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Abstract 

In challenging circumstances, the estimation performance of integrated navigation 
parameters for tightly coupled GNSS/SINS is impacted by outlier measurements. 
An effective solution that employs a novel iterative sigma-point structure with a modi-
fied robustness optimization approach for enhancing the error compensation effec-
tiveness and robustness of filters utilized in GNSS challenge conditions is proposed 
in this paper. The proposed method modifies the CKF scheme by incorporating nonlin-
ear regression and numerous iteration processes for ameliorating error compensation. 
Subsequently, a loss function and penalty mechanism are implemented to enhance 
the filter’s robustness to outlier measurements. Furthermore, to fully incorporate valid 
information of the innovation and speed up the operation of the proposed method, 
the outlier measurement detection criteria are established to bypass the penalty mech-
anism against measurement weights in the absence of outliers in GNSS measurements. 
Field experiments demonstrate that the proposed method outperforms traditional 
methods in mitigating navigation errors, particularly when multipath errors and non-
line-of-sight (NLOS) reception are increased.

Keywords:  GNSS challenge conditions, Iterated CKF, Robust estimation, Outlier 
measurement

1  Introduction
Both strapdown inertial navigation system (SINS) and global satellite navigation sys-
tem (GNSS) have certain limitations when used separately. GNSS signal is vulnerable 
to instantaneous interference and attenuation, and inertial instruments of SINS are 
susceptible to drift and noise, which can accumulate errors rapidly over time [1]. The 
complementing qualities of the two systems have led to a widespread adoption of their 
integrated system in the navigation field [2, 3]. For the tightly coupled GNSS/SINS inte-
grated navigation applications, the parameter estimation is usually specified as a nonlin-
ear filtering process considering multiple information fusion owing to the nonlinearity 
of error equations.

For the above nonlinear model, extended Kalman filter (EKF) extends the original 
Kalman filter to support nonlinear models by linearizing the system model at the latest 
estimation, which has a wide range of applications of the navigation fields [4–6]. None-
theless, in systems with significant nonlinearity, EKF can yield substantial approximation 
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errors. And the computation of the Jacobian matrix is mandatory during the implemen-
tation, which can be computationally expensive, especially for large systems. In addition, 
the unscented Kalman filter (UKF) is designed by incorporating the unscented transform 
(UT) from particle filter into the Kalman filter process [7]. UKF has been demonstrated 
through experiments to have superior nonlinear approximation accuracy over EKF, and 
the Jacobian matrix is not required. Furthermore, the quadrature Kalman filter (QKF) is 
designed by utilizing the Gauss–Hermite quadrature points and results in a substantial 
enhancement of the accurate calculation of conditional density [8]. Nevertheless, UKF 
necessitates specific sampling models to guarantee filtering reliability, and QKF has a 
high computational complexity. Inspired by the weakness of the above filters, according 
to the deterministic numerical integration criteria, cubature Kalman filter (CKF) is pro-
posed to propagate the state and covariance matrix through the nonlinear system model. 
In comparison with the previous variant Kalman filters, the cubature technique provides 
a more accurate estimate of the state distribution by approximating the probability den-
sity function using cubature points [9].

It is noteworthy that obtaining parameter estimation via Bayesian estimation frame-
work requires the corresponding filter to calculate the posterior probability distribu-
tion, regardless of whether one uses sigma-point filtering technology. In the face of the 
challenges posed by urban canyons, increased multipath errors and non-line-of-sight 
(NLOS) reception lead to outlier measurements and time-varying noise. As a result, 
the accuracy approximation of the probability distribution in the measurement update 
process is impaired and the convergence speed and robustness in the whole process are 
diminished in GNSS challenge conditions.

In order to accelerate the filter’s convergence, Skoglund first examined the itera-
tive EKF method from an optimization standpoint and demonstrated that the iterated 
update process outperforms the traditional ones [10]. In the meantime, a central differ-
ence Kalman filter that also used an iterative approach was applied to obtain fast con-
vergence results with favorable performance, although the convergence is significantly 
influenced upon the chosen iteration length [11]. Additionally, some sigma-point itera-
tion approaches are recommended for addressing the issue of particle degradation in 
particle filters. These approaches offer superior benefits compared to non-iterative algo-
rithms when dealing with significant noise and accurate measurements.

