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Abstract 

For the channel estimation problem under α-stable distributed impulse interference, 
the traditional fixed-step adaptive filtering cannot satisfy the fast convergence speed 
and low steady-state error at the same time, whereas the variable-step method is 
able to effectively solve this contradiction. This paper proposes an improved variable 
step-size least mean p-power adaptive algorithm that offers good robustness against 
impulsive noise. The proposed algorithm takes into account the linkage between 
the errors and uses the adjustment of the step size based on the errors of the current 
moment and the previous k moments, thus overcoming the problems of poor anti-
noise performance and large steady-state fluctuations of the fixed-step size algorithm. 
This algorithm ensures that the step size does not change abruptly when the system 
is disturbed by impulse noise and can achieve a lower steady-state error. The simula-
tion results show that the algorithm has better convergence than the traditional fixed 
step-size algorithm and the existing variable step-size algorithm under the interference 
of impulsive noise.

Keywords: Impulsive noise, α-stable distribution, Adaptive filtering algorithm, Least 
mean p-power (LMP), Multi-moment error

1 Introduction
In many cases where adaptive algorithms are used for channel estimation, fixed step 
sizes are often designed to facilitate engineering applications. Under this case, a com-
promise is often required between fast adaptation to overcome input variations and slow 
adaptation to cope with system noise in order to obtain the best performance [1]. For 
this problem, a large strand of research has made improvements on the basis of the tradi-
tional fixed step-size least mean square (LMS) adaptive algorithm, so that the algorithm 
can change the step size with the change of the mean square error, thus solving the prob-
lem faced previously and achieving better results [2, 3]. However, the above methods 
are applied in the environment of Gaussian noise, but in practical engineering applica-
tions the system is often disturbed by a large amount of non-Gaussian noise. The litera-
ture has shown that the most coastal areas around the world are flooded with impulsive 
interference in the hydroacoustic channel due to the presence of a large number of drum 
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shrimp family organisms (which emit strong pulses by opening and closing the knuckles 
of their large cheeks) [4]. The traditional LMS algorithm only takes into account the sec-
ond-order statistics of data, and so it works well under Gaussian noise interference but 
performs generally when it encounters non-Gaussian noise such as impulse noise [5]. To 
overcome this problem, researchers have proposed the least mean p-power (LMP) algo-
rithm by using lower-order statistics of the data to replace the second-order statistics [6, 
7]. LMP algorithm is a nonlinear filtering algorithm that uses generalized correntropy as 
the cost function. Compared with traditional adaptive filtering algorithms, LMP algo-
rithm has better robustness in dealing with impulsive interference, sparse channels or 
abrupt channel changes. Therefore, this paper improves the LMP algorithm when esti-
mating the underwater acoustic channel under impulse interference. The system block 
diagram of the general adaptive filtering algorithm to implement channel estimation is 
shown in Fig. 1.

2  Proposed algorithm
The step size of the traditional LMP algorithm is a fixed value, which cannot meet the 
requirements of faster convergence speed and lower steady-state error at the same time. 
Therefore, it is necessary to speed up convergence speed in the initial stage of adapta-
tion and reduce system error after reaching a steady state. Variable step size is an effec-
tive method to solve the algorithm’s convergence speed and steady-state error, but the 
traditional variable step-size algorithm only considers the current update error and 
ignores the influence of errors at other moments. In an actual simulation, it is found 
that although the convergence effect is better than those of other algorithms, it does not 
meet expectations. Therefore, based on the traditional variable step-size LMP (VSS-
LMP) algorithm, this paper considers the influence of the error of the previous several 
times on the current state and constructs the error function about the previous k times 
as the step-size update basis of the adaptive algorithm. The block diagram of proposed 
algorithm appears in Fig. 2.

One effective way to improve the convergence speed is to design a formula with varia-
ble step size. The error can be used to update the step size. Thus, a larger step size can be 
given by the variable step-size function when the error between the desired signal and 
the output signal is large, which can accelerate the convergence process. In the presence 
of impulsive noise disturbance that produces results far from the actual situation, the 
connection between the previous and the generated step size is hard to establish because 
of the large error signal.

