
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Patronik and Piestrak ﻿
EURASIP Journal on Advances in Signal Processing (2023) 2023:92
https://doi.org/10.1186/s13634-023-01037-8

EURASIP Journal on Advances
in Signal Processing

Design of reverse converters for the general
RNS 3‑moduli set {2k, 2n − 1, 2n + 1}
Piotr Patronik1*    and Stanisław J. Piestrak2 

Abstract 

This paper presents a new design method of the reverse (residue-to-binary) con-
verter for the flexible 3-moduli residue number system (RNS) set {2k , 2n − 1, 2n + 1} ,
where k and n are a pair of arbitrary integers ≥ 2 . The basic equation of the reverse
converter is formulated in two alternative forms, each of which consists of two sepa-
rate parts: one depending on input variables of the converter, and the other being
a single constant. The constant can be either added inside the reverse converter
or shifted out to the residue datapath channels, in most cases at no hardware cost
or extra delay. From the set of basic functions, which are essentially different than those
of the only two known general converters proposed for this moduli set, four ver-
sions of a converter can be designed for any pair of k and n. Experimental results
obtained using the commercial 65-nm low-power design kit and industrial synthesis
tools for all dynamic ranges from 8 to 40 bits suggest that, compared to the state-
of-the-art designs, at least one version of the newly proposed converters is superior
w.r.t. delay, power consumption, and area, for all dynamic ranges considered. The
savings for the best versions (these with constants moved to the datapath channels)
are up to 12.7% for the area and from 2.5% to 14% (5.8 % on average) for the delay,
while the power consumption is reduced up to 23.2% (5.6% on average).

Keywords:  Application-specific integrated circuit (ASIC), Residue arithmetic, Residue
number system (RNS), Residue-to-binary converter, Reverse converter

1  Introduction
Several computational problems require high-throughput computations that aggregate
multiplications and additions in long uninterrupted series. These include various digital
signal processing (DSP) algorithms that rely on sum-of-products computations, such as:
digital convolution [15], filtering [31], image processing [34], discrete Fourier transform
[33], number theoretic transforms [11], and discrete wavelet transform [1, 16, 30]. One
of the most important approaches to throughput improvement relies on selecting data
representation which is the most appropriate for a given computational problem. This
is because it could allow not only for reduction of the number of executed operations,
the length of operands, the activity of data, and the number and/or the length of the
global connections, but also area, delay, latency, and power dissipation. A valuable alter-
native to the commonly used 2’s complement integer arithmetic is the non-positional

*Correspondence:
piotr.patronik@pwr.wroc.pl

1 Department of Computer
Engineering, Faculty
of Electronics (W‑4/K‑9), Wrocław
University of Technology,
50–370 Wrocław, Poland
2 Institut Jean Lamour (UMR 7198
CNRS), Université de Lorraine,
Campus ARTEM, 54011 Nancy,
France

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-023-01037-8&domain=pdf
http://orcid.org/0000-0002-8647-1705

Page 2 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

residue number system (RNS) defined by a set of pairwise prime positive integers, called
moduli, whose product determines its dynamic range. Its potential efficiency advantages
over the 2’s complement representation stem from the decomposition of operands of
arithmetic operations into small and independent residues, which are processed inde-
pendently in relatively narrow, parallel, and modular residue datapath channels. In com-
parison with the positional 2’s complement integer arithmetic, RNS computations enjoy
the reduced carry propagation within each of independent residue datapaths, which also
handle smaller partial product matrices. RNS adders, multipliers, and multiplier–accu-
mulators (MACs) can simultaneously operate faster, utilize less area, and dissipate less
power than their 2’s complement integer counterparts. However, to communicate with
predominantly used 2’s complement hardware, RNS datapaths must be accompanied by
the binary-to-residue (forward) and the residue-to-binary (reverse) converters, of which
the latter is significantly more complex to design. Unfortunately, these converters are
pure overhead, which partially consumes potential benefits of RNS. Therefore, it is cru-
cial to minimize their adverse impact on the overall efficiency of an RNS-based comput-
ing unit. As for performance of the RNS datapath, it depends heavily on the choice of
the moduli set defining the RNS. Particularly efficient implementations of all arithmetic
circuitry enjoy three classes of moduli (thus called low cost): even moduli of the form
m = 2n (of which only one can be used) and odd moduli of the form m = 2n ± 1 . To take
the maximal advantage of RNS, including performance of the RNS datapath as a whole,
it is also desirable that residue datapath channels are balanced, i.e., such that the area
and the delay of all residue channels are as close as possible.

There have been proposed many RNS moduli special sets, composed only of low-cost
moduli, accompanied by specifically developed design methods of reverse converters.
The most studied has been the classic 3-moduli set 2n, 2n − 1, 2n + 1 [8, 9, 24, 26, 32,
36, 37], offering the (3n− 1)-bit dynamic range with 3-bit resolution as all three moduli
depend solely on n. (Note: here we assume that the dynamic range of a bits guarantees
that all 2a integers can be represented in this RNS.) However, such a moduli set with
similar channel widths led to the imbalance problem, where for a given n, the channel
mod 2n is significantly less complex and faster than remaining two odd channels mod
2n ± 1 . That in turn means that the width of the even channel can be larger than the
widths of the odd channels without any negative impact on the delay of the complete
RNS datapath, and with relatively little impact on its area and power.

The channel imbalance problem has been addressed in [4, 6, 12], where the authors con-
sidered a new generalized flexible 3-moduli set {2k , 2n − 1, 2n + 1} , in which the size k of
the even modulus 2k is independent on the size n of two odd moduli 2n ± 1 . For a given
dynamic range, the latter moduli set enjoys two main advantages: (i) by properly select-
ing k > n , the performance of the even channel mod 2k could be made similar to that of
the odd channels (which, for a given dynamic range, become less complex and faster than
for the classic 3-moduli set), and (ii) the exact 1-bit dynamic range resolution is ensured.
The first known partially general design method of the reverse converter for the 3-mod-
uli set {2k , 2n − 1, 2n + 1} with k limited to n < k ≤ 2n was proposed in [4]. The design
from [4] followed the approach from the previous converters for the non-flexible moduli

Page 3 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

set, specifically [26] with two CSA levels adding the bit-level manipulations needed for the
extension of the even modulus. Then, the bit-level manipulations were optimized in [12],
where the two CSA stages have been reduced to one with bit-level manipulations partially
incorporated into the remaining CSA structure.

Some other special RNSs defined using low-cost and balanced moduli sets with flex-
ible even modulus 2k , accompanied by the design methods of reverse converters were also
proposed:

	(i)	 for the 4-moduli sets:

•	 in [2], for {2k , 2n − 1, 2n + 1, 2n+1 − 1} (n even and arbitrary k such that n ≤ k ≤ 2n

);
•	 in [38], for {2n−1 − 1, 2n+1 − 1, 2k , 2n − 1} (n even and k > 2)
•	 in [20], for two classes of 4-moduli sets {2n − 1, 2k , 2n + 1, 2n+1 − 1} and

{2n − 1, 2k , 2n + 1, 2n−1 − 1} (n even and arbitrary k),

	(ii)	 in [22], for the 5-moduli set {2k , 2n − 1, 2n + 1, 2n+1 − 1, 2n−1 − 1} (n even and
arbitrary k).

To note that the 3-moduli converter for the 3-moduli set {2k , 2n − 1, 2n + 1} is an integral
part of the converters from [20] and [22].

1.1 � Contribution of this paper

This article proposes a novel general design method of a reverse converter for the flexible
3-moduli set {2k , 2n − 1, 2n + 1} with unrestricted k, which leads to circuits enjoying better
performance than the existing counterparts. The converter equations will be derived using
the New Chinese remainder theorem I, which allowed us to formulate converter equation
in a form consisting of two separate parts: one depending on input variables of the con-
verter and the other being a single constant. Then, the constant can be either added inside
the reverse converter or shifted out to the residue datapath channels. Experimental results
suggest that, compared to the state-of-the-art designs, at least one of four proposed ver-
sions of the newly proposed converters is superior w.r.t. delay, power consumption, and
area, for all dynamic ranges considered.

The remainder of this paper is organized as follows. In Sect. 2, the basic properties of
the RNS and the necessary mathematical background are revisited as well as various appli-
cation and hardware implementation aspects for the RNS moduli set considered here are
discussed. In Sect. 3, the converter’s equations with a formal proof of the correctness of the
design are given. They are accompanied by the exploration of the various possibilities lead-
ing to obtaining the most efficient hardware implementation. In Sect. 4, first, the detailed
evaluation of the delay and area performance as well as the power efficiency is presented.
Then, the synthesized versions of our converters are compared against the existing counter-
parts as well as against the best-known converters for the classic {2n − 1, 2n, 2n + 1} moduli
set. Finally, in Sect. 5, some conclusions are drawn and some directions for future research
are proposed.

Page 4 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

2 � Preliminaries
2.1 � Basic properties of RNS

The RNS is defined by the moduli set {m1, . . . ,ml} of l positive pairwise prime inte-
gers. According to the CRT, its dynamic range, i.e., the number of integers X that can
be uniquely represented, is M =

∏l
i=1mi ; thus, for instance, any nonnegative integer

0 ≤ X ≤ M − 1 has a unique representation. In particular, all 2a integers can be repre-
sented in this RNS, where a = ⌊log2M⌋ . For the 3-moduli set {2k , 2n − 1, 2n + 1} con-
sidered here, M = 2k(22n − 1) , which suffices to represent all (k + 2n− 1)-bit wide
binary integers. Any integer 0 ≤ X ≤ M − 1 is represented in RNS as an ordered
l-tuple {x1, . . . , xl} , where the residue mod mi xi = |X |mi (also denoted X = mod mi ) is
the remainder of the integer division of X by mi , 1 ≤ i ≤ l . If two integers X and Y are,
respectively, represented by the sets of residues {x1, . . . , xl} and {y1, . . . , yl} , then the
set of residues {z1, . . . , zl} computed as zi =

∣
∣xi ◦ yi

∣
∣
mi

 , 1 ≤ i ≤ l , uniquely represents
Z = |X ◦ Y |M for any operation ◦ ∈ {+,−,×} . If |X · Y |m = 1 , then X is a multiplica-
tive inverse of Y (mod m) and Y is a multiplicative inverse of X (mod m).

2.2 � Properties of arithmetic mod 2n − 1

Arithmetic operations mod 2n − 1 have the following properties which will be
used widely later. Let Z denote an integer mod 2n − 1 and (zn−1 . . . z0) its n-bit
representation.

