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Abstract 

Automatic modulation classification plays a critical role in the intelligent reception of 
unknown wireless signals. In practice, the dynamic wireless environment brings a great 
challenge, and the actual test model is inconsistent with the training model. Therefore, 
aiming at the problem of noise mismatch, this paper proposes a new modulation clas-
sification method based on KD-GoogLeNet and Squeeze-Excitation (KD-GSENet). Using 
the k-dimensional tree, the complex wireless signals are converted into color images 
rather than normal constellations, which can enhance the classification features. 
Considering the attention block has the inherent advantage of assigning more weights 
to important features, this paper further uses it to improve the GoogLeNet. Finally, 
extensive experiments are presented including Gaussian noise, non-Gaussian noise, 
and the scenarios of noise mismatch. Numerical results verify the superior classification 
performance of the proposed KD-GSENet under different scenarios.

Keywords: Automatic modulation classification, Noise mismatch, Deep learning, 
Constellation, KD-GSENet

1 Introduction
Automatic modulation classification (AMC) is an important technique for detecting 
signal modulation schemes in intelligent communication receivers. As a crucial tech-
nique to identify the modulation formats under noise and interference, AMC has been 
widely used in military, cognitive radio, and crowded electromagnetic spectrum com-
munications [1]. Traditional classification algorithms often require manual extraction by 
experienced experts. Most traditional methods cannot achieve the requirements of high 
efficiency and high classification rate.

In recent years, with the rapid development of artificial intelligence, deep learning (DL) 
has been widely used [2]. The essence of the modulation classification problem is a typi-
cal pattern classification problem [3]. The progress of DL promotes the development of 
modulation classification. Through artificial neural networks, DL can realize automatic 
feature extraction of different modulated signals. Using DL in AMC can process large 
amounts of data and extract more comprehensive features without manual feature selec-
tion. DL-based AMC method certainly improves classification accuracy; however, most 
models only consider ideal scenarios such as common Gaussian noise. As the complexity 
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of the electromagnetic environment increases [4], the background noise often changes 
dynamically and can be non-Gaussian [5]. In the presence of non-Gaussian noise, the 
performance of the AMC scheme degrades dramatically. These accelerated the devel-
opment of AMC. Through preprocessing, the DL-based AMC method can improve the 
robustness of classification. Therefore, it is necessary to explore the application value of 
modulation classification in many complex environments [6].

1.1  Related works

Modulation classification algorithms are generally categorized into likelihood-based 
algorithms [7] and feature-based algorithms [8]. Feature-based algorithms typically 
include three steps: preprocessing, feature extraction, and classification [9]. Moments, 
cumulants, higher-order statistics, and spectrum are the most commonly used features 
[9–11].

Machine learning (ML) is an advanced technology that includes different classifi-
ers such as artificial neural networks, K-nearest neighbors, and genetic programming 
[12]. DL is an important branch of ML, which can simultaneously realize feature extrac-
tion and classification. Thus, it is widely used in AMC [13]. An AMC method based on 
the convolutional neural networks (CNNs) was proposed in [14], which can automati-
cally extract the features and estimate the signal-to-noise ratio (SNR) from sequences. 
By exploring the interactive features of in-phase/quadrature (I/Q) and amplitude/phase 
(A/P) [15], Chang et al. proposed a fusion deep neural network. Spatial-temporal char-
acteristics of original complex signals were effectively explored in [16], which helps to 
obtain more efficient classification features.