As such, some scholars construct a deformation Gaussian function to resolve the effect 
of convergence due to the sudden change of error [8]. The formula is:

Fig. 1 Adaptive filter system block
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This is a step-update function, thus achieving anti-pulse interference. However, 
when studying the algorithm, it is found that the effect is not ideal in the case of large 
impulsive noise. To further improve its conversion effect, we enhance the algorithm 
and propose an Improved Variable Step-Size Least Mean p-Power (IVSS-LMP) algo-
rithm, by introducing the equation:

where kap > 0 . We use this formula to correct the step size, which makes the algorithm 
give a better convergence effect. Since the error of the previous k terms is introduced, 
the value of the parameter k cannot be large in order to ensure a real-time update. 
Hence, choosing a suitable value of the parameter k is crucial for this algorithm.

The weighted moving average method is often used in mathematics to predict 
future values. Considering the correlation between steps, we also use the weighted 
moving average method to build the performance stable. The formula is

This weighs the steady-state misalignment and convergence speed.  The pseudo-
code process of proposed algorithm is shown in Table 1.

3  Convergence analysis
To prove the stability of the algorithm, it is necessary to analyze the convergence 
score of the algorithm by first defining the initial conditions, fe(0) = 0 and µ(0) = 0 . 
We modify Eqs. (2) and (3) to:

(1)µ(e(n+ 1)) = θµ[e(n)]+ (1− θ)α|e(n+ 1)|2e−β|e(n+1)|2

(2)fe(n) = kap ×

n

i=n−k+1

|e(i)|2

(3)µ
(

fe(n+ 1)
)

= θµ[fe(n)]+ (1− θ)afe(n+ 1)e−βfe(n+1)

Fig. 2 System block of proposed algorithm
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Here,

We constructing the function g(y):

By calculating the derivative of this function, we can see that the function has a maxi-
mum value e−1 at y = 1 . Therefore, Eq. (6) can be written as:

Bringing Eq. (8) into (4), we get:

When 0 < θ < 1 , we get the following inequality:

(4)

µ
(

fe(n+ 1)
)

= θµ[fe(n)]+ (1− θ)αfe(n+ 1)e−βfe(n+1)

=

n
∑

i=1

θn−i(1− θ)afe(i) exp
(

−βfe(i)
)

+θnµ
(

fe(0)
)

= (1− θ)α

n
∑

i

θn−ife(i) exp
(

−βfe(i)
)

(5)fe(n) = 0, n < 0

(6)fe(i) exp
(

−βfe(i)
)

=
βfe(i) exp

(

−βfe(i)
)

β

(7)g
(

y
)

= ye−y

(8)fe(i) exp
(

−βfe(i)
)

=
βfe(i) exp

(

−βfe(i)
)

β
≤

e−1

β

(9)

µ
(

fe(n+ 1)
)

= (1− θ)α

n
∑

i=1

θn−ife(i) exp
(

−βfe(i)
)

≤ (1− θ)α

n
∑

i=1

θn−i e
−1

β
=

α(1− θ)e−1

β
·
1− θn

1− θ

Table 1 The proposed algorithm

Proposed algorithm

Initialization
w = �0
Beginning computation

Iterate for n > k

d(n) = hT x(n)+ v(n)

e(n) = d(n)− wT x(n)

fe(n) = kap

√

n
∑

i=n−k+1

|e(i)|2

µ(fe(n+ 1)) = βµ
[

fe(n)
]

+ (1− β)afe(n+ 1)e−bfe(n+1)

w(n+ 1) = w(n)+ µ
[

fe(n)
]

|e(n)|p−1sgn(n)x(n)

end
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The formula for updating the weights of the IVSS-LMP algorithm is:

Here, µ[fe(n)]|e(n)|(p−1) can be considered as the total step length of the LMS algo-
rithm, The algorithm converges only when the step size in the LMS algorithm satisfies 
0 < µ < 2

3tr(R) [9]. Therefore, the IVSS-LMP algorithm step size should satisfy:

Here, tr(·) denotes the trace of the matrix, R = E
[

xT (n)x(n)
]

 is the auto-correlation 
matrix of the input signal, and 0 < p < α (α is the parameter of impulsive noise). Thus, 
|e(n)|p−2 ≤ 1.