•	 −Z , the negative value of Z, can be calculated as the 1’s complement (bitwise com-
plement) of the binary representation of Z, i.e., Z̄ = (z̄n−1 . . . z̄0) represents −Z .
Recall, however, that computing −Z as 1’s complement results in a double repre-
sentation of 0, which can appear as both (0 . . . 0)b and (1 . . . 1)b . (In all numerical
examples, the parentheses and the index b will be used to differentiate the binary
representation from its integer (decimal) value.)

•	 If d is a positive integer, then the result of the multiplication 2dZ
2n−1

 can be
obtained by the left cyclic shift of Z by d positions.

•	 If d is a positive integer, then 2d and 2n − 1 are obviously relatively prime. Hence,
because |2−d | and |2d | are the multiplicative inverses of each other mod 2n − 1 , the
result of the multiplication

∣
∣2−dZ

∣
∣
2n−1

 can be obtained by the right cyclic shift of
Z by d positions.

2.3 � The new CRT​

Given a moduli set {m1, . . . ,ml} and the set of residues {x1, . . . , xl} , the value of X can
be calculated using two classic methods like the CRT and the mixed-radix conversion
(MRC) algorithms [1]. However, here we will use the New CRT-I [35], according to
which X is calculated using the additional variable V leading to a simpler equation

(1)X = x1 +m1V ,

Page 5 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

where

and the set of multiplicative inverses {q1, . . . , ql−1} is computed according to

Because here l = 3 , Eqn (2) reduces to

with

It has been observed in [35] that for the moduli set {2n − 1, 2n, 2n + 1} , the complex-
ity of a reverse converter varies with different assignments of moduli to positions m1 ,
m2 , and m3 in (4). In particular, if m1 = 2n , then (4) simplifies to X = x1 + 2nV  , i.e., it
can be computed as a simple concatenation of the binary representations of V and x1 ,
denoted (V ||x1) , at no hardware cost. Moreover, since (2n − 1)(2n + 1) = 22n − 1 , the
value of V can be conveniently computed modulo 22n − 1 [25]. Finally, if m2 = 2n + 1
and m3 = 2n − 1 , the coefficients q1 and q2 are the multiplicative inverses of
2n

(
mod 22n − 1

)
 and 2n(2n + 1) (mod 2n − 1) , respectively. Because the same advan-

tages can also be observed for the flexible moduli set {2k , 2n − 1, 2n + 1} , we have chosen
similar moduli assignment in our design.

2.4 � Advantages and applications of the 3‑moduli set {2k , 2n − 1, 2n + 1}

The reverse converters considered here may have twofold applications. Basically, they
can be used as an integral part of any RNS-based processor using the 3-moduli set
{2k , 2n − 1, 2n + 1} . Nevertheless, not less important is their use as the main building
block in various reverse converters for larger multi-moduli RNSs formed by extending
the basic 3-moduli set with one or two extra moduli. Sample architectures of the latter,
constructed on the premises of the MRC algorithm are those proposed for larger flexible
moduli sets: the 4-moduli sets {2k , 2n − 1, 2n + 1, 2n+1 − 1} (n even and arbitrary k such
that n ≤ k ≤ 2n ) [2] and {2k , 2n − 1, 2n + 1, 2n+1 − 1, 2n±1 − 1} (n even and k > 2 ) [20]
as well as for the 5-moduli set {2k , 2n − 1, 2n + 1, 2n+1 − 1, 2n−1 − 1} (n even) [22].

(2)V =

∣
∣
∣
∣
∣
∣

q1(x2−x1)+

l−1∑

i=2

[
qi
(

i∏

j=2

mj

)
(xi+1−xi)

]

∣
∣
∣
∣
∣
∣∏l

j=2 mj

(3)qi =

∣
∣
∣
∣
∣

1
∏i

j=1mj

∣
∣
∣
∣
∣∏l

u=i+1 mu

, 1 ≤ i ≤ l − 1.

(4)
X = x1 +m1 · |q1(x2 − x1)+ q2m2(x3 − x2)|m2m3

︸ ︷︷ ︸

V

(5)q1 =

∣
∣
∣
∣

1

m1

∣
∣
∣
∣
m2m3

,

(6)q2 =

∣
∣
∣
∣

1

m1m2

∣
∣
∣
∣
m3

.

Page 6 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

Unquestionable advantages of the flexible moduli set provide the following argument.
Recall that MACs are the basic building blocks which dominate hardware usage of RNS-
based processors for numerous applications like those mentioned for DSP. Therefore,
their complexity can serve as a reference for comparison of efficiency of various RNS
moduli sets providing a given dynamic range (see, e.g., the parameters of residue MACs
and RNS datapaths reported in [7, 17, 28, 29]). For instance, the dynamic range of 3n− 1
bits can be ensured by two sets of moduli: the classic non-flexible set {2n, 2n − 1, 2n + 1}
and its flexible counterpart {2k , 2p − 1, 2p + 1 with k = n+ 2 and p = n− 1 considered
here. Now, let us compare the complexity of two respective sets of three residue MACs,
which form one stage of the residue datapath in each of these two cases. It can be easily
found that the overall complexity of the set of three MACs mod 2n , 2n − 1 , and 2n − 1
is larger than for the set of three MACs mod 2n+2 , 2n−1 + 1 , and 2n−1 + 1 . (As for the
forward converters, the pair of residue generators mod 2n−1 − 1 and 2n−1 + 1 actually
requires a few full-adders more than their counterparts.) Clearly, for a given dynamic
range of 3n− 1 bits and any n ≥ 3 , the estimated overall complexity of three MACs,
respectively, mod 2n and 2n ± 1 forming one stage of the residue datapath is larger than,
e.g., of three MACs mod 2n+3 and 2n−1 ± 1 . Should performance of reverse converters
for the flexible 3-moduli set be at least comparable to that of its non-flexible counter-
part {2n, 2n − 1, 2n + 1} , the former would supersede the latter and can be considered
the best choice among all known 3-moduli sets.

Hardware implementations of all basic modular arithmetic circuits for odd low-cost
moduli of the form m = 2n ± 1 have been proposed: residue 2-operand adders [5, 13,
14, 19, 39], residue multipliers [10, 18, 39], MACs [7, 17], residue generators (used to
build forward converters), and multi-operand adders [21, 25, 27]. Recall, however, that
all arithmetic circuits mod 2n are significantly faster and less hardware-consuming than
for any comparable odd moduli (i.e., using the same number of bits n to represent all
valid residue values), because any carry-out signal generated of the most significant bit
(MSB) of weight 2n−1 is simply ignored. Unfortunately, only one even modulus can be
used. Clearly, should the same bit width be used for all three datapath channels mod
2n and 2n ± 1 , it would result in underutilization of the even channel mod 2n . There-
fore, to maximize its performance advantage, the authors of [4] suggested that the even
channel should be at least a few bits wider than odd channels. The advantages of the
moduli sets using one even modulus 2k larger by a few bits than all odd moduli have
been observed for the applications reported, e.g., in [3, 4, 23]. In [3, 4], the 3-moduli
set {22n, 2n − 1, 2n + 1} was considered and the RISC DSP based on the 3-moduli RNS
{216, 28 − 1, 28 + 1} was implemented. Recently, an RNS-based coprocessor using one
larger even modulus 2k and at least two pairwise prime moduli of the type 2ni − 1 was
proposed in [23].

3 � Reverse converter design
Let m1 = 2k , m2 = 2n + 1 , and m3 = 2n − 1 , and x1 , x2 , and x3 be their respective resi-
dues. For this moduli set, we will try to find the function of the reverse converter which
can be expressed as

Page 7 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

so that it can be implemented as a simple concatenation X = (V ||x1) . Hence, the design
problem reduces to finding such an expression for V, which would lead to its most effi-
cient hardware implementation. Additionally, following our encouraging results from
[24], obtained for the simple 3-moduli set {2n, 2n − 1, 2n + 1} , we will attempt to obtain
an expression for V in which the variable and the constant terms are separated. The
design procedure which will be presented below can be summarized as follows.

(1)	 Derive an expression for V which involves three terms vi , each of which depends
only on its respective residue xi , 1 ≤ i ≤ 3.

(2)	 For each of three terms vi , determine the variable part containing only expressions
which are the functions of the respective residues xi , 1 ≤ i ≤ 3 , each accompanied
by a constant.

(3)	 Find the basic equation for V with a single separated constant and three variable
terms vi , 1 ≤ i ≤ 3.

(4)	 Execute bit-level optimization of V for further hardware and delay reduction.
(5)	 Implement the function of the reverse converter (7) using optimized V in hard-

ware. �

3.1 � Expression for V with separated residues

From (5) we have q1 = |1/2k |22n−1 = |2−k |22n−1 . Now, let t be a nonnegative integer
such that t = |k|n , i.e., 0 ≤ t ≤ n− 1 , which implies that for any positive k we have
∣
∣2k

∣
∣
2n−1

= 2t . Then, from (6) we have q2 = |1/[2k(2n + 1)]|2n−1 = 2n−1−t . We will con-
sider two cases: (i) |k|2n = t and (ii) |k|2n = n+ t . In the first case, we rewrite the term V
from (4) as

Since
∣
∣1− 22n−1

∣
∣
22n−1

= 22n−1 , we have

In the second case, we rewrite the term V from (4) as

(7)X = x1 + 2kV ,

V =

∣
∣
∣2

−t(x2 − x1)+ 2
n−1−t · (2n + 1)(x3 − x2)

∣
∣
∣
22n−1

=

∣
∣
∣
∣

x2 − x1 + 2n−1 · (2n + 1)(x3 − x2)

2t

∣
∣
∣
∣
22n−1

=

∣
∣
∣
∣

(1− 22n−1 − 2n−1)x2 + 2n−1(2n + 1)x3 − x1

2t

∣
∣
∣
∣
22n−1

.

(8)V =

∣
∣
∣
∣

2n−1(2n−1)x2+2n−1(2n+1)x3−x1

2t

∣
∣
∣
∣
22n−1

.

Page 8 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

From
∣
∣22n−1(2n + 1)

∣
∣
22n−1

=
∣
∣2n−1(2n + 1)

∣
∣
22n−1

 , we have

As k = 2n
⌊
k/2n

⌋
+ n+ t or k = 2n

⌊
k/2n

⌋
+ t and

∣
∣
⌊
k/2n

⌋∣
∣
22n−1

= 1 , we can merge
both cases from Eqns (8) and (9) and rewrite V using three separate variables v1 , v2 , and
v3 as

The terms v1 , v2 , and v3 can be determined separately and then added mod 22n − 1 to
obtain the value of V.