In order to enhance the filter’s robustness, several robust techniques are recommended 
for mitigating the impact of GNSS outliers. Instead of using additional 3D building models 
or maps, researchers utilized the robust models [12, 13] for diminishing outlier interfer-
ence. From the perspective of noise distribution, outliers are regarded as measurements 
from unreliable sensors, which polluted by heavy-tailed noise [14, 15]. And the Student’s 
t distribution is applied instead of replacing Gaussian distribution to approximate the pos-
terior probability density function (PDF) in measurement update process. In addition, the 
dynamic covariance estimation method is proposed, which regards the covariance of obser-
vations as a crucial parameter that the estimator must estimate [13]. Subsequently, the fil-
tering procedure modifies the weights of outliers to lessen their influence. Furthermore, our 
previous work also designed robust filters for suppressing the influence of unknown inter-
ference on the system in challenging circumstances, including the H∞ control theory-based 
filter [16] and the Krein space theory-based filter [17, 18]. In conclusion, incorporating 
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robust M-estimation techniques can assist in minimizing the significant influence of outlier 
measurements [19]. Regrettably, it is required to choose between convergence speed and 
robustness since many robust kernel functions in the robust estimation do not have global 
convexity. Owing to the above reasons, the M-estimation techniques can only obtain the 
suboptimal solution.

Motivated by the previous work, a novel robust estimation-based iterated CKF is pro-
posed to minimize the significant influence of outlier measurements on the GNSS/SINS 
integrated system operating in challenging circumstances. The proposed method modi-
fies the CKF scheme by incorporating nonlinear regression and numerous iteration pro-
cesses for ameliorating error compensation. Besides, the filter’s reliability is strengthened by 
implemented a loss function and penalty mechanism, which reduces the weights of outlier 
measurements. Furthermore, the outlier measurement detection criteria are established to 
bypass the penalty mechanism against measurement weights in the absence of outliers in 
GNSS measurements in order to fully absorb the valid information of the innovation and 
speed up the operation of the proposed method.

The following are the primary innovation of this work:

1.	 Based on maximum-a posteriori (MAP) estimation, a new sigma-point structure is 
established compared with the original EKF-based MAP to weaken the effect of the 
prior state error in the posterior updating process. And the valid information in the 
innovation is extracted sufficiently to speed up the state estimation through the itera-
tion update framework.

2.	 The robust M-estimation approach and penalty mechanism are designed to suppress 
GNSS outlier interference and ensure the stability of the filtering process.

3.	 The outlier measurement detection criteria is established to fully absorb the effec-
tive information of innovation and speed up the operation of the proposed algorithm 
when there are no outliers in GNSS measurement.

The rest is organized as below. The iterative process of novel CKF framework and 
robust estimation is deduced in Sect. 2. The detection criteria of outlier measurement are 
described in Sect. 3. The field test for performance evaluation of proposed algorithm is run 
in Sect. 4. Afterward, a logical conclusion is summarized in Sect. 5.

2 � Novel iterated CKF framework
2.1 � Problem statement

Describe a discrete system as below:

where k denotes the discrete point, xk and yk are states and observations, ωk−1, ηk 
denote Gaussian noise whose covariances Qk−1 and Rk. f(·), h(·) represent nonlin-
ear models. Since the posterior PDF ρ(xk−1|y1,k−1) ∼ N (xk−1|x̂k−1|k−1,Pk−1|k−1) 
of previous moment is available, prior PDF ρ(xk |y1,k−1) ∼ N (xk |x̂k|k−1,Pk|k−1) is 
able to be calculated at the next moment via the approximation method, where 
y1,k−1 = y1, y2, . . . , yk−1  denotes the observation set, x̂k|k−1 denotes the estimated 

(1)
{

xk = f (xk−1)+ ωk−1

yk = h(xk)+ ηk
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value of x from the estimated time k − 1 to k. Exceptionally, the double subscript are the 
same time, which represents the optimal estimate. In addition, the Pk−1|k−1,Pk|k−1 rep-
resent the error covariance in posterior estimation and prior prediction.

