. In the 
second row, the structure of the mouth corner in the face image translated by FDIT is 
distorted, while WDIG can avoid this problem.

In this part, quantitative evaluations are calculated to compare the translation image 
quality produced by different methods. Frechet Inception Distance (FID) metric is 
widely used in image translation. It is calculated using the feature vector output from 
the last average pooling layer of inception-V3 pre-trained on ImageNet to measure the 
difference between two groups of images. The lower the FID is, the more similar the 
two groups of images are, that is, the closer the identity attributes are. The perceptual 
distance LPIPS is calculated using the feature vectors extracted from the AlexNet pre-
trained on ImageNet to measure the perceptual similarity of the two groups of images, 
which is consistent with human perception. The lower the LPIPS is, the more perceptu-
ally similar the generated image is to the input image, representing the closer the iden-
tity attribute is. In this paper, the loss of pixel space, wavelet space and Fourier space in 
FDIT are individually added to the StarGANv2 loss function for training. WDIG frame-
work and FDIT framework are also used to train StarGANv2, and different image trans-
lation models are obtained. 1000 source domain images and 10 target domain images 
are selected, and 10,000 translated images are obtained by using different models. Then 
the average FID value and LPIPS value are calculated on the corresponding images. As 
shown in Table  3, the loss of pixel space, Fourier space or wavelet space can improve 
StarGANv2 on these metrics, no matter the image is translated by style coding guided 
by latent codes or target domain images. The FID is improved by 16.3% and the LPIPS 
is improved by 33.3% by using WDIG, which indicates that the image identity details 
generated by the WDIG are well preserved. In terms of FID metrics, WDIG provides the 
best performance. In terms of LPIPS, FDIT provides better performance than WDIG. 
The possible reason is that WDIG destroys some identity attributes while converting 
more semantic attributes. However, WDIG does not need to manually set the mask 

Table 3 The FID and LPIPS comparisons between source domain images and the translated images 
obtained by different methods

The best results are highlighted in bold

Methods Latent codes guided Reference guided

FID LPIPS FID LPIPS

StarGANv2 16.1 0.320 18.8 0.275

StarGANv2 + pixel space 14.2 0.211 16.1 0.183

StarGANv2 + Fourier space 14.9 0.242 16.0 0.196

StarGANv2 + wavelet space 14.6 0.233 15.7 0.194

FDIT 14.2 (11.8%↑) 0.210 (34.4%↑) 16.3 (13.3%↑) 0.179 (34.9%↑)
WDIG 13.5 (16.1%↑) 0.212 (33.8%↑) 15.7 (16.5%↑) 0.185 (32.7%↑)
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radius to separate the high and low frequencies, which is more simple and stable in the 
applications.

4.3  Applying WDIG to GAN inversion

Image2StyleGAN is a classical GAN Inversion method based on optimizing latent codes, 
which can embed the user-specified image into latent codes of GAN latent space. The 
accuracy of the embedding is verified by the similarity between the reconstructed image 
generated by latent codes and the input real image. In this subsection, WDIG frame-
work and FDIT framework are applied to Image2StyleGAN. During training, the batch 
size is set to 1, the learning rate size is 1 ×  10–2, image size is set to 1024 × 1024, and the 
number of iterations is set to 5000. The GAN Inversion effects are shown in Fig. 10. It 
can be seen that WDIG can better preserve the details of the overall structure and color 
distribution of the input image, and the reconstructed image is more similar to the input 
image. While for images in the fourth row, the animation face reconstructed by Imag-
e2StyleGAN is inconsistent with the input image in color, and the area in the left eye is 
distorted and unrecognizable. After applying the FDIT, the color of the animation face 
is roughly the same as the input image, but the area in the left eye and hair tip still have 
some distortion and blurring. After applying the WDIG, the structural details of the ani-
mation face are well reconstructed and highly consistent with the input image.