Bringing Eq. (9) into (12) yields the inequality:

Therefore, the proposed LMP algorithm converges when the parameters satisfy the 
above formula.

4  Simulation analysis
This study applies the proposed IVSS-LMP algorithm to channel estimation under 
α-stable distributed impulsive noise interference, where the input signal x(n) obeys a 
Gaussian distribution with mean 0 and variance 1. The weight vector w0 of the unknown 
system also obeys a Gaussian distribution with mean 0. The filter order is M = 128, and 
the number of sampling points performed is 20,000 points each time. In order to reflect 
the performance of the algorithm in the case of abrupt changes in the system, the system 
is abruptly changed at 10,000 iterations (using the method of changing the weight vec-
tor to the opposite of the original). The final simulation results are then averaged over 20 
Monte Carlo simulations to obtain a more easily comparable simulation [10].

To better measure the performance of the algorithm in channel estimation, this paper 
applies Normalized Mean Square Deviation (NMSD) of the weights to reflect the effect 
of the algorithm. The estimated channel parameters are compared with the original sim-
ulated channel parameters by normalizing the difference, so as to reflect the effective-
ness of the algorithm more intuitively and accurately. A smaller NMSD value indicates 
that the convergence of the algorithm is better. The expression is:

In the simulation experiments, α-stable distribution is used as the impulsive noise 
model. The steady-state distribution noise is a class of random noise with linear spikes 

(10)µ
(

fe(n+ 1)
)

≤
αe−1

β

(11)w(n+ 1) = w(n)+ µ[fe(n)]|e(n)|
p−2e(n)x(n)

(12)0 ≤ µ[fe(n)]|e(n)|
p−2 ≤

2

3tr(R)

(13)
α

β
≤

2e

3tr(R)

(14)NMSD = 10 log10

[

�w0 − w(n)�2

�w0�
2

]
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and trailing effect. It does not have a uniform probability density function, but rather a 
unified characteristic function [11], which can be expressed as:

Here, sgn(·) is the sign function:

Since impulsive noise does not have second-order statistics such as variance and cor-
relation functions, the traditional signal-to-noise ratio function is ineffective under the 
α-stable distributed noise. Hence, the following equation can be used to measure the 
signal-to-noise ratio of impulsive noise to the useful signal [12]:

Here, σs2 is the variance of the input signal, and γ is the dispersion coefficient of the 
α-stable distribution.

4.1  Comparison with unimproved algorithm

By comparing the error functions before and after the improvement, we can visually 
analyze the difference between the improved algorithm and the one before the improve-
ment. The following involves parameter θ taking the value of 0.98, parameter kap tak-
ing the value of 1, parameter α taking the value of 0.0007, parameter β taking the value 
of 0.004, and parameter k taking the value of 3. In order to compare the effect of two 
error functions more intuitively, the error function is treated logarithmically, as shown 
in Fig. 3.

In this figure the variance of the error function of VSS-LMP is 543.4234, and the vari-
ance of the error function of IVSS-LMP is 191.2481. From the figure we also find in the 
face of impulsive noise that the error function constructed by IVSS-LMP has smaller 
fluctuations than the direct use of error; i.e., better robustness against impulsive noise. 

(15)ϕ(t) = exp
{

jat − γ |t|α[1+ jβsgn(t)ω(t,α)]
}

(16)ω(t,α) =

{

tan (απ)/2, α �= 1
(2/π) log |t| α = 1

(17)SNR = 10 log
(

σ 2
s /γ

)

Fig. 3 Comparison of different error functions
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Using this property, the algorithm can achieve a lower normalized mean square error at 
convergence.