The posterior update stage based on nonlinear Bayesian estimation is printed as:

where det is the computer function for obtaining the determinant of a matrix, ℜn is the 
n-dimensional set of real numbers, Pzz

k|k−1,P
xz
k|k−1 denotes the error covariance of obser-

vations and the error cross-covariance of states and observations. As a result, the esti-
mated PDF with new measurement is ρ(yk |xk) ∼ N (yk |ŷk|k−1,P

zz
k|k−1).

Due to the nonlinearity in observation equation h(·) in Eq. (1), the detailed repre-
sentation of solution in Eqs. (2–4) is difficult to build via the conventional method. To 
solve the above issue, the posterior PDF is approximated using MAP approach and 
linear minimization approach in references [10, 20], which can obtain effective esti-
mation. However, the EKF-based MAP approach in Ref. [10] is difficult to ensure the 
stability of the filter in the application with high nonlinearity. And the linear minimi-
zation approach in Ref. [20] has a high calculation cost, which is difficult to achieve 
an accurate posterior PDF in the presence of significant errors.

2.2 � Iterated CKF based on Bayesian MAP estimation method

The above-mentioned MAP approach is considered for establishing the novel sigma-
point structure. Then, the posterior PDF is described as:

where exp(·) is the exponential arithmetic with a natural number base.
The optimal state is estimated by maximizing a posteriori PDF in the criterion. This 

is similar to the parameter solution of the nonlinear regression problem. Therefore, 
the objective function can be converted to the following form:

(2)
ŷk|k−1 =

∫

ℜn
h(t)

1

((2π)n det Pk|k−1)
1/ 2

× exp

[

−1

2
(t − x̂k|k−1)

TP−1
k|k−1(t − x̂k|k−1)

]

dt

(3)
Pzz
k|k−1 =

∫

ℜn
(h(t)− ŷk|k−1)(h(t)− ŷk|k−1)

T 1

((2π)n det Pk|k−1)
1/ 2

× exp

[

−1

2
(t − x̂k|k−1)

TP−1
k|k−1(t − x̂k|k−1)

]

dt

(4)
Pxz
k|k−1 =

∫

ℜn
(t − x̂k|k−1)(h(t)− ŷk|k−1)

T 1

((2π)n det Pk|k−1)
1/ 2

× exp

[

−1

2
(t − x̂k|k−1)

TP−1
k|k−1(t − x̂k|k−1)

]

dt

(5)p(xk |y1,k) ∝ p(xk |y1,k−1)p(yk |xk) ∝ exp





−1

2
(yk − h(xk))

TR−1
k (yk − h(xk))

+(x̂k|k−1 − xk)
TP−1

k|k−1(x̂k|k−1 − xk)




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where V(x) denotes the quadratic cost function. For the regression equation of nonlinear 
structure established by Eq. (6), the iterative least squares method, such as Newton itera-
tion rule, is usually utilized to achieve local approximation. The iterative form of local 
approximation is considered as:

where i is the iterations. Suppose the partial derivative Hi = ∂h(x)
∂x |x=x̂i|i−1

 holds, the Hes-
sian and Jacobian matrices of cost function are ∇2V (xi) ≈ JT (xi)J (xi) and 
∇V (xi) = JT (xi)r(xi) , where J (xi) = ∂r(x)

∂x |x=x̂i|i−1
= −

[

R
−1/2
k Hi P

−1/2
k|k−1

]T
 and 

r(xi) =
[

R
−1/2
k

(

yk − h(xk)
)

P
−1/2
k|k−1

(

x̂k|k−1 − xk
)

]T
 . As a result, the iterative form in 

Eq. (7) is able to refined as:

To make the formula easier to understand and operate, it is rewritten as the general 
form of Bayesian estimation:

where ỹk = yk − ŷk , x̃k = xk − x̂k ,Ki = Pk|k−1H
T
k

(

HkPk|k−1H
T
k + Rk

)−1 , is a gain 
matrix. The ỹ denotes the estimated error of y. In CKF structure, in order to use iterative 
Eq. (9) and eliminate linearization error, the covariance form is substituted for likelihood 
form as below.