3.2 � Separation of variable and constant parts

Further simplification of Eqn (10) relies on determining in each of three terms v1 , v2 ,
and v3 : (a) the variable part containing only expressions which are the functions of
three residues x1 , x2 , and x3 ; and (b) the remaining part composed only of constants.
The goal of finding such a representation of Eqn (10) is twofold:

	(i)	 should a single global constant be determined, it would allow to reduce the num-
ber of operands involving constants to be added to only one; and

	(ii)	 as suggested in [24], the addition of the global constant can be shifted to the data-
path channels, thus further reducing the total number of operands to be added by
the carry–save adder (CSA) tree of the converter (moreover that it can be done at
no cost).

V =

∣
∣
∣2

−n−t(x2 − x1)+ 2
n−1−t · (2n + 1)(x3 − x2)

∣
∣
∣
22n−1

=

∣
∣
∣
∣

2−n(x2 − x1)+ 2n−1 · (2n + 1)(x3 − x2)

2t

∣
∣
∣
∣
22n−1

=

∣
∣
∣
∣
∣
∣
∣
∣

(
(2−n − 22n−1 − 2n−1)x2
+2n−1(2n + 1)x3 − 2−n

x1

)

2t

∣
∣
∣
∣
∣
∣
∣
∣
22n−1

=

∣
∣
∣
∣
∣
∣
∣
∣

(
2−n(1− 22n−1 − 2n−1)x2

+2−n · 22n−1(2n + 1)x3 − 2−n
x1

)

2t

∣
∣
∣
∣
∣
∣
∣
∣
22n−1

.

(9)V =

∣
∣
∣
∣

2n−1(2n − 1)x2 + 2n−1(2n + 1)x3 − x1

2n+t

∣
∣
∣
∣
22n−1

.

(10)

V =

∣
∣
∣2

−k
(

2
n−1(2n + 1)x3 + 2

n−1(2n − 1)x2 − x1

)∣
∣
∣
22n−1

=

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣2

−k · 2n−1(2n+1)x3

∣
∣
∣
22n−1

︸ ︷︷ ︸
v3

+

∣
∣
∣2

−k · 2n−1(2n−1)x2)
∣
∣
∣
22n−1

︸ ︷︷ ︸
v2

+

∣
∣
∣−2

−kx1

∣
∣
∣
22n−1

︸ ︷︷ ︸
v1

∣
∣
∣
∣
∣
∣
∣
∣
22n−1

.

Page 9 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

Here, we will show how to extract all constants from three terms v1 , v2 , and v3 to be added in
(10), so that their sum can appear as the global constants C1 or C2 . First, we will simplify the
expressions for v1 , v2 , and v3 by taking into account that: (i) the multiplication mod 22n − 1
by 2n−1 is the (n− 1)-bit left-hand cyclic rotation of the 2n-bit vector; (ii) the multiplication
mod 22n − 1 by |2−k |22n−1 is nothing else but the cyclic right-hand rotation of the 2n-bit
vector; and (iii) the addition mod 22n − 1 of the term x1 with negative sign (which is the
subtraction of x1 mod 22n − 1 ) relies on complementing x1 and then padding it with lead-
ing ones, so that the width of the resulting vector is a multiple of s = ⌈k/2n⌉ and 2n (i.e., the
total length of the term becomes 2sn bits).

For v1 from (10), we obtain

where

and

with the indices a and b denoting the variable and the constant terms, respectively.
The term (2n − 1)x2 from v2 in (10)

can be split into two separate components |2nx2|22n−1 and | − x2|22n−1 , which can be pre-
sented conveniently for three special cases depending on the value of x2:

and

(11)

v1 =

�
�
�
�
�
�

2
−k



(1 . . . 1
� �� �

2sn−k

)�x̄1





�
�
�
�
�
�
22n−1

=

�
�
�
�
�
�
�

v1a
� �� �

2
−k(0 . . . 0

� �� �

2sn−k

�x̄1)+

v1b
� �� �

2
−k(1 . . . 1

� �� �

2sn−k

� 0 . . . 0
� �� �

k

)

�
�
�
�
�
�
�
22n−1

,

(12)v1a =

∣
∣
∣
∣
∣
∣

2−k(0 . . . 0
︸ ︷︷ ︸

2sn−k

�x̄1)

∣
∣
∣
∣
∣
∣
22n−1

(13)
v1b =

∣
∣
∣
∣
∣
∣

2−k(1 . . . 1
︸ ︷︷ ︸

2sn−k

� 0 . . . 0
︸ ︷︷ ︸

k

)

∣
∣
∣
∣
∣
∣
22n−1

=

∣
∣
∣2−k(2sn − 2k)

∣
∣
∣
22n−1

=

∣
∣
∣2−k − 1

∣
∣
∣
22n−1

,

(14)v2 =
∣
∣
∣2−k · 2n−1(2n − 1)x2)

∣
∣
∣
22n−1

|2nx2|22n−1 =







0 if x2 = 0,

(x2,(n−1) . . . x2,0)�(0 . . . 0� �� �
n

) if 0 < x2 < 2n,

1 if x2 = 2n

Page 10 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

Now, the two above terms can be added separately for the constant and variable terms
for respective cases. The constant term is (1 . . . 1

︸ ︷︷ ︸
n

0 . . . 0
︸ ︷︷ ︸

n

) . Because the constant ones have

been removed, the variable component is formed from the concatenation of the vectors
with the bits of x2 . To properly handle the case of x2 = 2n , n bits of the variable vector
have to be cleared, i.e., they have to be set to 0 for x2,n = 1 . It is achieved by ANDing the
respective bits (from x̄2,n with x̄2,(n−1) up to x̄2,n with x̄2,0 ) to yield

Finally, (14) can be rewritten as v2 = |v2a + v2b|22n−1 , where

and

In (10), the extraction of the terms 2−k and 2−1 for v3 yields

First, because x3 is the n-bit vector and |x3(2n + 1)|22n−1 is nothing else but the simple
concatenation of two n-bit vectors x3 , we first obtain |x3(2n + 1)|22n−1 = |(x3�x3)|22n−1 .
Then, due to |(x3�x3)|22n−1 = |2n(x3�x3)|22n−1 , we obtain the final form (containing only
the variable term)

Putting new variables v1a , v1b , v2a , v2b , and v3 (expressed by the respective Eqns (12), (13),
and (16)– (18)) into Eqn (10) yields the final desired form with separate constant and
variable terms

| − x2|22n−1 =







0 if x2 = 0,

(1 . . . 1
� �� �

n

)�(x̄2,(n−1) . . . x̄2,0) if 0 < x2 < 2n,

1 . . . 1
� �� �

n−1

0 1 . . . 1
� �� �

n

if x2 = 2n.

(15)
|2nx2 − x2|22n−1 =

∣
∣
∣

(
(x2,(n−1) . . . x2,0)�

(x̄2,nx̄2,(n−1) . . . x̄2,nx̄2,0)
)
+ (1 . . . 1

︸ ︷︷ ︸
n

0 . . . 0
︸ ︷︷ ︸

n

)

∣
∣
∣
22n−1

.

(16)
v2a =

∣
∣
∣2n−12−k ·

(
(x2,(n−1) . . . x2,0)�

(x̄2,nx̄2,(n−1) . . . x̄2,nx̄2,0)
)
∣
∣
∣
22n−1

(17)
v2b =

∣
∣
∣
∣
∣
2n−12−k(1 . . . 1

︸ ︷︷ ︸
n

0 . . . 0
︸ ︷︷ ︸

n

)

∣
∣
∣
∣
∣
22n−1

=

∣
∣
∣2n−12−k(1− 2n)

∣
∣
∣
22n−1

.

v3 =
∣
∣
∣2−k−1(x3 + 2nx3)

∣
∣
∣
22n−1

=

∣
∣
∣2−k2−1x3

(
2n + 1)

)
∣
∣
∣
22n−1

.

(18)v3 =
∣
∣
∣2n−12−k(x3�x3)

∣
∣
∣
22n−1

.

Page 11 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

where

is the total constant involved in the addition yielding V as a primary part of the final
result of conversion.

3.3 � Basic hardware implementation

The hardware implementation of the converter using (19), which will be called Version 1,
requires a CSA mod 22n − 1 with s ≥ 1 operands for v1a and 3 operands for v2a , v3 , and C1 ,
i.e., the total of at least 4 operands in two CSA layers (in the special case of k ≤ 2n ), fol-
lowed by the final adder modulo 22n − 1.

To obtain the final addition without C1 (which can be shifted to the datapath channels),
first in (7) for the final value X, V is substituted by its form given by (19) and m1 with its
actual value 2k , which yields

It is seen from (21) that the final addition given by (19) corresponds to the addition mod-
ulo the dynamic range of the RNS, as 2k(22n − 1) is the product of all moduli. As it was
shown in [22], the above addition of a number modulo the dynamic range of the RNS is
equivalent to the addition of the respective residues. Therefore, the addition of the con-
stant 2kC1 in (21) is also equivalent to the addition of its residue representation to the
input variables of the converter, thus yielding a new set of input residues of the reverse
converter.

Note: Henceforth, the superscript c will be used to distinguish the input residues coming
from the residue datapath channels with the constant C1 added beforehand (e.g., x2 is writ-
ten as xc2).

Because |2kC1|2k = 0 , no constant is added by the even channel x1 . Therefore, we do not
introduce residue xc1 as the residue x1 can be passed directly to the converter. Next, we get

Consequently, we introduce two new variables vc2a and vc3 , composed similarly as defined
by their respective expressions (16) and (18) for v2a and v3 , but using only the bits from
xc2 and xc3:

(19)
V = |v1a + v1b + v2a + v2b + v3|22n−1

= |v1a + v2a + v3 + C1|22n−1,

(20)C1 = v1b + v2b

(21)
X = x1 + 2

k |v1a + v2a + v3 + C1|22n−1

=

∣
∣
∣x1+2

k(v1a+v2a+v3)+2
kC1

∣
∣
∣
2k (22n−1)

.

(22)xc2 = |x2 + 2
kC1|2n+1

(23)xc3 = |x3 + 2
kC1|2n−1.

(24)
vc2a =

∣
∣
∣2n−12−k ·

(
(xc2,(n−1) . . . x

c
2,0)�

(x̄c2,nx̄
c
2,(n−1) . . . x̄

c
2,nx̄

c
2,0)

)
∣
∣
∣
22n−1

,

Page 12 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

Rewriting (19) using the constant-free notation yields

The hardware implementation of the converter using (26), which will be called Version 2,
requires a CSA with the maximum of s + 2 operands. Note that at least 3 operands ( v1a ,
vc2a , and vc3 ) occur for the special case of k ≤ 2n , handled by one CSA layer, compared to
at least two CSA layers in Version 1.