From a comparison with the algorithm before the improvement, the following is the 
result of the simulation with the same parameters except for the newly added variables. 
Here, 123 represents the three parameter cases respectively, as shown in Table 2.

The simulation of VSS-LMP and the improved IVSS-LMP are compared according to 
the parameters in the table. The comparison results appear in Fig. 4.

A comparison of the performance under random parameters shows that the errors 
at convergence of the IVSS-LMP algorithm are lower than those of the VSS-LMP 
algorithm before the improvement. The remaining parameters are guaranteed to be 
unchanged except for the newly added parameters.

4.2  Parameter analysis

To investigate the effect of parameter k on the performance of the algorithm, param-
eter kap is taken as 1, smoothing factor θ is taken as 0.97, parameter α is taken as 0.001, 
parameter β is taken as 0.0038, and algorithm parametric number p is taken as 1.15, The 
above parameters are selected by trial-and-error method under the condition of step sta-
bility to obtain the best value [13]. Parameter k is taken as 2, 3, 4, and 5 respectively, in 
order to compare the effect of parameter k on the algorithm more intuitively. The algo-
rithm before improvement is also added as a reference. The simulation pulsive noise 
parameters are N = [1.5, 0, 0.04, 0], and the noise signal is shown in Fig. 5.

Under the simulation pulse noise, the algorithm performance curve is shown in Fig. 6.
Analysis of the graph shows that the NMSD values when the algorithm converges 

are − 26.82 dB, − 23.33 dB, − 22.08 dB, and − 20.14 dB when the values of k are taken 

Table 2 the parameters of different cases

Case θ kap α β k

1 0.98 0.9 0.0007 0.004 3

2 0.9 0.8 0.0008 0.003 3

3 0.98 0.7 0.0006 0.004 4

Fig. 4 Comparison of the algorithms under random parameters
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as 1, 2, 3, 4, and 5, respectively. Compared to VSS-LMP (i.e., when no forward mul-
tiple error correction is made, with an increasing value of k, the convergence rate 
gradually decreases. However, after convergence in order to achieve a lower NMSD, 
for the variable hydroacoustic channel environment, a low error is particularly impor-
tant, and from the simulation it can be seen that the algorithm with forward error 
correction has a significant improvement in the convergence effect. The difference 
in the steady state achieved for values of k greater than 3 is not significant. Moreo-
ver, the performance of the improved algorithm decreases compared to the original 
algorithm for values of parameter k greater than or equal to 5. Combining the time 
required to reach steady state with the value of NMSD, the simulation is relatively 
better at parameter k = 3.

To research the effect of parameter θ on the performance of the algorithm, the value of 
parameter k is taken as 3, the value of θ is taken as 0.86, 0.87, 0.88, 0.89, 0.96, 0.97, 0.98, 
and 0.99, and other parameters remain constant. The performance of the algorithm is 
shown in Fig. 7.

Fig. 5 Reference impulsive noise

Fig. 6 Comparison under different parameter k 
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By analyzing the graph, we see that as the value of θ becomes larger, the time required 
to reach steady state increases while still being able to reach a lower steady state. The 
simulation figure shows that θ of the algorithm can affect system convergence. With 
all other parameters being the same, the convergence is better when θ is close to 1. In 
the case of changing only θ, the better the convergence effect is, the more times it takes 
to reach steady-state convergence. At θ = 0.98, the fluctuation of NMSD after reaching 
steady state is smaller, and so the value of parameter θ is taken as 0.98.

To study the effect of parameter α on the performance of the algorithm, the value of 
parameter θ is taken as 0.98, the value of parameter α is taken as 0.0004, 0.0005, 0.0006, 
0.0007, 0.0008, and 0.0009, and other parameters remain constant. The performance of 
the algorithm appears as the Fig. 8.