Substitute Eqs. (10)–(11) into Eq. (9):

Compared with the original EKF-based MAP estimation, the impact of a priori state 
errors in the posterior update process is weakened by the novel sigma-point structure. 
Moreover, the linearization truncation error is further reduced in each iteration update 

(6)

x̂MAP
k|k = arg max ρ(xk |y1,k) = arg min

xk∈ℜn×1

1

2

[

(yk − h(xk))
TR−1

k (yk − h(xk))+
(x̂k|k−1 − xk)

TP−1
k|k−1(x̂k|k−1 − xk)

]

= arg min
xk∈ℜn×1

1

2
V (xk) = arg min

xk∈ℜn×1

1

2
rT (xk)r(xk)

(7)xi+1 = xi − (∇2V (xi))
−1∇V (xi)

(8)xi+1 = xi − (JT (xi)J (xi))
−1JT (xi)ri(xi)

(9)
xi+1 = xi + (P−1

k|k−1 +HT
i R−1

k Hi)
−1(HT

i R−1
k ỹk + P−1

k|k−1x̃k)

= x̂k|k−1 + Ki(yk − h(xi)−Hi(x̂k|k−1 − xi))

(10)
Pyy,k|k−1 = E

{

(yk −Hkx̂k|k−1)(yk −Hkx̂k|k−1)
T
}

= HkPk|k−1H
T
k + Rk

(11)
Pxy,k|k−1 = E

{

(xk − X̂k|k−1)(yk −HkX̂k|k−1)
T
}

= Pk|k−1H
T
k

(12)
xi+1 = x̂k|k−1 +

{

Pxy,k|k−1(Pyy,k|k−1)
−1[yk − h(xi)− PT

xy,k|k−1P
−1
k|k−1(x̂k|k−1 − xi)]

}
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in Eq. (12). And the valid information in the innovation is extracted sufficiently to speed 
up the state estimation through the iteration update framework.

2.3 � Robust estimation approach

The minimized sum of squared errors is usually used as the cost function for conven-
tional state estimations, but it is very sensitive to outliers that exceed 3 times the stand-
ard deviation. Therefore, to suppress outlier interference and ensure the stability of the 
filtering process, robust M-estimation approaches are considered as an effective solution 
to the above issue. And the basic concept of M-estimation revolves around the construc-
tion of robust kernel functions, substituting various nonlinear damping components for 
the old squared components to formulate optimization rules. The M-estimation objec-
tive constructed for suppressing outliers is printed as:

where X* is robust estimated state; T(·) is the robust kernel function, and �·�2P is the 
Mahalanobis distance with the covariance P. Further, adding restrictions on the weights 
of the measurements in the estimation process can guarantee its own smoothness while 
enhancing outlier suppression and obtaining a more robust solution. Thus, through the 
duality [21], the robust estimation objective in Eq. (13) can be rewritten as:

where ωk,N represents the penalty weight about Nth observation at point k; ϑ
(

ωk ,N

)

 rep-
resents the penalty mechanism, which restrict the GNSS measurements with outlier. The 
optimal robust estimated state and the optimal weight can be estimated in Eq. (14).