3.4 � Further bit‑level Optimization

The hardware implementation of v2a and vc2a (given by (16) and (24)) requires n 2-input
AND gates, each of which is driven by x̄2,n or x̄c2,n—the MSB of x2 (the residue modulo
2n + 1 ), thus putting high load on its output and requiring the synthesizer either to build
a buffer tree or to use gates with higher fanout (which lowers power/delay efficiency).
These AND gates also consume power and area, while their only role is to provide the cor-
rect value for the only special case of x̄2,n = 0 or x̄c2,n = 0 (i.e.,for x2 = 2n ). To eliminate
them, we have considered alternative compositions of operands and bit-level manipula-
tion schemes. Figure 1 shows bit-level details of the variables v1 and v2 as well as their new
equivalents w1a and w2a with varying organization for various values of n and k. Recall also
that here we deal only with |k|2n least significant bits (LSBs) of x1 , because for k > 2n , all
the remaining MSBs of x1 (i.e.,(x1,k . . . x1,|k|2n)), occupy s − 1 2n-bit slices, each of which is
added as a separate CSA operand.

Notes: (i) The terms v3 and w3 are not shown, because they are always composed in the
same manner. (ii) In Fig. 1, we have omitted multiplications by factors 2−k and 2n−1 , as
they are simple bit rotations applied uniformly to all operands.

Because bit-level manipulations in the optimized operands w2a and w1a depend
on n and k, we analyze four separate cases depending on the value of |k|2n : (i)
0 < |k|2n < n− 1 (Fig. 1a); (ii) n− 1 ≤ |k|2n < 2n− 1 (Fig. 1b); (iii) |k|2n = 2n− 1
(Fig. 1c); and (iv) |k|2n = 0 (Fig. 1d). For readers’ convenience, in Figs. 1a and 1b we show
both the initial and the final versions of vectors v2 , v1 and w2a , w1a , w2b , v1b (the upper
and lower part of each figure, respectively); then, only the final versions of the vectors
w1a and v1b are given in Fig. 1c and d. The upper part of Fig. 1a shows the initial bit
assignment of v1 and v2 for 0 < |k|2n < n− 1 . By introducing the 2n-bit all-0’s vector and
reorganizing all constant bits, we have obtained the final versions of w2a and w1a and the
constant vector C2 , shown in the bottom part of Fig. 1a.

(25)vc3 =
∣
∣
∣2n−12−k

(
xc3�x

c
3

)
∣
∣
∣
22n−1

.

(26)V =
∣
∣v1a + vc2a + vc3

∣
∣
22n−1

.

(27)

w1a =

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2
n−1

2
−k







(0 . . . 0
� �� �

n−1−k

)� x̄1,(k−1) . . . x̄1,0
� �� �

k

�x̄2,n� 0 . . . 0� �� �

n−1

�x2,n if 0 < |k|2n ≤ n− 1

(x̄1,(n−2) . . . x̄1,0
� �� �

n−1

)�x̄2,n� (0 . . . 0)
� �� �

n−|k|n−2

�x2,n�(x̄1,(k−1) . . . x̄1,(n−1)
� �� �

k−n+1

) if n− 1 < |k|2n ≤ 2n− 2

(x̄1,(n−2) . . . x̄1,0
� �� �

n−1

)�0�(x̄1,(k−1) . . . x̄1,(n−1)
� �� �

k−n+1

) if |k|2n = 2n− 1

(x̄1,(n−2) . . . x̄1,0
� �� �

n−1

)�(x̄1,(k−1) . . . x̄1,(n−1)
� �� �

k−n+1

) if |k|2n = 0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

22n−1

Page 13 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

(28)

w2a =

�
�
�
�
�
�
�
�
�

2
n−1

2
−k







(x2,(n−1) . . . x2,0)�(x̄2,(n−1) . . . x̄2,0) if 0 < |k|2n ≤ n− 1

(x2,(n−1) . . . x2,0)�(x̄2,(n−1) . . . x̄2,t)�
�
x̄2,nx̄2,(t−1) . . . x̄2,nx̄2,0

�

� �� �

t=|k|2n−n+1

if n− 1 < |k|2n ≤ 2n− 2

(x2,(n−1) . . . x2,0)�(x̄2,nx̄2,(n−1) . . . x̄2,nx̄2,0) if |k|2n ∈ {0, 2n− 1}

�
�
�
�
�
�
�
�
�
22n−1

w
d
2a =

�
�
�
�
�
�
�
�
�
�

2
n−1

2
−k







(xd
2,(n−1) . . . x

d
2,0)�(x̄

d

2,(n−1) . . . x̄
d
2,0) if 0 < |k|2n ≤ n− 1

(xd
2,(n−1) . . . x

d
2,0)�(x̄

d

2,(n−1) . . . x̄
d
2,t)�

�

x̄
d
2,nx̄

d

2,(t−1) . . . x̄
d
2,nx̄

d
2,0

�

� �� �

t=|k|2n−n+1

if n− 1 < |k|2n ≤ 2n− 2

(xd
2,(n−1) . . . x

d
2,0)�(x̄

d
2,nx̄

d

2,(n−1) . . . x̄
d
2,nx̄

d
2,0) if |k|2n ∈ {0, 2n− 1}

�
�
�
�
�
�
�
�
�
�
22n−1

Prior analyzing all remaining cases of |k|2n , we consider the possibilities of some simpli-
fications related to x2,n—the MSB of x2 . Because x̄2,n = 1 , for all values of x2 but x2 = 2n ,
the addition of a pair of bits x̄2,n and x2,n (see w1a in Fig. 1a) is actually executed only
for x2 = 2n , resulting in |v2 − w2b|22n−1 = 2n . The same result is obtained by clearing n
rightmost bits of w2a and replacing x̄2,n of v2 with constant one, using the same approach
as already used in the Subs. 3.2 while deriving v2 in (16).

For n− 1 ≤ |k|2n < 2n− 1 , similarly as in the previous case, the upper and the bot-
tom parts of Fig. 1b, respectively, show the initial bit assignment of v1 and v2 , the
final versions of w2a and w1a , and the constant vector C2 . However, because in this
case there was no place for x2,n , as t = |k|2n − n+ 1 rightmost bit positions in w1a
are occupied by the bits of x1 , the following extra bit manipulations were needed. We
have shown above that because x̄2,n and x2,n are actually added only for x2 = 2n , it
resulted in |v2 − w2b|22n−1 = 2n . The same result is obtained by clearing t rightmost
bits of w2a when x2 = 2n and moving x2,n to the tth position.

In the remaining two cases, i.e.,for |k|2n = 2n− 1 and |k|2n = 0 , there is no available
2-bit field to insert the pair x̄2,n and x2,n into w1,a . Again, in either case, the fact that the
bit position occupied by x̄2,n is equal to one for all values of x2 but x2 = 2n was taken into
account by augmenting w2b with another constant one at the nth bit position of weight
2n (i.e., w2b,n = 1 ). The final bit distributions are shown in Fig. 1c and d, respectively.

(29)w2b =

�
�
�
�
�
�
�

2
n−1

2
−k







(1 . . . 1
� �� �

n

0 . . . 0
� �� �

n

) = (1− 2n) if |k|2n ∈ {0, 2n− 1}

(1 . . . 1
� �� �

n−1

0 . . . 0
� �� �

n+1

) = (1− 2n+1) otherwise

�
�
�
�
�
�
�
22n−1

(30)

w
d
1a =

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2
n−1

2
−k







(0 . . . 0
� �� �

n−1−k

)� x̄1,(k−1) . . . x̄1,0
� �� �

k

�x̄d2,n� 0 . . . 0� �� �

n−1

�xd2,n if 0 < |k|2n ≤ n− 1

(x̄1,(n−2) . . . x̄1,0
� �� �

n−1

)�x̄d2,n� (0 . . . 0)� �� �

n−|k|n−2

�xd2,n�(x̄1,(k−1) . . . x̄1,(n−1)
� �� �

k−n+1

) if n− 1 < |k|2n ≤ 2n− 2

(x̄1,(n−2) . . . x̄1,0
� �� �

n−1

)�0�(x̄1,(k−1) . . . x̄1,(n−1)
� �� �

k−n+1

) if |k|2n = 2n− 1

(x̄1,(n−2) . . . x̄1,0
� �� �

n−1

)�(x̄1,(k−1) . . . x̄1,(n−1)
� �� �

k−n+1

) if |k|2n = 0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

22n−1

(31)

Page 14 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

In summary, depending on k, three cases occur: (i) no AND gates for 0 < |k|2n < n− 1 ;
(ii) t = |k|2n − n− 1 AND gates for n− 1 ≤ |k|2n < 2n− 1 (clearly, for many practical
cases t = n− k is small); and (iii) n AND gates for |k|2n = 2n− 1 and |k|2n = 0.

These modifications have led to the new equation for V

where

is the new constant, w1a , w2a , and w2b are given by Eqns (27)–(29), and v3 is given by (18).
The hardware implementation of the converter using (32) will be called Version 3.

(32)V =|w1a + w2a + v3 + C2|22n−1,

(33)C2 = v1b + w2b

1...1

2

Fig. 1  Bit-level manipulations (excluding v3 ) leading to hardware simplifications: a |k|2n ≤ n− 1 ; b
n− 1 < |k|2n < 2n− 1 ; c |k|2n = 2n− 1 ; and d |k|2n = 0 . Asterisk “*” fields are zeroed when the constant
addition is shifted from the converter to the datapath channels

Page 15 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

3.5 � Optimized hardware implementation

To obtain the final addition without C2 (which can be shifted to the datapath channels),
we proceed similarly as for Version 2. First, Eqn (32) allows to substitute V in (4) to
obtain

Then, the residues with added constants in odd channels (again, no constant is added in
the even channel x1 ) are

Consequently, we introduce three new variables defined by their respective Eqns (27),
(28), and (18), but using only the bits from x1 , xd2 and xd3 : wd

1a (Eqn (30)), wd
2a (Eqn (31)),

and

Rewriting (32) using constant-free notation yields

(34)
Z = x1 + 2

k |w1a + w2a + v3 + C2|22n−1

=

∣
∣
∣x1 + 2

k(w1a + w2a + v3)+ 2
kC2

∣
∣
∣
2k22n−1

.

xd2 =|x2 + 2kC2|2n+1

xd3 =|x3 + 2kC2|2n−1.