Analyzing this figure, the value of parameter α affects convergence speed as well as 
the convergence effect when the steady state is reached. As the value of α increases from 
0.0004 to 0.0009, the number of algorithm convergence steps are respectively 5467, 4399, 
3940, 3520, 3043, and 2621, and the convergence speed keeps getting faster. After con-
vergence of the algorithm, NMSD values are − 27.43 dB, − 26.11 dB, − 25.45 dB, − 24.71 
dB, − 24.08 dB, and − 23.18 dB, respectively. From the data, we see that the gain is very 

Fig. 7 Comparison under different parameter θ 

Fig. 8 Comparison under different parameter α 
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high at the beginning when the value of α decreases; i.e., sacrificing less convergence 
speed in exchange for better convergence. However, as α decreases further, the gains 
start to decline, even sacrificing more than double the previous number of steps while 
gaining the same convergence effect. Therefore, considering the two factors, parameter α 
is taken as 0.0006.

To study the effect of parameter β on the performance of the algorithm, the value of 
parameter α is taken as 0.0007 and the value of parameter β is taken as 0.001, 0.003, 
0.004, 0.005, 0.007, and 0.01. The simulation results appear as the Fig. 9.

Analyzing this figure, the steady-state fluctuation is larger when β is small. As β 
increases, the convergence speed decreases, but the steady-state error turns higher. The 
magnitude of fluctuation after reaching the steady state is integrated, and parameter β at 
0.004 in this algorithm is better.

To analyze the effect of parameter kap on the algorithm, the parameter β value is 0.004 
and the parameter kap values are set to 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3. The simulation yields 
in Fig. 10.

The figure shows that as the kap value increases, the convergence speed becomes faster, 
the convergence error increases, and better gains can be obtained by increasing the kap 

Fig. 9 Comparison under different parameter β 

Fig. 10 Comparison under different parameter kap
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value when the kap value is low (getting faster at the expense of the same NMSD). We 
also find when the parameter kap value is greater than 1 that the ratio of convergence 
speed to the number of iterations changes rapidly. In the case of kap values of 1.1 and 1.2, 
the convergence effect is similar, but in the case of kap value of 1.1, there is less fluctua-
tion after convergence. Taking this into account, the value of kap in this algorithm is 1.1.

4.3  Comparison of simulated channel algorithms

We now introduce the improved sigmoid function-based [14] into the LMP algorithm to 
form the sigmoid variable step-size least mean p-power (SVS-LMP) algorithm. We then 
add the improved inverse hyperbolic tangent function [15] into the LMP algorithm to 
form the inverse hyperbolic tangent variable step-size LMP (IHTVS-LMP) algorithm. 
Lastly, we present a normal distribution curve [16] to construct a normal distribution 
curve step-size LMP (NDCS-LMP) algorithm. Here, each algorithmic parameter is 
adjusted to the appropriate value, as shown in Table 3.

The simulation is shown in Fig. 11.

Table 3 the parameters of different algorithm under simulated channel

Algorithm Step α β θ kap

LMS 0.005

LMP 0.005

SVS-LMP θ

[

1
1+exp (−α|e(n)|)

− 0.5
]

0.4 0.009

IHTVS-LMP θ × ar tan ch
(

α × |e(n)|β
)

0.02 0.1 0.18

NDCS-LMP θ
[

1− exp
(

−α|e(n)|β
)]

0.1 2 0.007

VSS-LMP µ = θµ(e(n− 1))+ (1− θ)α|e(n)|2 exp
(

−β|e(n)|2
)

0.0006 0.004 0.98

IVSS-LMP
f = kap ×

√

√

√

√

n
∑

i=n−k+1

|e(i)|2

µ = θµfe(n− 1)+ (1− θ)αfe(n) exp (−βfe(n))

0.0006 0.004 0.98 1.1

Fig. 11 Comparison of different algorithms under simulated channel
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Comparing the simulation plots of different algorithms in the literature with a sig-
nal-to-noise ratio of 24 dB, the LMS algorithm suffers from poor convergence perfor-
mance when faced with impulse interference. Therefore, we adopt the LMP algorithm to 
improve the convergence performance under impulse interference. Through comparison 
of the convergence performance, we show that the proposed algorithm achieves better 
convergence performance with the same number of iterations, and has lower steady-
state error than the existing algorithms. Moreover, the proposed algorithm exhibits sig-
nificant improvement in scenarios where the channel undergoes abrupt changes.