Specifically in this paper, the GM function is arranged into the robust core function of 
Eq. (13). As a result, T

(

∥

∥ỹki
∥

∥

2

Pyy,k|k−1

)

 and ϑ
(

ωk ,N

)

 are described as:

where eG is the modulation index, which is used to adjust the disturbance resistibility 
and sensitivity of the robust optimization process. In addition, the gradient δ

(

ωk ,N

)

 of 
the weight ωk,N can be calculated by taking the partial derivative of Eq. (14):

To find the optimal estimation of penalty weight, let the gradient δ
(

ωk ,N

)

= 0 . Then, 
the result of the closed form weight is shown as below:

(13)X
∗ = arg min

X

(

T
(

∥

∥ỹki
∥

∥

2

Pyy,k|k−1

))

(14)X∗ = arg min
X,W

∑

k ,N

(

ωk ,N

∥

∥ỹki
∥

∥

2

Pyy,k|k−1
+ ϑ

(

ωk ,N

)

)

(15)T
(

∥

∥ỹki
∥

∥

2

Pyy,k|k−1

)

=
e2G

∥

∥ỹki
∥

∥

2

Pyy,k|k−1

e2G +
∥

∥ỹki
∥

∥

2

Pyy,k|k−1

(16)ϑ
(

ωk ,N

)

= e2G
(√

ωk ,N − 1
)2

(17)δ
(

ωk ,N

)

=
∥

∥ỹki
∥

∥

2

Pyy,k|k−1
+ e2G

(

1− 1
√
ωk ,N

)
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3 � Robust strategy for mitigating outlier measurements
Before using the robust techniques, it is crucial to detect whether the measurement con-
tains outliers in advance. If the measurement quality is poor, the robust estimation equation 
mentioned above in Eqs. (14)–(18) is used to suppress the outlier interference. Conversely, 
its penalty function ϑ

(

ωk ,N

)

 is bypassed to accelerate the filter’s convergence. According to 
the hypothesis in the literature [22], outlier measurements are regard as the bad data from 
unreliable sensors, which polluted by heavy-tailed noise. In other words, specifically in the 
GNSS/SINS navigation field, the actual observed GNSS noise distribution tends to depart 
from the Gaussian distribution and exhibits a heavy-tailed distribution in the GNSS chal-
lenge conditions.

The noise distribution of the GNSS measurement sequence can be fitted with the Gauss-
ian mixture model (GMM) method based on the expectation–maximization (EM) cluster-
ing scheme to detect whether the measurement contains many outliers. Only one Gaussian 
fitting component exists, which indicates that the quality of GNSS measurement sequence 
is good. On the contrary, if more than two Gaussian fitting components exist and the mean 
value is far away from zero, it indicates that the noise distribution is a heavy-tailed distribu-
tion, which further indicates that there are many outliers the GNSS measurement sequence.

3.1 � Outlier measurement detection criteria

Suppose there exists a set of GNSS error sequences D and the random variable 
Ỹ =

{

ỹ1, ỹ2, . . . , ỹm
}

 follows a Gaussian mixture distribution with parameters 
ρ =

{

ρ1,ρ2, . . . ,ρn
}

= (u,�) , where ỹk is a multidimensional vector, and the PDF of the 
Gaussian mixture distribution f ( Ỹ

∣

∣

∣u,�) is considered as:

where fj( ỹk
∣

∣uj ,�j) denotes the probability density of the kth Gaussian model compo-
nent; uj, Σj are the mean and variance of Gaussian model components, respectively, 
which together characterize the Gaussian model; ̟j is the mixture weight, which indi-
cates the proportion of samples contained in the kth Gaussian model component to the 
whole samples; n is the quantity of Gaussian model components representing the final 
clustering.

The probability density of each Gaussian component is specifically described as:

The original measured sequence Ỹ =
{

ỹ1, ỹ2, . . . , ỹm
}

 is expanded into a whole dataset 
� =

{

Ỹ,Ŵ
}

 , where �k =
(

ỹk ,Ŵk

)

 . And Ŵk = {Ŵk1,Ŵk2, . . . ,Ŵkn} is the implicit sequence 

and its parameter is printed as:

(18)ωk ,N =





e2G

e2G +
�

�ỹki
�

�

2

Pyy,k|k−1





2

∈ (0, 1)

(19)f ( Ỹ
∣

∣

∣u,�) =
n

∑

j=1

̟j fj( ỹk
∣

∣uj ,�j)

(20)fj( ỹk
∣

∣uj ,�j) =
exp

[

− 1
2

(

ỹk − uj
)T

�−1
j

(

ỹk − uj
)

]

((2π)m det�j)
1/ 2
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And the maximum likelihood function for whole dataset can be written below.