Considering that the signal cannot be directly used as the input of the CNN, schol-
ars have proposed different preprocessing methods. A new data preprocessing method 
was proposed in [17]. Further, many scholars directly converted the signal into a two-
dimensional image. O’Shea et al. [13] proposed a modulation classification model based 
on end-to-end CNN. Inspired by their work, more scholars converted signals into dif-
ferent images. Peng et  al. converted complex signals into three-channel constellations 
and configured models based on GoogLeNet [18]. Zhou et al. [19] proposed a method 
to classify the received signal without feature extraction, which can automatically learn 
features from the received signal. The article [20] gave a modulation classification algo-
rithm based on a constellation density matrix to identify different orders of amplitude 
shift keying (ASK), phase shift keying (PSK), and quadrature amplitude modulation 
(QAM). Using contrastive full convolutional networks, a novel AMC approach based on 
a grid constellation matrix was proposed in [21]. In addition to converting signals into 
constellations, Yan et al. proposed a new feature extraction method based on the cyclic 
spectrum [22]. They also presented an AMC method for multi-binary QAM signals 
based on constellation diagram analysis [23]. According to frequency variation with time 
under different modulation, a short-time discrete Fourier transform was used to convert 
one-dimensional radio signals into spectral images [24].

For better performance, the researchers designed new networks to extract different 
representations from the received signals. By adjusting the number of layers and add-
ing new layers, [25] gave an improved AMC network based on CNN. Bu et al. provided 
a learning architecture that combined adversarial training and knowledge transfer [26]. 
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The long short-term memory (LSTM) was used to learn amplitude and phase informa-
tion in the time domain [27]. Thien et al. [28] proposed a robust AMC network adopt-
ing multiple specific convolution blocks for modern communication systems. They also 
designed a high-performance CNN structure, which mainly involved multiple high-level 
processing blocks to learn the intrinsic features of combined waveforms [29]. Huang 
et al. [30] offered a novel gated recurrent residual neural network. In [31], residual net-
works were used to extract discriminant features. Aiming at the classification accuracy 
and calculation time, the article [32] introduced an efficient AMC scheme by exploiting 
the bottleneck structure of the residual network. Using CNN and gate recurrent unit as 
feature extraction layers, [33] presented an efficient model based on phase parameter 
estimation and transformation.

In actual communication, signal modulation classification is vulnerable to dynamic 
environments. Therefore, it is crucial to come up with more robust AMC methods for 
different cases. To improve the classification performance under impulsive noise, Zhang 
et  al. pointed out a modulation classification method based on the cyclic correlation 
entropy spectrum [1]. The paper [34] generated the feature vector of missing modulated 
signals based on semantic feature vector, which greatly improved the classification accu-
racy of undiscovered classes. Adopting the Cauchy distribution function as a robust fea-
ture of acoustic noise, an improved constellation was presented [35]. To overcome the 
intra-class classification problem caused by the dynamic changes, Luan et al. [36] sug-
gested an AMC method based on the multi-scale network.

Thus, it is urgent to find a method that can adapt to different noise environments.

1.2  Contributions

In this paper, a new AMC method is proposed. By combining preprocessing and improv-
ing the network, the proposed method improves the classification accuracy. The method 
has good robustness to non-Gaussian noise and noise mismatch. The contributions of 
this paper are summarized as follows:

• A GoogLeNet and Squeeze-Excitation (GSENet) network is proposed. By assigning 
more weight on important features, the network combines a self-attention mecha-
nism to enhance the discrimination and expression.

• A method of k-dimensional tree (KD-tree) preprocessing is further introduced, 
which directly converts the signals into three-channel constellations. Unlike tradi-
tional constellations, it enlarges the differences between different modulations by 
combining more characteristics of signals. The KD-GoogLeNet and Squeeze-Exci-
tation (KD-GSENet) is capable of identifying the received signals in the case of noise 
mismatch.

• Extensive numerical results are performed to evaluate the performance of the KD-
GSENet under Gaussian noise, non-Gaussian noise, and the case of noise mismatch. 
Besides, the classification accuracy and computational complexity are compared with 
other methods in this article. Numerical results verify that the proposed method not 
only has superior classification accuracy under Gaussian noise but also has little per-
formance loss under non-Gaussian noise. Moreover, compared with other methods, 



Page 4 of 21Guo et al. EURASIP Journal on Advances in Signal Processing  2023, 2023(1):73

the proposed has high robustness and generalization in the case of noise mismatch, 
while the increase of algorithm complexity is not significant.