(35)vd3 =

∣
∣
∣2n−12−k

(

xd3�x
d
3

)∣
∣
∣
22n−1

.

Fig. 2  Converter architecture: a general case, b special case of k ≤ 2n

Table 1  Summary of hardware options

Version Input operands of CSA Equations Constant
in channels
2 & 3

1 v1a , v2a , v3 , C1 (12), (16), (18), (20) –

2 v1a , vc2a , v
c
3 (12), (24), (25) 2kC1

3 w1a , w2a , v3 , C2 (27), (28), (18), (33) –

4 wd
1a , w

d
2a , v

d
3

 (30), (31), (35) 2kC2

Page 16 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

which is used in the hardware implementation of Version 4.
The details of the four versions proposed here are summarized in Table 1—detailing

input operands to the CSA tree of the converter, and Figs. 2 and 3—showing their hard-
ware implementations. In Versions 1 and 3, the constants are added by the converter,
whereas in Versions 2 and 4, the constants are added in the datapath channels. Versions
3 and 4 feature optimized bit-level manipulations resulting in lower number of AND
gates. Also, in Versions 1 and 2, the number of AND gates increases from 3 to 13 jump-
ing by one for every value of n for the dynamic ranges from 8 to 40 bits, whereas in Ver-
sion 3 and 4, it is kept between 1 and 3. Each version of the converter uses a CSA with
end-around carry (EAC) modulo 22n − 1 with the appropriate number of operands, fol-
lowed by the 2-operand adder modulo 22n − 1.

3.6 � Example

The methods proposed above will be illustrated for the sample moduli set with
n = 3 and k = 5 , i.e.,

{
25, 23 + 1, 23 − 1

}
 = {32, 9, 7} . V from (19) will be calculated

mod 26 − 1 . The binary representations of the residues mod 32, 9, and 7 are, respec-
tively, x1 = (x1,4 . . . x1,0) , x2 = (x2,3 . . . x2,0) , and x3 = (x3,2 . . . x3,0).

According to the proposed scheme, to compute v1a from (12) we: (i) extend x1 to six
bits (0‖

(
x1,4 . . . x1,0

)
) , (ii) bitwise complement the variable bits to obtain (x̄1,4 . . . x̄1,0) ,

and (iii) apply the right cyclic shift by five positions (i.e.,multiply by 2−5 ), which results
in v1a = (

(
x̄1,4 . . . x̄1,0

)
�0) . Next, the term v2a from (16) is constructed by concatenating

the inverted and the simple copy of three LSBs of x2 , each multiplied by the inverted bit
x2,3 , resulting in v2a = ((x̄2,3x̄2,2 . . . x̄2,3x̄2,0)�(x2,2 . . . x2,0)) . Six bits of the term v3 (Eqn
(18) are obtained by concatenating two copies of the residue x3 , i.e.,
v3 =

(
(x3,2 . . . x3,0)�(x3,2 . . . x3,0)

)
 . The constant term C1 is calculated from v1b and v2b

(Eqns (13) and (17)) as C1 = | 2−5 − 1
︸ ︷︷ ︸

v1b=1

+ 23−1 · 2−5(1− 23)
︸ ︷︷ ︸

v2b=7

|63 = 8 (in Fig. 4, it is added

by HA+1 ). The bit distribution for all four components is illustrated in Table 2.

(36)V =

∣
∣
∣wd

1a + wd
2a + vd3

∣
∣
∣
22n−1

,

Fig. 3  Converter architecture with constants shifted to the RNS datapath channels: a general case, b special
case of k ≤ 2n

Page 17 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

Now we will consider the following sample values of the input residues: {x1, x2, x3} = {1, 2, 3} .
Then, v1a =

∣
∣2−5(011110)b

∣
∣
63

= (111100)b = 60 , v2a =
∣
∣23−1 · 2−5(010101)b

∣
∣
63

= (101010)b = 42 ,
v3 =

∣
∣23−1 · 2−5(011011)b

∣
∣
63

= (011011)b = 27 . Next, V = |60+ 42+ 27+ 8|63 = 11
and the final value Z = 1+ 11 · 32 = 353 . Figure 4 shows the detailed scheme of this
design with the above sample values.

For the version with the constants shifted to the datapath channels, we have
xc2 = |x2 + 25 · 8|9 = |x2 + 4|9 and xc3 = |x3 + 25 · 8|7 = |x3 + 4|7 . v1a is the same as above,
whereas vc2a =

(
(x̄c2,3x̄

c
2,2 . . . x̄

c
2,3x̄

c
2,0)�(x

c
2,2 . . . x

c
2,0)

)
 and vc3a =

(
(xc3,2 . . . x

c
3,0)�(x

c
3,2 . . . x

c
3,0)

)
 .

Now the sample input residues, which actually appear on the reverse converter inputs,
can be modified from {x1, x2, x3} to {x1, xc2, x

c
3} = {1, |2+ 4|9, |3+ 4|7} = {1, 6, 0} . Then

v
c
2a

=
∣
∣23−1 · 2−5(110001)b

∣
∣
63

= (001110)b = 14 , v
c
3
=

∣
∣23−1 · 2−5(000000)b

∣
∣
63

= (000000)b = 0 ,
so that V = |60+ 14 + 0|63 = 11 , and the final value is Z = 1+ 11 · 32 = 353 . Figure 5
shows the detailed scheme of this design for the above sample values.

4 � Complexity evaluation
Basically, the flexible 3-moduli set

{
2k , 2n − 1, 2n + 1

}
 offers for any dynamic range

(DR) a number of alternative choices spanning over a range of n and k (in case of [4,
12] the choices are limited to n ≤ k ≤ 2n ), whereas the conventional 3-moduli set

Table 2  Bit distribution of the sample converter for n = 3 and k = 5 after constants integration

 v1 x̄1,4 x̄1,3 x̄1,2 x̄1,1 x̄1,0 0

 v2a x̄2,3 · x̄2,2 x̄2,3 · x̄2,1 x̄2,3 · x̄2,0 x2,2 x2,1 x2,0
 C1 0 0 1 0 0 0

 v3 x3,2 x3,1 x3,0 x3,2 x3,1 x3,0

Fig. 4  Detailed scheme of the basic sample converter for n = 3 and k = 5

Page 18 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

{2n, 2n − 1, 2n + 1} allows for only one solution for a given n, thus providing the dynamic
range of 3n− 1 bits. Because in practical applications the converters for the sets of well-
balanced moduli seem of the main interest, for any dynamic range we have considered
only one pair (k, n) with k = {n+ 1, n+ 2, n+ 3} . For instance, to cover the dynamic
ranges of 18–20 bits, we have considered three following pairs: (7, 6), (8, 6), and (9, 6).

All four versions of our designs will be compared against the reverse converters for
the same 3-moduli set {2k , 2n − 1, 2n + 1} , designed using the methods from [4, 12], and
the best-known converters for the 3-moduli set {2n, 2n − 1, 2n + 1} proposed recently by
us in [24]. (To note that the converter equations from both [4] and [12] do not allow for
shifting constants to datapath channels.)

4.1 � Gate‑level complexity evaluation

The gate-level complexity figures of all converters considered are summarized in Table 3.
For the proposed designs, we give two figures: the one for general k and the second for k
close to n. Here, FA, HA, and HA+1 , respectively, denote a full-adder, a half-adder, and
a half-adder with increment (which is nothing else but the full-adder with one constant
input 1); obviously, the complexity of an HA+1 is assumed the same as of an HA. The
delay of an a-operand CSA tree is denoted by dCSA(a) . When one of CSA operands is a
constant, its delay is denoted by dCSA(a, 1c) . In the critical path delay column of Table 3,
we neglect the delay of the final adder mod 22n − 1 , because it occurs in all converters
considered here.

Because for k of most practical importance, i.e., n < k ≤ 2n , we have ⌈k/2n⌉ = 1 , the
CSA tree used in any new converter consists of one CSA stage for Versions 2 and 4 and
two CSA stages for Versions 1 and 3. In the latter case, the first CSA stage contains only
HAs, so that the delay of the first CSA stage of the proposed design is one HA compared

Fig. 5  Detailed scheme of the sample converter for n = 3 and k = 5 with the constants shifted to the
datapath channels

Page 19 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

Ta
bl

e 
3 

G
at

e
co

m
pl

ex
ity

 o
f t

he
 p

ro
po

se
d

co
nv

er
te

r a
nd

 o
th

er
 k

no
w

n
co

nv
er

te
rs

 fo
r s

om
e

si
m

ila
r R

N
Ss

c
=

{
0

if
| k
| 2
n
=

{0
,2
n
−

1
}

2
o
th
e
rw

is
e

t
=

|k
| 2
n
−

n
+

1
 †

 f A
(n
,k
)
=

  

0
if
|k
| 2
n
≤

n
−

1

t
if
n
−

1
<

|k
| 2
n
<

2
n
−

1

n
if
|k
| 2
n
∈
{0
,2
n
−

1
}

 ‡

 f I
(n
,k
)
=

{
n
if
|k
| 2
n
∈
{0
,2
n
−

1
}

n
+

1
o
th
e
rw

is
e

M
od

ul
i S

et
/D

es
ig

n
FA

H
A

/H
A+

1
A

N
D

/O
R

(X
O

R)
A

dd
er

 m
od

(2
2
n
−
1)

In
ve

rt
er

s
Cr

iti
ca

l P
at

h
D

el
ay

(w
/o

 d
a
d
d
m
o
d
2
2
n
−
1)

{2
n
,2

n
−
1
,2

n
+
1
}

n
n

n
1

2n
 d
in
v
+

d
O
R
+

d
F
A

Pa
tr

on
ik

 a
nd

 P
ie

st
ra

k
[2

4]

{2
k
,2

n
−
1
,2

n
+
1
}

2
n
−
k
+
1

n
+

k
2

1
k
+

1
 d
in
v
+
d
O
R
+

2
d
F
A

C
ha

ve
s

an
d

So
us

a
[4

]

Ve
rs

io
n

1
k

4
n
−
| k
| 2
n

n
1

n
+

k
 d
in
v
+

d
A
N
D
+

d
C
S
A
(⌈

k 2
n

⌉

,1
c
)

 (d
in
v
+
d
A
N
D
+
d
F
A
+

d
H
A
)

Ve
rs

io
n

2
k

2
n
−
| k
| 2
n

n
1

n
+

k
 d
in
v
+

d
A
N
D
+

d
C
S
A
(⌈

k 2
n

⌉

)