4.4  Comparison of actual channel algorithms

To further investigate the performance of each algorithm, this section applies IVSS-
LMP to an actual channel for comparison. Under impulsive noise, the measured hydroa-
coustic channel impulse response is identified as a weight vector in this section, and the 
estimation performance of each algorithm is simulated. The actual measured channel 
impact response at a given moment in Norwegian waters [17] is shown in Fig. 12.

The impulse response of the actual hydroacoustic channel is sampled at 1  kHz, and 
the length of the channel is 256  ms. Thus, this section selects it as the unknown sys-
tem response to be identified. The number of sampling points is 2 ×  104, and at 1 ×  104 
sampling moments, the system undergoes a sudden change; i.e., the channel impulse 
response is inverted, where the parameters of the comparison signal are shown in 
Table 4.

The convergence curves of each algorithm are shown in Figs. 13 and 14.
The data in Fig. 13 shows that the LMS algorithm fails to converge in the presence of 

impulse interference in a realistic underwater acoustic channel. By contrast, the experi-
mental data we find in Fig. 14 demonstrates that the proposed algorithm can obtain bet-
ter convergence in channel estimation of real hydroacoustic channels under impulsive 
interference with the same number of iterations when comparing the algorithm before 
improvement and the LMP algorithm using other criteria.

Fig. 12 The actual channel impact response
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Table 4 the parameters of different algorithm under actual channel

Algorithm Step α β θ kap

LMS 0.0035

LMP 0.0035

SVS-LMP θ

[

1
1+exp (−α|e(n)|)

− 0.5
]

0.4 0.009

IHTVS-LMP θ × ar tan ch
(

α × |e(n)|β
)

0.02 0.1 0.18

NDCS-LMP θ
[

1− exp
(

−α|e(n)|β
)]

0.4 1.15 0.0068

VSS-LMP µ = θµ(e(n− 1))+ (1− θ)α|e(n)|2 exp
(

−β|e(n)|2
)

0.0006 0.01 0.98

IVSS-LMP
f = kap ×

√

√

√

√

n
∑

i=n−k+1

|e(i)|2

µ = θµfe(n− 1)+ (1− θ)αfe(n) exp (−βfe(n))

0.0007 0.01 0.98 0.9

Fig. 13 Comparison of LMS and LMP under actual channel

Fig. 14 Comparison of different algorithms under actual channel
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5  Conclusion
Under the background of α-stable impulsive noise, this paper considers the influence 
of the error of the current moment and several previous moments on the convergence 
effect of the algorithm. The study then optimizes the algorithm on the basis of the 
improved Gaussian function, constructs a variable-step function by using the moving 
average method, and proposes an improved variable-step LMP adaptive filtering algo-
rithm with robustness to impulse noise. Simulation experiments show that the IVSS-
LMP algorithm has faster convergence and better system tracking capability than the 
fixed-step LMP algorithm and existing variable-step algorithms. The proposed IVSS-
LMP algorithm also achieves faster convergence while guaranteeing low steady-state 
error through actual hydroacoustic channel identification experiments.

Abbreviations
LMS  Least mean square
LMP  Least mean p-power
VSS-LMP  Variable step-size least mean p-power
IVSS-LMP  Improved variable step-size least mean p-power
NMSD  Normalized mean square deviation
SVS-LMP  Sigmoid variable step-size least mean p-power
IHTVS-LMP  Inverse hyperbolic tangent variable step-size least mean p-power
NDCS-LMP  Normal distribution curve step-size least mean p-power
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