1.3  Organization

The rest of this paper is organized as follows. In Sect. 2, the system model is summa-
rized. Section  3 presents the proposed AMC method. The numerical results are pre-
sented and discussed in Sect. 4. Section 5 draws conclusions.

2  System model
In this section, the signal model and the model of background noise are briefly 
introduced.

2.1  Signal model

This paper aims to identify the correct modulation scheme among binary phase shift 
keying (BPSK), four amplitude shift keying (4ASK), quadrature phase shift keying 
(QPSK), offset QPSK (OQPSK), eight phase shift keying (8PSK), 16-ary quadrature 
amplitude modulation (16QAM), 32-ary quadrature amplitude modulation (32QAM), 
and 64-ary quadrature amplitude modulation (64QAM). According to the traditional 
modulation classification model [1], in which the receiver is equipped with a single 
antenna, the received signal can be represented as

where y(n) is the received signal, h is the channel gain, which is invariant during the clas-
sification process, s(n) is the transmitted signal with eight possibilities. N is the sample 
number, w(n) is the generalized Gaussian noise (GGN) with zero mean, which will be 
discussed in the posterior subsection.

2.2  Model of background noise

In addition to Gaussian noise, non-Gaussian noise [37] is considered in this paper. Non-
Gaussian noise is a random process in which the probability density function (PDF) does 
not satisfy the Gaussian distribution. GGN includes Gaussian noise and partially non-
Gaussian noise, the PDF of GGN is

where ̟ = 0 is the mean, υ is the “scale parameter”, β is the “shape parameter”, and Ŵ(·) 
denotes the Gamma function. In particular, equation (2) represents the Gaussian dis-
tribution when β = 2 , which is Gaussian noise. The remaining cases are part of non-
Gaussian noise, such as the Laplacian distribution when β = 1 . In GGN, the expectation 
and variance of noise are given in [38] as

(1)y(n) = hs(n)+ w(n), n = 1, 2, . . . ,N ,

(2)fγ (γ ) =
β

2υŴ(1/β)
exp −

γ −̟

υ

β

,

(3)E[γ (n)] = ̟ = 0,
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where E[·] and D[·] denote the expectation and variance operators. Thus, the SNR ϕ can 
be expressed as

where the signal power P = limN→∞
1
N

∑N
n=1 |s(n)|

2 . Some possible shapes and realiza-
tions of generalized Gaussian distribution with the same variance are shown in Fig. 1. It 
can be noticed that, the Laplacian time series ( β = 1 ) exhibits more spikes or outliers 
than time series with larger β.

In real communication, the environment is variable. Not only Gaussian noise and non-
Gaussian noise, but also the cases of noise mismatch are considered in the following 
experiments. Noise mismatch in this paper refers to the noise inconsistency in training 
and testing, in which the test data is determined by the real wireless environment.

3  Proposed AMC method
In this paper, an AMC method based on KD-tree enhancement and GSENet is proposed. 
Figure 2 is the overall structure, which mainly includes a signal preprocessing module 
and a network identification module.

(4)D[γ (n)] = ϑ2
γ =

υ2Ŵ(3/β)

Ŵ(1/β)
,

(5)ϕ =
P

υ2Ŵ(3/β)
Ŵ(1/β)

=
PŴ(1/β)

υ2Ŵ(3/β)
,
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Fig. 1 Some shapes and realizations of generalized Gaussian distribution with different β
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First, in the signal preprocessing module, according to the difference in distance 
between each signal point, the KD-tree enhancement strategy is used to color different 
modulation types. The generated signals are directly converted into color constellations. 
Secondly, in the network identification module, the enhanced constellation is used to 
train the network for modulation classification. The key is to build the GSENet model, 
which introduces the Squeeze-and-Excitation (SE) block in the sub-module and auxil-
iary classifier. It improves the ability to classify different signals. Further, a batch normal-
ization (BN) layer is added and the activation function is updated to the rectified linear 
unit (ReLU) [39], which effectively enhances the generalization of the network. Finally, 
the trained KD-GSENet is used to identify the enhanced constellations under different 
Eb/N0 . The specific algorithm is as follows.