Fig. 10 Comparison of GAN Inversion effects. a High-resolution real image. b Reconstruct images 
of Image2StyleGAN. c reconstruct images of FDIT-Image2StyleGAN. d reconstruct images of 
WDIG-Image2StyleGAN
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In this subsection, quantitative metrics are calculated to compare the similarity 
between the reconstructed image and the input image produced by different frameworks 
applied to Image2StyleGAN. 50 pairs of 1024 × 1024 high-resolution input images and 
reconstructed images are selected, and the average SSIM, PSNR, MSE and MAE are cal-
culated on the corresponding images. The MSE and MAE are commonly used in the 
field of image reconstruction to measure the difference between the reconstructed image 
and the original image. As shown in Table 4, in terms of SSIM, PSNR, MSE and MAE, 
WDIG outperforms Image2StyleGAN and FDIT. Compared with the baseline model 
Image2StyleGAN, WDIG improved the SSIM by 1.5%, PSNR by 4.3%, MSE by 24.1%, 
and MAE by 17.8%. The improvements of these metrics indicate that the reconstructed 
images of WDIG are more similar to the input images and WDIG improves embedding 
accuracy. The losses of pixel space, wavelet space and Fourier space are separately added 
to the Image2StyleGAN model for training, and the average FID is calculated on the 
reconstructed image and the input image. As shown in Table 5, the FID can be improved 
by the addition of the loss of pixel space, wavelet space and Fourier space, but only when 
the pixel space loss and the wavelet space loss are used jointly, the FID increases the 
most, which is 9.7% higher than the baseline model Image2StyleGAN, showing the effec-
tiveness of WDIG.

5  Conclusion
In order to solve the problem of image quality deficiency caused by the details loss in 
image generation tasks, a wavelet domain image generation framework WDIG is pro-
posed based on the complementarity of Gaussian kernel and wavelet transform to pre-
serve image frequency information. Loss functions are constructed in pixel space and 

Table 4 Structural similarity, peak signal-to-noise ratio, MSE and MAE comparison between the 
reconstructed images of different models and the input images

The best results are highlighted in bold

Methods SSIM PSNR MSE MAE

Image2StyleGAN 0.686 23.2 0.0058 0.0539

FDIT-Image2StyleGAN 0.691 (0.7%↑) 24.1 (3.9%↑) 0.0044 (24.1%↑) 0.0445 (17.4%↑)

WDIG-Image2StyleGAN 0.696 (1.5%↑) 24.2 (4.3%↑) 0.0044 (24.1%↑) 0.0443 (17.8%↑)

Table 5 Ablation experiments in pixel space, Fourier space, wavelet space

The best results are highlighted in bold

Loss Terms added in Image2StyleGAN FID

Pixel space Fourier space Wavelet space

 ×  ×  × 28.23

✓  ×  × 27.80 (1.5%↑)

 × ✓  × 28.03 (0.7%↑)

 ×  × ✓ 27.66 (2.0%↑)

✓ ✓  × 27.22 (3.6%↑)

✓  × ✓ 25.49 (9.7%↑)
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wavelet space. The separated high frequencies and low frequencies are used to calculate 
the loss to measure missing details of the generated image. The training of the model is 
more accurately constrained, so as to accurately optimize the model and improve the 
quality of image generation. Qualitative and quantitative experimental results on image 
generation tasks such as image style transfer, image translation, GAN Inversion are pro-
vided to show that the WDIG framework can effectively preserve the details of the gen-
erated image. In the image style transfer task, the structure of the content image can be 
retained in stylized images; In the image translation task, the identity information of the 
source domain image can be preserved in the translated image, and the generated image 
is more realistic; In the GAN Inversion task, the difference between the generated recon-
structed image and the input image is smaller, and the accuracy of latent codes embed-
ding is improved.

In the future work, the proposed WDIG framework needs to be trained with large data 
sets to provide more effective performance. Moreover, the applications of the proposed 
WDIG in other image generations are also worth exploring.
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