 (d
in
v
+
d
A
N
D
+
d
F
A
)

Ve
rs

io
n

3
k
+

2
c

4
n
−
| k
+
2
c
| 2
n

f A
(n
,k
)†

1
f I
(n
,k
)‡

+
k

 d
in
v
+

d
A
N
D
+

d
C
S
A
(⌈

k
+
2
c

2
n

⌉

,1
c
)

 (d
in
v
+
d
A
N
D
+
d
F
A
+

d
H
A
)

Ve
rs

io
n

4
k
+

2
c

2
n
−
| k
+
2
c
| 2
n

 f A
(n
,k
)†

1
f I
(n
,k
)‡
+
k

 d
in
v
+

d
A
N
D
+

d
C
S
A
(⌈

k
+
2
c

2
n

⌉

)

 (d
in
v
+
d
A
N
D
+
d
F
A
)

[1
2]

 p
=

0
2n

0
2

(+
1

XO
R)

1
n

d
F
A

[1
2]

 p
=

1
2n

0
n
+

1 (
+

1
XO

R)
1

n
d
F
A
+

d
O
R
+

d
in
v

[1
2]

 p
>

1
2n

0
n
+

p
 (+

p
XO

R)
1

n
d
F
A
+

d
O
R

Page 20 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

one FA in [4]. Finally, The design from [12] has also one CSA stage composed of FAs
complemented by XORs, although thanks to a special design technique its delay is one
FA and between zero and one OR, depending on the width of the even modulus k. Our
new converters with flexible dynamic range also exhibit delay close to the best designs
of [24] for the classic 3-moduli set with fixed dynamic range {2n, 2n − 1, 2n + 1} . As for
the gate count, the proposed converters fall close to the gate count of their counter-
parts from [24] (in the case of constant-free versions) or are larger by 2n HAs. Hence,
we expect the delay of our converters to be close to the converters from [12, 24] and
smaller than those from [4]. Versions 1 and 2 of our converter contain a number of AND
gates with one input driven by the same signal, which may cause some fanout problem
not revealed by standard metrics. This issue, however, depends on the actual gate library
used and may be eventually exposed by the actual synthesis results.

4.2 � Synthesis assumptions and constraints

To obtain as much realistic as possible complexity figures, in an attempt to produce
systematic and fairly comparable descriptions, all converters were implemented in
parameterized structural Verilog, following the identical coding guidelines. In all
cases, the multi-operand adder mod 22n − 1 was implemented using the CSA with
EAC, followed by the final 2-operand adder mod 22n − 1 of [19]. The FAs used in the
CSAs have been implemented using register transfer level (RTL) 1-bit adder (“+”
operator in Verilog RTL code), except for the special FAs proposed in [12]. In the lat-
ter case, we have implemented two versions, using the special and regular (RTL) FAs.

All converters were synthesized using Cadence RTL Compiler v. 8.1 over the com-
mercial CMOS065LP 65-nm low-power library from ST Microelectronics. Each
combinational design was complemented with an input and output register for more
realistic delay and power estimations. In each case of the version and dynamic range,
the minimum delay was found, which we understood as the minimum delay con-
straint for which the logic synthesizer still reported nonnegative timing slack and
with no violating paths. In both logical and physical synthesis stages, the fanout set-
tings have been kept at the cell library and synthesizer defaults without additional
restrictions.

Next, we have placed and routed our designs using Cadence EDI v. 10.11 (our place-
and-route (PnR) tool) on rectangular cores of dimensions around 130–180 µ m. To
level out area and leakage power comparison, we have adjusted the core dimensions
to keep the target density at 75–80%. Since the designs at small dynamic ranges have
low gate count, there were a few isolated cases, for which we were unable to stay at
our target density bounds, so we have left out smaller density of around 73%. Con-
sequently, we have placed the area constraint while keeping the delay at the values
obtained during the logic synthesis phase. Then, we have performed power simula-
tions on the netlists from the PnR tool, with delay annotations for 1000 random vec-
tors using Synopsys PrimeTime 12.12H. The synthesis and simulation results obtained
for various converters for all dynamic ranges from 8 to 40 bits are visualized in Figs. 6,
7, and 8, which, respectively, show the delay, power, and area estimations.

Page 21 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

4.3 � Delay evaluation

Figure 6 reveals the logarithmic growth of the delay with the dynamic range, which is
the direct outcome of employing in all designs a logarithmic depth parallel prefix adder
[19] for the final mod 22n − 1 addition. Delay comparison of Versions 1 and 3 of our con-
verter (in which the constants are added within the converter) against Versions 2 and 4
(with the constants shifted out to the datapath channels) clearly reveals the advantages of
the latter: The compression of residues into three rather than four variables has allowed
to avoid one CSA layer. Compared to [4, 12] for almost all dynamic ranges the Versions
2 and 4 are faster (except one case for Version 2). Also, for the dynamic ranges of 3n− 1
bits offered by the 3-moduli set {2n, 2n − 1, 2n + 1} , in most cases there is a version of
the new converter which is faster compared to the reverse converter for the latter set
from [24], which clearly reveals yet another advantage of using the flexible moduli set.

4.4 � Power consumption evaluation

Figure 7 shows the power consumption of all designs considered. While the minimal
delay obtained was relatively easy to explain, as it was strictly related to the number
of logic levels, and hence, it was easily traceable by evaluating the critical paths, the
power consumption figures are the results of simulations performed on placed and
routed designs using the sets of random vectors. Due to this, the power consumption
estimation and its contributing factors are to be explained on the basis of the internal
architecture, the size of the circuit, and the rate of recharging gates, resulting from
the target delay. Additionally, because all converters considered are relatively small

Fig. 6  Minimum delay as a function of the dynamic range

Page 22 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

Fig. 7  Power at the minimum delay

Fig. 8  Area at the minimum delay

Page 23 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

designs (containing at most a few hundreds of logic cells), every difference between
the circuits may have noticeable impact on power simulation results. As a result, the
power curves may seem appear a little noisy, with overall trend resulting from the
area complexity of the circuit and some local deviations negatively correlated with
delay (i.e., the smaller delay, the larger power consumption). On the one hand, we can
observe the general linear growth of power consumption with n, which is due to the
linear growth (also with n) of the number of adders in CSA layers and almost linearly
( n log n ) growing area of the final adder mod 22n − 1 . On the other hand, we can also
observe local trends with fixed n but changing k, as there are additional cells coming
with additional input lines in the even channel mod 2k . The abrupt growths resulting
from discrete logarithmic dependence of the delay of the adder are still observable for
n changing with the power of 2, but they are mostly lost in the overall trend. Next, the
power curves may be seen as separated into two groups. The first group, with smaller
power consumption, contains the power curves of Versions 2 and 4 of the proposed
design as well as of the converter from [24], whereas the second group contains Ver-
sions 1 and 3 of the proposed design as well as of the design from [4]. The convert-
ers from [12] falls between these two groups. Since both the proposed design and
the converter from [24] have constants removed, they have similar power consump-
tion. On the other hand, in most cases at least one from our proposed designs enjoys
smaller power consumption than its direct counterparts from [4, 12].

4.5 � Area evaluation

Figure 8 shows the area of the synthesized converters. The overall trend is almost lin-
ear, which is consistent with the complexity of the final adder mod 22n − 1 ( O(n log n) )
along with the number of additional gates required with growing n and k. There are
two noticeable increments on all area curves, namely for the dynamic ranges changing
from 14 to 15 bits and from 26 to 27 bits (corresponding to n changing from 4 to 5 and
from 8 to 9, respectively), resulting directly from the increments of the number of pre-
fix operator layers in the final adder mod 22n − 1 . In the general case, such incrementa-
tions would occur at any change of n from 2r to 2r + 1 . In turn, this is consistent with
changing number of gates along the critical path and consequent area increase of the
whole circuit (as the synthesizer tries to select larger gates in order to regain delay). As
these figures strictly depend on the numbers of cells used, they are more consistent than
power estimations: slower/faster designs tend to have smaller/larger area due to smaller/
larger cells, respectively. Due to the smaller number of additions (there are no constants
to be added in the converter), our circuits are generally smaller than their counterparts
from [4]. In comparison with [12], some of the new converters proposed here are larger,
especially for larger dynamic ranges. This is most likely the result of larger arithmetic
components used by the synthesizer to achieve smaller delay.

4.6 � Improvement assessment

Table 4 summarizes percentage improvements of our converters with respect to their
counterparts of [4, 12]. For a given dynamic range, the best of our versions is selected
for comparison, although—to emphasize the advantages of shifting constants to the

Page 24 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

Ta
bl

e 
4 

Pe
rc

en
ta

ge
 a

ss
es

sm
en

t o
f i

m
pr

ov
em

en
ts

A
re

a
[µ

m
2
]

D
el

ay
 [n

s]
Po

w
er

 [  µ
W

]

Be
st

CS
Re

d.
[%

]
Be

st
CS

Re
d.

[%
]

Be
st

CS
Re

d.
[%

]

 D
R

{v
1,

v3
}

{v
2,

v4
}

or
 H

{v
1,

v3
}

{v
2,

v4
}

{v
1,

v3
}

{v
2,

v4
}

or
 H

{v
1,

v3
}

{v
2,

v4
}

{v
1,

v3
}

{v
2,

v4
}

or
 H

{v
1,

v3
}

{v
2,

v4
}

8
11

58
10

07
10

39
−

 1
1.

5
3.

1
1.

22
1.

14
1.

17
−

 4
.3

2.
6

0.
58

5
0.

50
4

0.
54

6
−

 7
.1

7.
7

9
12

22
94

9
98

4
−

 2
4.

2
3.

6
1.

22
1.

16
1.

2
−

 1
.7

3.
3

0.
62

7
0.

45
8

0.
51

2
−

 2
2.

5
10

.5

10
12

32
99

7
96

0
−

 2
8.

3
−

 3
.9

1.
21

1.
15

1.
22

0.
8

5.
7

0.
69

5
0.

52
4

0.
53

4
−

 3
0.

1
1.

9

11
11

42
10

17
12

46
8.

3
18

.4
1.

27
1.

17
1.

36
6.

6
14

.0
0.

60
2

0.
61

6
0.

60
8

1.
0

−
 1

.3

12
13

42
11

85
13

40
−

 0
.1

11
.6

1.
24

1.
17

1.
2

−
 3

.3
2.

5
0.

73
6

0.
60

2
0.