3.1  Preprocessing: KD‑tree enhancement

The enhanced constellation is drawn by the method of the KD-tree [40] neighborhood 
point search. To improve the classification characteristics of images, the radio signals are 
directly converted into color constellations. As a node of the KD-tree, each signal point 
is divided into a root node or a leaf node.

For a sample set composed of n d-dimensional data, the eigenvalues of any sample can 
be used as the root node. To ensure the fastest search to the nearest point, the construc-
tion of a balanced binary tree is shown in Fig. 3. 

1. Determine the root node Select dimensions according to the sequential traversal 
method, and all nodes are sorted by the division dimension. Initially, the intermedi-
ate node is used as the root node.

2. Determine left and right subtrees Compare the value of one node with a split node 
of the same dimension. When the value of a node is greater than the split node, it 
should be placed in the subtree to the right of the split node. Conversely, if the value 
of a node is less than the split node, it will be placed in the left subtree.

Fig. 2 The schematic diagram of the KD-GSENet
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3. Recursive process According to the tree building in step 2, all nodes are integrated 
into one tree by recursing the left and right subtrees.

According to the constructed KD-tree, the nearest neighbor points are searched. 
First, assuming that the “current nearest neighbor” is its parent node, the minimum 
distance is the distance to the parent node. During the backtracking, if the distance 
between the child node and the target node is smaller than the distance between 
the “current nearest neighbor” and the target node, the “current nearest neighbor” is 
updated to the selected child node. The iteration is terminated until coming back to 
the root of the tree. The minimum distance between the target node and its nearest 
neighbor is calculated. After obtaining the nearest distance of each signal point, it 
is approximated as the density of that position. Finally, all signal points are colored 
according to density.

The enhanced constellation of QPSK is shown in Fig.  4. It can be seen that each 
point in the preprocessed constellation has different information. No longer inde-
pendent or have equal information. This processing method condenses more time-
accumulated features of received signals in the constellation, which enhances its 
separability and achieves feature enhancement. Thus, the received signals have been 
converted into color images with dimensions of 3 ×224×224.

Start

Initialize the middle node
as the root node

Is there only one
node?

Add to the
left subtree

Add to the
right subtree

Sort all nodes by dimension

Is the node greater
than the root node?

Exit

No

Yes

Yes
No

Fig. 3 Build a balanced KD-tree
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3.2  Network optimization

The DL model consists of multiple layers, each containing multiple neurons for auto-
matic feature extraction. The initial layer extracts abstract features. Deep layers obtain 
important features by applying multiple nonlinear transformations on the output of 
the previous layer. GoogLeNet [41] is a DL structure proposed by the Google team, 
which won the ImageNet competition with a significant advantage. The parallel struc-
ture adopted by the model can integrate feature information of different scales, the 
model also uses 1x1 convolution kernels for dimensionality reduction and mapping, 
besides, two auxiliary classifiers are added to help with training. By replacing the tra-
ditional dropout fully connected layer with the average pooling layer, the parameters 
of the model are greatly reduced. Therefore, to improve the classification ability of 
modulated signals, the GoogLeNet is introduced.

To speed up the training of the network, a BN layer is added after each convolu-
tional layer. Convolutional layers extract image features. By normalizing the same fea-
ture of different samples, the BN layer is used to normalize the feature data, which 
accelerates the network training speed and improves the generalization ability. ReLU 
is used as the activation function.

Original signals have been converted into color constellations by the transformation 
of KD-tree enhancement. Considering that the SE block can assign more weights to 
important features [42], it is used for feature classification on the sub-modules and 
auxiliary classifiers of GoogLeNet. Specifically, the SE module performs adaptive 
average pooling on each channel according to the obtained feature matrix. The output 
vector is obtained through two fully connected layers. The number of nodes in the 
first fully connected layer is 1/4 of the characteristic matrix channel. The number of 
nodes in the second fully connected layer is consistent with the input characteristic 
matrix channel. The vector output of the second fully connected layer analyzes the 
weight relation of each channel. Important channels are given larger weights, while 
unimportant channels correspond to smaller weights. Each result is multiplied by the 
corresponding number of channels, assigning more weight to important features.

Fig. 4 Constellation enhancement contrast
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Figure 5 shows the specific sub-module. The first sub-module is elaborated as an illustra-
tion. The feature matrix Y ∈ R

H×W×C output from the previous layer is input into four 
branches Y k , k = {1, 2, 3, 4} for processing

The first branch is a convolutional layer C with a kernel size of 1 × 1. The second branch 
adopts a 1 × 1 convolutional layer with a dimensionality reduction function and a 3 × 3 
convolutional layer. The third branch passes through a 1 × 1 convolutional layer with a 
dimensionality reduction function and a 5 × 5 convolutional layer. The fourth branch 
passes through a 3 × 3 maximum pooling layer P and a 1 × 1 convolutional layer for dimen-
sionality reduction. In each branch, the parameter of the cth filter is yk ,c ∈ R

H×W×K  . 
The output is Y k =

[

yk ,1, yk ,2, . . . , yk ,C
]

 . A statistic sk ,c ∈ R
C×K  is generated by shrinking 

the spatial dimensions H ×W  of Y k , the cth element of sk is calculated by

After obtaining sk , there are two fully connected layers

where W 1 ∈ R
C
r ×C , W 2 ∈ R

C× C
r  , r is the reduction ratio used to reduce the dimen-

sion of the fully connected layer. δ represents the sigmoid activation function, σ refers 

(6)

Y 1 = C(Y),
Y 2 = C(C(Y)),
Y 3 = C(C(Y)),
Y 4 = P(C(Y)),

(7)sk ,c =
1

H ×W

H
∑

i=1

W
∑

j=1

yk ,c(i, j).

(8)ek = σ(g(sk ,W )) = σ(W 2δ(W 1sk)),

Fig. 5 The structure of the improved sub-module
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to the ReLU, which is used as the activation function to introduce nonlinearity into the 
network. In addition, ReLU is beneficial to avoid gradient vanishing and explosion. It 
increases the sparsity of the network and alleviates the over-fitting problem. The expres-
sion of ReLU is

where z is the neuron. Note that the convolutional layer is used to replace the pooling 
layer when implemented. Since the down-sampling during pooling may confuse the 
information in the enhanced constellation. In addition, successive convolutional layers 
can improve the nonlinearity of the network and limit the scale, which helps to enhance 
learning and prevent overfitting.

The final output of the block is obtained by rescaling Y k with the activation ek

where Ỹk =
[

ỹk ,1, ỹk ,2, . . . , ỹk ,C
]

 , ek ,cyk ,c refers to channel-wise multiplication between 
the scalar ek ,c and the feature map yk ,c ∈ R

H×W×K .
The enhanced feature matrices of different scales are obtained through four 

branches Y k , k = {1, 2, 3, 4} . Each feature matrix has the same height and width. After 
processing, the obtained four feature matrices are spliced by depth. Thus, the output 
feature matrix is

These four branches increase the width of the network, enabling GSENet to learn multi-
scale information. Using the concat operation [29], the features of different convolutional 
layers are merged, which increases the non-linear capacity of the trainable network.

The structure of the improved auxiliary classifier is shown in Fig. 6. First, the aver-
age pooling layer has a 5 × 5 pooling kernel and a 3 stride. 128 convolutional layers 
with 1 × 1 convolution kernels are used to reduce the dimension. The weights of dif-
ferent channels are obtained through the SE block and multiplied by the correspond-
ing channels. The specific calculation process is the same as the sub-module. The 
obtained feature matrix is flattened. To reduce over-fitting, the dropout function at 
50% is used to randomly inactivate neurons during forward propagation. The number 
of nodes in the output layer is the same as the modulation types. Finally, the output is 
converted to the probability that the input signal belongs to each candidate modula-
tion format through the Softmax [43], which can be expressed as

where yi is the output value of the ith neuron, M is the number of output neurons equal 
to the number of modulation types. The output value of the multi-classification can be 
converted into a probability distribution in the range [0, 1] and 1 by Softmax, pi is the 
probability of the corresponding neuron.