77
3

4.
8

22
.2

13
14

15
13

33
13

83
−

 2
.3

3.
6

1.
26

1.
17

1.
21

−
 4

.1
3.

3
0.

79
8

0.
79

3
0.

82
8

3.
6

4.
3

14
16

42
12

97
13

97
−

 1
7.

5
7.

2
1.

23
1.

15
1.

23
0.

0
6.

5
0.

94
7

0.
68

5
0.

79
6

−
 1

7.
2

15
.2

15
21

97
18

70
17

58
−

 2
5.

0
−

 6
.4

1.
34

1.
27

1.
34

0.
0

5.
2

1.
00

5
0.

79
9

0.
79

9
−

 2
5.

8
−

 0
.1

16
20

01
19

06
18

93
−

 5
.7

−
 0

.7
1.

33
1.

27
1.

33
0.

0
4.

5
0.

90
7

0.
86

2
0.

83
5

−
 8

.6
−

 3
.2

17
20

97
19

77
19

13
−

 9
.6

−
 3

.3
1.

35
1.

26
1.

34
−

 0
.7

6.
0

0.
85

5
0.

87
9

0.
89

1
4.

0
1.

4

18
24

98
22

51
21

33
−

 1
7.

1
−

 5
.5

1.
35

1.
26

1.
33

−
 1

.5
5.

3
1.

08
9

0.
95

7
0.

9
−

 2
1.

0
−

 6
.4

19
25

22
22

99
20

36
−

 2
3.

9
−

 1
2.

9
1.

34
1.

27
1.

33
−

 0
.8

4.
5

1.
13

3
1.

06
9

1.
00

3
−

 1
3.

0
−

 6
.6

20
24

08
22

45
21

88
−

 1
0.

1
−

 2
.6

1.
35

1.
26

1.
35

0.
0

6.
7

1.
02

1.
02

4
0.

99
1

−
 2

.9
−

 3
.3

21
28

46
23

84
25

56
−

 1
1.

3
6.

7
1.

35
1.

28
1.

36
0.

7
5.

9
1.

24
3

1.
04

8
1.

22
6

−
 1

.4
14

.5

22
29

77
24

45
26

39
−

 1
2.

8
7.

4
1.

33
1.

26
1.

33
0.

0
5.

3
1.

28
3

1.
04

4
1.

19
1

−
 7

.7
12

.3

23
30

18
25

83
25

93
−

 1
6.

4
0.

4
1.

36
1.

29
1.

34
−

 1
.5

3.
7

1.
31

6
1.

15
5

1.
26

2
−

 4
.3

8.
5

24
31

91
29

86
28

10
−

 1
3.

6
−

 6
.3

1.
33

1.
26

1.
37

2.
9

8.
0

1.
37

5
1.

30
2

1.
26

1
−

 9
.0

−
 3

.3

25
33

76
27

17
31

12
−

 8
.5

12
.7

1.
34

1.
28

1.
35

0.
7

5.
2

1.
48

9
1.

13
5

1.
47

8
−

 0
.7

23
.2

26
32

00
27

16
29

60
−

 8
.1

8.
2

1.
36

1.
28

1.
35

−
 0

.7
5.

2
1.

44
1

1.
27

7
1.

35
5

−
 6

.3
5.

8

27
38

79
36

27
35

95
−

 7
.9

−
 0

.9
1.

42
1.

37
1.

47
3.

4
6.

8
1.

43
7

1.
32

7
1.

41
4

−
 1

.6
6.

2

28
39

80
37

75
37

64
−

 5
.7

−
 0

.3
1.

43
1.

37
1.

46
2.

1
6.

2
1.

53
4

1.
35

8
1.

57
1

2.
4

13
.6

29
44

45
37

62
38

45
−

 1
5.

6
2.

2
1.

43
1.

37
1.

45
1.

4
5.

5
1.

66
0

1.
25

7
1.

51
4

−
 9

.6
17

.0

30
44

42
40

62
41

29
−

 7
.6

1.
6

1.
43

1.
38

1.
47

2.
7

6.
1

1.
70

4
1.

42
4

1.
48

7
−

 1
4.

6
4.

2

Page 25 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

Ta
bl

e 
4 

(c
on

tin
ue

d)

A
re

a
[µ

m
2
]

D
el

ay
 [n

s]
Po

w
er

 [  µ
W

]

Be
st

CS
Re

d.
[%

]
Be

st
CS

Re
d.

[%
]

Be
st

CS
Re

d.
[%

]

 D
R

{v
1,

v3
}

{v
2,

v4
}

or
 H

{v
1,

v3
}

{v
2,

v4
}

{v
1,

v3
}

{v
2,

v4
}

or
 H

{v
1,

v3
}

{v
2,

v4
}

{v
1,

v3
}

{v
2,

v4
}

or
 H

{v
1,

v3
}

{v
2,

v4
}

31
46

37
40

95
41

24
−

 1
2.

4
0.

7
1.

42
1.

38
1.

49
4.

7
7.

4
1.

70
1

1.
46

2
1.

55
8

−
 9

.2
6.

2

32
44

84
41

30
39

09
−

 1
4.

7
−

 5
.7

1.
45

1.
38

1.
47

1.
4

6.
1

1.
70

9
1.

63
9

1.
61

7
−

 5
.4

−
 1

.1

33
49

98
45

77
40

50
−

 2
3.

4
−

 1
3.

0
1.

42
1.

36
1.

47
3.

4
7.

5
1.

86
3

1.
62

6
1.

58
8

−
 1

7.
3

−
 2

.4

34
48

54
44

34
44

12
−

 1
0.

0
−

 0
.5

1.
49

1.
39

1.
46

−
 2

.1
4.

8
1.

78
6

1.
63

1.
7

−
 5

.1
4.

1

35
51

52
45

12
43

77
−

 1
7.

7
−

 3
.1

1.
47

1.
38

1.
46

−
 0

.7
5.

5
1.

96
0

1.
61

3
1.

69
2

−
 1

5.
8

4.
7

36
57

34
48

88
44

32
−

 2
9.

4
−

 1
0.

3
1.

42
1.

38
1.

47
3.

4
6.

1
2.

13
4

1.
72

6
1.

83
1

−
 1

6.
5

5.
7

37
54

94
48

37
50

06
−

 9
.7

3.
4

1.
42

1.
38

1.
47

3.
4

6.
1

2.
08

1
1.

75
0

1.
94

7
−

 6
.9

10
.1

38
55

43
51

02
48

40
−

 1
4.

5
−

 5
.4

1.
45

1.
38

1.
47

1.
4

6.
1

1.
96

2
1.

86
9

1.
88

5
−

 4
.1

0.
8

39
61

12
50

59
48

79
−

 2
5.

3
−

 3
.7

1.
42

1.
37

1.
46

2.
7

6.
2

2.
56

0
1.

90
7

2.
05

1
−

 2
4.

8
7.

0

40
59

83
51

28
50

44
−

 1
8.

6
−

 1
.7

1.
46

1.
37

1.
5

2.
7

8.
7

2.
36

4
1.

77
8

1.
89

1
−

 2
5.

0
6.

0

M
in

−
 2

9.
4

−
 1

3.
0

−
 4

.3
2.

5
−

 3
0.

1
−

 6
.6

M
ax

−
 0

.1
12

.7
6.

6
14

.0
4.

8
23

.2

A
ve

ra
ge

−
 1

4.
3

−
 0

.4
0.

7
5.

8
−

 9
.6

5.
6

Page 26 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

datapath channels—two separate comparisons are presented: one for the converters
with the integrated constants (Versions 1 and 3) and another for the converters with the
separated constants (Versions 2 and 4). On the other side, we have selected the best of
earlier designs of [4] and [12] with special and regular FAs (respectively, denoted as CS
or H). For Versions 1 and 3, the delay of the new converters is reduced on average by
0.7%, from −4.3% up to 6.6%. The area is increased by 14.3% on average, up to about
29.4%. The delay savings are accompanied by increase in the power consumption—on
average by about 9.6%, up to 30.1%. For Versions 2 and 4, higher gains are observed:
the delay is reduced on average by 5.8%, from 2.5% up to 14.0%; the area is increased on
average by 0.4%, up to 13% (but the maximal reduction achieved for DR = 25 is 12.7%);
and the power consumption is reduced on average by about 5.6%, up to 23.2%. Higher
savings in the converters with separated constants stem directly from smaller number of
gates needed to add constants inside the converter.

5 � Conclusion
A new general method to design reverse converters for the flexible 3-moduli

{
2k , 2n − 1,

2n + 1} residue number system (RNS), applicable for arbitrary pairs of positive integers
n and k, was proposed. From the set of the basic functions, four versions of the converter
can be designed for any n and k. Two of them, the most efficient ones, take advantage of
the separation of the variable and constant parts, so that the addition of the constants
can be shifted out to the residue datapath channels, thus reducing the number of added
operands by one. (Elsewhere, we have already shown that the latter can be done in most
cases at no cost.) The synthesis results were obtained for all dynamic ranges from 8 to 40
bits for consecutive values of n and n+ 1 ≤ k ≤ n+ 3 and compared against the known
similar designs. In most cases, the presented versions are both faster and less hardware-
consuming. The savings for the best versions (these with constants moved to the data-
path channels) are up to 12.7% for the area and from 2.5% to 14% (5.8 % on average) for
the delay, while the power consumption is reduced up to 23.2% (5.6% on average).

Finally, the importance of the designs proposed stems from the fact that the 3-moduli
set {2k , 2n − 1, 2n + 1} can be extended to form multi-moduli special sets, and its reverse
converters can be reused as building blocks to construct converters for these multi-
moduli systems based on the premises of the mixed-radix conversion. Hence, the con-
verters proposed here can contribute to improved performance of the whole family of
converters already known as well as those which will be proposed in the future for some
other extended flexible multi-moduli sets.
Abbreviations
ADP	� Area–delay product
CRT​	� Chinese remainder theorem
CSA	� Carry–save adder
DR	� Dynamic range
DSP	� Digital signal processing
EAC	� End-around carry
FA	� Full-adder
FIR	� Finite impulse response
HA	� Half-adder
LSB	� Least significant bit

Page 27 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92 	

MAC	� Multiplier–accumulator
MSB	� Most significant bit
PDP	� Power–delay product
PnR	� Place-and-route
RNS	� Residue number system
RTL	� Register transfer level

List of symbols
C1 , C2	� The total constant to be added
k	� The size (bits) of even modulus
l	� Number of RNS channels
M	� Dynamic range of RNS
mi	� The ith modulus
n	� The size (bits) of odd modulus
X, Y, Z	� Integers
xi	� Residue of X mod mi

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the
quality of the article.