(9)f (z) = max (0, z),

(10)ỹk ,c = ek ,cyk ,c,

(11)Y ′ = concat

(

Ỹ1, Ỹ2, Ỹ3, Ỹ4

)

,

(12)pi = Softmax
(

yi
)

=
eyi

∑M
c=1 e

yc
,
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In training, 8 modulated signals need to be identified. After calculating the probabil-
ity of each type through Softmax, the loss function is used to find the optimal weight 
parameter, the formula is

the probability models with smaller cross entropy are closer.
Using adaptive moment estimation (Adam) [44] as the optimizer, different adap-

tive learning rates are assigned to different weight parameters. By updating the model 
parameters, the loss function is minimized. The Adam algorithm combines momen-
tum and adaptation to avoid the cold start problem. Unlike stochastic gradient descent, 
Adam uses the gradient second moment to accelerate the convergence speed. On this 
basis, the back-propagation algorithm is introduced to update the weights until the loss 
converges to a stable value.

The KD-GSENet algorithm is summarized in Algorithm 1.

4  Numerical results and discussion
In this section, numerical results are performed to verify the superiority and robustness 
of the proposed method. In the experiment, the KD-GSENet classification method is 
verified by the simulation dataset containing 8 modulated signals. The proposed method 
is further compared with other classification methods. At the same time, the influence of 
KD-tree enhancement, the different noise, and the impact of Eb/N0 changes in the clas-
sification performance are also analyzed through experiments. Finally, the implementa-
tion complexity and processing speed of these methods are compared.

The experiment is measured by the ratio of bit energy to noise power spectral den-
sity ( Eb/N0 ), which is classically defined as the ratio of energy per bit ( Eb ) to the 

(13)Lossi = − log pi = − log
eyi

∑M
c=1 e

yc
= −

(

yi − log

M
∑

c=1

eyc

)

,
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spectral noise density ( N0 ) [45–47]. Eb/N0 is a measure of the normalized perfor-
mance for the entire communication system.

4.1  Parameters setting

The experiment selects 8 commonly used modulated signals: BPSK, 4ASK, QPSK, 
OQPSK, 8PSK, 16QAM, 32QAM, and 64QAM. There are 4800 training samples (600 
for each modulation method), 1600 verification samples (200 for each modulation 
method), and 1600 test samples for each Eb/N0 (200 for each modulation method). 
Without loss of generality, the symbol rate is set to 1MHz and the sampling rate is 
8 MHz. The default background environment is GGN. For comprehensive coverage, 
the training signals are randomly distributed with Eb/N0 = [ − 7,5] dB. To evaluate the 
classification performance of the algorithm with Eb/N0 changes, the test signals are 
− 7 dB, − 6 dB, − 5 dB, − 4 dB, − 3 dB, − 2 dB, − 1 dB, 0 dB, 1 dB, and 2 dB.

The neural network model is built under PyTorch. The graphics card of 
the experimental computer is NVIDIAGeForceMX350, the processor is 
Intel(R)Core(TM)i7− 1065G7CPU@1.30GHz1.50GHz . The basic network of KD-
GSENet is built on GoogLeNet. The structures of the improved sub-module and 
auxiliary classifier are shown in Figs.  5 and 6. The specific parameters are shown 
in Tables  1 and 2. In the table, the second column represents the output size, the 
last digit is the number of channels. In the third column, w × h× c represents the 

Table 1 The parameters of auxiliary classifier

Layer name Output size Layer parameters

Branch 1

Convolutional Layer 28 × 28 × 64 1 × 1 × 64 Convolution+ReLU6

Pooling Layer 1 × 1 × 64 1 × 1 Adaptive batch normalization

Convolutional Layer 1 × 1 × 16 1 × 1 × 16 Convolution+ReLU

Convolutional Layer 1 × 1 ×  × 64 1 × 1 × 64 Convolution+Hard Sigmoid

Branch 2

Convolutional Layer 28 × 28 × 96 1 × 1 × 96 Convolution+ReLU6

Convolutional Layer 28 × 28 × 128 3 × 3 × 128 Convolution+ReLU6

Pooling Layer 1 × 1 × 128 1 × 1 Adaptive batch normalization

Convolutional Layer 1 × 1 × 32 1 × 1 × 32 Convolution+ReLU

Convolutional Layer 1 × 1 × 128 1 × 1 × 128 Convolution+Hard Sigmoid

Branch 3

Convolutional Layer 28 × 28 × 16 1 × 1 × 16 Convolution+ReLU6

Convolutional Layer 28 × 28 × 32 5 × 5 × 32 Convolution+ReLU6

Pooling Layer 1 × 1 × 32 1 × 1 Adaptive batch normalization

Convolutional Layer 1 × 1 × 8 1 × 1 × 8 Convolution+ReLU

Convolutional Layer 1 × 1 × 32 1 × 1 × 32 Convolution+Hard Sigmoid

Branch 4

Pooling Layer 28 × 28 × 192 3 × 3 Max pooling

Convolutional Layer 28 × 28 × 32 1 × 1 × 32 Convolution+ReLU6

Pooling Layer 1 × 1 × 32 1 × 1 Adaptive batch normalization

Convolutional Layer 1 × 1 × 8 1 × 1 × 8 Convolution+ReLU

Convolutional Layer 1 × 1 × 32 1 × 1 × 32 Convolution+Hard Sigmoid
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convolution parameter. The number of output channels is c, w × h is the size of the 
convolution kernel. During training, an optimization algorithm with a learning rate 
µ = 0.0003 is adopted.

4.2  Numerical results and discussion

Figure 7 shows the classification performance of four methods under different Eb/N0 . 
The classification accuracy is obtained by averaging the classification performance of 
8 modulation types. The proposed method is also compared with the modulation clas-
sification method based on AlexNet [48], MobileNetV3 [49], and GoogLeNet [18]. 
As shown in Fig.  7, the modulation classification performance improves with Eb/N0 
increasing for all algorithms. Obviously, the proposed KD-GSENet is superior to other 
models, achieving higher accuracy at the same Eb/N0.

To further evaluate the effect of KD-tree enhancement on various modulated signals, 
the confusion matrices are drawn. The first two subgraphs of Fig. 8 show the confusion 
matrices of the GSENet model and the proposed KD-GSENet model with Eb/N0 = −1 
dB. The classification accuracy of the two models is 88.5% and 89.2% , respectively. It 
can be seen that using the KD-GSENet model achieves the 100% classification of 4ASK, 
BPSK, QPSK, 8PSK, and OQPSK. The method of KD-tree enhancement improves the 
classification accuracy of both 8 signals and the intra-class. The confusion matrices with 
Eb/N0 = −4 dB present similar results in the last two subgraphs of Fig. 8.

Figure  9 shows the average classification accuracy under non-Gaussian noise. Two 
cases are considered, respectively, for training β = 1 corresponding to test β = 1 and 
training β = 5 corresponding to test β = 5 . In different noise environments, the classifi-
cation accuracy is improved by using KD-GSENet. The classification accuracy generally 
improves with the increase of Eb/N0.

Table 2 The parameters of sub-module

Layer name Output size Layer parameters

Pooling layer 4 × 4 × 512 5 × 5 Average pooling

Convolutional layer 4 × 4 × 128 1 × 1 × 128 Convolution + batch nor-
malization + ReLU6

Pooling layer 1 × 1 × 128 1 × 1 Adaptive batch normalization

Convolutional layer 1 × 1 × 32 1 × 1 × 32 Convolution + ReLU

Convolutional layer 1 × 1 × 128 1 × 1 × 128 Convolution + Hard Sigmoid

Flatten layer 128 feature flattening

Fully connected layer 8 8 Fully connected + Softmax

Fig. 6 The structure of the improved auxiliary classifier
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Fig. 7 The classification performance of four methods under different Eb/N0