Author contributions
PP was responsible for conceptualization, software, data curation, visualization, investigation and writing—reviewing
and editing. SJP participated in writing—original draft preparation, reviewing and editing, validation, methodology and
supervision.

Funding
The research or reporting received no specific funding.

Availability of data and materials
Please contact authors for data requests.

Declarations

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 9 January 2023 Accepted: 21 June 2023

References
	1.	 P. V. Ananda Mohan, Residue number systems: Algorithms and architectures, Birkhäuser, Switzerland, (2016)
	2.	 G. Chalivendra, V. Hanumaiah, and S. Vrudhula, A new balanced 4-moduli set {2k , 2n − 1, 2n + 1, 2n+1 − 1} and its

reverse converter design for efficient FIR filter implementation, in Proceedings of the ACMGreat Lakes SymposiumVLSI
(GLSVLSI) (Lausanne, 2011), 2–4, pp. 139–144

	3.	 R. Chaves and L. Sousa, RDSP: A RISC DSP based on residue number system, in Proceedings of Euromicro Symposium
on Digital SystemDesign (DSD) (Antalya, 2003), pp. 128–135

	4.	 R. Chaves, L. Sousa, Improving residue number system multiplication with more balanced moduli sets and
enhanced modular arithmetic structures. IET Proc. Comput. Digit. Tech. 1(5), 472–480 (2007)

	5.	 J. Chen, J. E. Stine, Parallel prefix Ling structures for modulo 2n − 1 addition, in Proceedings of the 20th IEEE Interna-
tional Conference Application-specific Systems, Architectures and Processors (ASAP’09) (Boston, 2009), 7–9, pp. 16–23

	6.	 R. Chokshi, K. S. Berezowski, A. Shrivastava, S. J. Piestrak, Exploiting residue number system for power-efficient digital
signal processing in embedded processors, in Proceedings of the 2009 international conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems (CASES) (Grenoble, 2009), 11–16, pp. 19–27

	7.	 R. Conway, J. Nelson, Improved RNS FIR filter architectures. IEEE Trans. Circuits Syst. II 51(1), 26–28 (2004)
	8.	 A. Dhurkadas, Comments on “An efficient residue to binary converter design” by K. M. Ibrahim and S. N. Saloum, IEEE

Trans. Circuits Syst. 37, no. 6, 849–850 (1990)
	9.	 A. Dhurkadas, Comments on “A high speed realization of a residue to binary number system converter.” IEEE Trans.

Circuits Syst. II 45(3), 446–447 (1998)
	10.	 C. Efstathiou, H.T. Vergos, D. Nikolos, Modified Booth modulo 2n − 1 multipliers. IEEE Trans. Comput. 53(3), 370–374

(2004)
	11.	 H.K. Garg, Digital signal processing algorithms: Number theory, convolution, fast fourier transforms, and applications

(CRC Press, Boca Raton, FL, USA, 1998)

Page 28 of 28Patronik and Piestrak ﻿EURASIP Journal on Advances in Signal Processing (2023) 2023:92

	12.	 A. Hiasat, A residue-to-binary converter with an adjustable structure for an extended RNS three-moduli set. J.
Circuits Syst. Comput. 28(8), 1–24 (2019)

	13.	 G. Jaberipur, B. Parhami, Unified approach to the design of modulo-(2n ± 1 ) adders based on signed-LSB representa-
tion of residues, in Proceedings 14th IEEE Symposiumon Computer Arithmetic. (Portland, 2009), 8–10, pp. 57–64

	14.	 T.-B. Juang, C.-C. Chiu, M.-Y. Tsai, Improved area-efficient weighted modulo 2n + 1 adder design with simple correc-
tion schemes. IEEE Trans. Circuits Syst. II 57(3), 198–202 (2010)

	15.	 K.P. Lim, A.B. Premkumar, A modular approach to the computation of convolution sum using distributed arithmetic
principles. IEEE Trans. Circuits Syst. II 46(1), 92–96 (1999)

	16.	 Y. Liu, E.M.-K. Lai, Design and implementation of an RNS-based 2-D DWT processor. IEEE Trans. Consum. Electron.
50(1), 376–385 (2004)

	17.	 Y. Liu, E.M.-K. Lai, Moduli set selection and cost estimation for RNS-based FIR filter and filter bank design. Des. Aut.
Embed. Syst. 9(2), 123–139 (2004)

	18.	 R. Muralidharan, C.H. Chang, Area-power efficient modulo 2n − 1 and modulo 2n + 1 multipliers for
{2n − 1, 2n , 2n + 1} based RNS, IEEE Trans. Circuits Syst. I Reg. Papers 59(10), 2263–2274 (2012)

	19.	 R.A. Patel, S. Boussakta, Fast parallel-prefix architectures for modulo 2n − 1 addition with a single representation of
zero. IEEE Trans. Comput. 56(11), 1484–1492 (2007)

	20.	 P. Patronik, S.J. Piestrak, Design of reverse converters for general RNS moduli sets {2k , 2n − 1, 2n + 1, 2n−1 − 1} and
{2k , 2n − 1, 2n + 1, 2n+1 − 1} ( n even), IEEE Trans. Circuits Syst. I Reg. Papers 61(6), 1687–1700 (2014)

	21.	 P. Patronik and S. J. Piestrak, Design of residue generators with CLA/compressor trees and multi-bit EAC, in Proceed-
ings of the 2017 IEEE 8th Latin American Symposium on Circuits and Systems (LASCAS) (San Carlos de Bariloche, 2017),
20–23, pp. 77–80

	22.	 P. Patronik, S.J. Piestrak, Design of reverse converters for a new flexible RNS 5-moduli set
{2k , 2n − 1, 2n + 1, 2n+1 − 1, 2n−1 − 1} ( n even), Circuits. Syst. Signal Process. 36(11), 4593–4614 (2017)

	23.	 P. Patronik, S.J. Piestrak, Hardware/software approach to designing low-power RNS-enhanced arithmetic units, IEEE
Trans. Circuits Syst. I Reg. Papers 64(5), 1031–1039 (2017)

	24.	 P. Patronik, S.J. Piestrak, Design of RNS reverse converters with constant shifting to residue datapath channels. J.
Sign. Process. Syst. 90(3), 323–339 (2018)

	25.	 S.J. Piestrak, Design of residue generators and multioperand modular adders using carry-save adders. IEEE Trans.
Comput. 43(1), 68–77 (1994)

	26.	 S.J. Piestrak, A high-speed realization of a residue to binary number system converter. IEEE Trans. Circuits Syst. II
42(10), 661–663 (1995)

	27.	 S.J. Piestrak, Design of multi-residue generators using shared logic, in Proceedings of the IEEE International Symposium
of Circuits and Systems (ISCAS) (Rio de Janeiro, 2011), 15–18, pp. 1435–1438

	28.	 S.J. Piestrak, K.S. Berezowski, Architecture of efficient RNS-based digital signal processor with very low-level pipelin-
ing, in Proceedings of the IET Irish Signals and Systems Conference (ISSC) (Galway, 2008), 18–19 , pp. 127–132

	29.	 S.J. Piestrak, K.S. Berezowski, Design of residue multipliers-accumulators using periodicity, in IET Irish Signals and
Systems Conference (ISSC) (Galway, 2008), 18–19, pp. 380–385

	30.	 J. Ramírez, A. García, U. Meyer-Bäse, F. Taylor, A. Lloris, Implementation of RNS-based distributed arithmetic discrete
wavelet transform architectures using field-programmable logic. J. VLSI Signal Process. 33(1–2), 171–190 (2003)

	31.	 T.K. Shahana, R.K. James, B.R. Jose, K.P. Jacob, S.Sasi, Performance analysis of FIR digital filter design: RNS versus
traditional, in Proceedings of the International Symposium on Communications and Information Technologies (ISCIT)
(Sydney, 2007), 17–19, pp. 1–5

	32.	 A. Sweidan, A. Hiasat, A new efficient memoryless residue to binary converter. IEEE Trans. Circuits Syst. 35(11),
1441–1444 (1988)

	33.	 F.J. Taylor, An RNS discrete Fourier transform implementation, IEEE Trans. Acoust., Speech Signal Process. 38, 8,
1386–1394 (1990)

	34.	 W.Wang, M.N.S. Swamy, M.O. Ahmad, RNS application for digital image processing, Proceedings of the IEEE interna-
tional workshop on system-on-chip for real-time applications, (Banff, Alberta, 2004), 19–21, pp. 77–80

	35.	 Y. Wang, Residue-to-binary converters based on new Chinese Remainder Theorem. IEEE Trans. Circuits Syst. II 47(3),
197–205 (2000)

	36.	 Y. Wang, X. Song, M. Aboulhamid, H. Shen, Adder based residue to binary number converters for (2n − 1, 2n , 2n + 1) .
IEEE Trans. Signal Process. 50(7), 1772–1779 (2002)

	37.	 Z. Wang, G.A. Jullien, W.C. Miller, An improved residue-to-binary converter. IEEE Trans. Circuits Syst. I 47(9), 1437–
1440 (2000)

	38.	 M.Wesołowski, P.Patronik, K.Berezowski, J. Biernat, Design of a novel flexible 4-moduli RNS and reverse converter,
Proc. 23nd IET Irish Sign. Syst. Conf. (ISSC) (Maynooth, 2012), 28–29 , pp. 1–6

	39.	 R. Zimmerman, Efficient VLSI implementation of modulo 2n ± 1 addition and multiplication, in Proceedings of the
IEEE Symposium on Computer Arithmetic, (Adelaide, 1999), 14–16, pp. 158–167

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Design of reverse converters for the general RNS 3-moduli set {2k, 2n − 1, 2n + 1}
	Abstract
	1 Introduction
	1.1 Contribution of this paper

	2 Preliminaries
	2.1 Basic properties of RNS
	2.2 Properties of arithmetic mod
	2.3 The new CRT​
	2.4 Advantages and applications of the 3-moduli set

	3 Reverse converter design
	3.1 Expression for V with separated residues
	3.2 Separation of variable and constant parts
	3.3 Basic hardware implementation
	3.4 Further bit-level Optimization
	3.5 Optimized hardware implementation
	3.6 Example

	4 Complexity evaluation
	4.1 Gate-level complexity evaluation
	4.2 Synthesis assumptions and constraints
	4.3 Delay evaluation
	4.4 Power consumption evaluation
	4.5 Area evaluation
	4.6 Improvement assessment

	5 Conclusion
	Acknowledgements
	References