Fig. 8 Confusion matrices of GSENet model and KD-GSENet model. a GSENet with Eb/N0 = −1 dB. b 
KD-GSENet with Eb/N0 = −1 dB. c GSENet with Eb/N0 = −4 dB. d KD-GSENet with Eb/N0 = −4 dB
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In practice, the case of noise mismatch is easy to occur. Therefore, some experi-
ments were done for this common situation. Figures 10, 11, and 12 show the classi-
fication accuracies when the training and test sets do not match. Three methods are 
considered: GoogLeNet constellation (GC), AlexNet constellation (AC), and KD-GSE
Net.
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Fig. 9 The average classification accuracy under non-Gaussian noise
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Fig. 10 The classification accuracy when the training set and test set do not match (Test β = 1)
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Remark 1 Obviously, in the case of noise mismatch, the proposed KD-GSENet 
shows little performance loss while the classification accuracies of other methods drop 
severely. Not only do the experimental results demonstrate the better performance of 
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Fig. 11 The classification accuracy when the training set and test set do not match (Test β = 2)
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Fig. 12 The classification accuracy when the training set and test set do not match (Test β = 5)
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the proposed method under Gaussian noise and non-Gaussian noise, but also reveal its 
robustness under noise mismatch.

Figure  13 shows the classification accuracy curve under noise mismatch. The figure 
shows the case of Gaussian noise in training and non-Gaussian noise in test. It can be 
seen that the classification accuracies of the three methods are similar when both train-
ing and test are Gaussian noise (Train β = 2 , Test β), and the proposed method is slightly 
higher than the others. When the noise is mismatched, the classification accuracy of the 
proposed method decreases slightly, while the other two methods decrease significantly. 
This result shows the robustness of the proposed method under noise mismatch, which 
is consistent with the conclusion of the previous experiment.

Figure 14 shows the box plots under noise mismatch, which can more intuitively com-
pare changes in results. Box plots more visually represent the variability of results. In 
the figure, the pink, blue, and yellow boxes represent the three modulation classifica-
tion methods of AC, the proposed method, and GC, respectively. Intuitively, the method 
proposed in this paper (blue box) has the best classification accuracy in different noise 
mismatch scenarios, which shows that the proposed method has superior robustness in 
noise mismatch.

4.3  Algorithm complexity analysis

As shown in Table  3, the total parameter size and parameter storage size of the pro-
posed method are smaller than AC, since the average pooling layer is adopted and the 
fully connected layer in AC is abandoned. The proposed takes up more memory than 
GC because it introduces SE blocks, which increase the number of parameters. Mobile-
NetV3 constellation (MC) has the lightest network due to the depth-wise separable con-
volution and inverted residual structure.

-5 -4 -3 -2 -1 0 1 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 13 The classification accuracy under noise mismatch (Gaussian in training and non-Gaussian in test)
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In Fig. 15, the proposed classification model is slightly inferior to other models in 
training and test speed, because the proposed has the maximum depth and more 
parameters. Since the difference is small, it can be considered comparable to other 
models.

Fig. 14 The box plot under noise mismatch

Fig. 15 Comparison with other methods in classification speed

Table 3 Model size comparison

Algorithm type Total parameters Parameter size (MB) Total size (MB)

Proposed 10947632 41.76 109.52

GC 10327880 39.32 100.23

AC 14597832 55.68 61.82

MC 4212280 16.06 117.42
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5  Conclusions and future work
In this paper, an AMC method based on KD-GSENet is proposed to improve the per-
formance of AMC, especially in the case of noise mismatch. Using the KD-tree to obtain 
more effective classification features, signals are preprocessed into color images. To cap-
ture different hidden information from the enhanced constellations of different signals, 
attention blocks are introduced to learn more distinguishing features. Numerical results 
show that the proposed method is more robust than traditional methods even in the 
case of noise mismatch.

Shortening classification time and reducing model size are worthy of further study. 
Future work will focus on more lightweight classification models.
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