In the EM clustering scheme, the final maximum likelihood estimate is obtained by 
iteratively optimizing the lower bound of the log-likelihood function in Eq. (22). And the 
EM clustering scheme includes the following two steps:

(1)	 E-Step: Compute the expectation Q of the conditional probability distribution func-
tion p

(

Ŵ|Ỹ,ρ
)

 with implicit parameters Γkj, and estimate the implicit parameters 

Γkj.

(2)	 M-Step: Make Q
(

ρ,ρk
)

 , obtain the maximum value and solve the optimal param-
eter ρ∗ = arg max Q

(

ρ,ρk
)

 of the Gaussian model components.

The mixed weight ̟j , mean uj and variance Σj of the 1st to nth Gaussian component 
from are calculated as follows:

The traditional EM clustering scheme needs to initially set the fixed quantity of 
Gaussian model components in advance, which cannot meet the requirements of adap-
tive judgment of the components in outlier detection. Thus, a fast-greedy strategy of 
EM clustering scheme is proposed in this section to perform the best match between 
the measurement sequence and the fitting model. The fast-greedy strategy initializes 
the original data set as a GMM containing only one Gaussian fitting component and 

(21)Ŵkj =
{

0, ỹk /∈ ρj

1, ỹk ∈ ρj
j = 1, 2, . . . , n

(22)L
(

ρj ,̟j , Ŵkj

∣

∣Ỹ

)

=
m
∑

k=1

n
∑

j=1

Ŵkj log2

[

̟j fj( ỹk
∣

∣ρj)

]

(23)
Q
(

ρ,ρk
)

= E
(

log2

[

L
(

ρ|Ỹ,Ŵ
)])

=
m
∑

k=1

n
∑

j=1

Ŵkj log2

[

̟j fj( ỹk
∣

∣ρj)

]

=
∫

Ŵ

log2

[

L
(

ρ|Ỹ,Ŵ
)]T

f
(

Ŵ|ρ(k−1)
)

dŴ

(24)Ŵ̂kj =
[

̟j fj( ỹk
∣

∣ρj)

]

/

n
∑

l=1

̟l fl( ỹk
∣

∣ρl)

(25)̟j =
m
∑

k=1

Ŵ̂kj

/

m, j = 1, 2, . . . , n

(26)uj =
(

m
∑

k=1

Ŵ̂kj ỹk

)/

m, j = 1, 2, . . . , n

(27)�j =
(

m
∑

k=1

Ŵ̂kj

(

ỹk − uj
)(

ỹk − uj
)T

)/

m
∑

k=1

Ŵ̂kj , j = 1, 2, . . . , n
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gradually adds new components to the original GMM until the corresponding GMM 
log-likelihood function takes the maximum value, i.e., Ln∗ > Ln∗+1&Ln∗ > Ln∗−1 where 
n* is the ideal number of GMM components.

Suppose the probability density of a certain GMM is fn
(

ỹ
)

 when the number of Gauss-
ian components is n. After adding a new Gaussian component G

(

ỹ; ρ
)

 , a new GMM is 
regenerated whose probability density function is written as:

where Λ is mixed weight of the new Gaussian component. And the mixed weights of the 
original GMM components are (1−�)̟n . Then, the new GMM log-likelihood function 
is described as:

To maximize the new GMM log-likelihood function Ln+1, a global search method 
is used to optimize the parameter ρn+1 = (uj ,�j) and weight Λ of the new Gaussian 
component.

Suppose the new component follows standard normal distribution. Then expand the 
second-order Taylor formula for Ln+1 at �0 = 1

/

2 and maximize the quadratic function 
with respect to Λ as:

Define δ
(

ỹ; ρ
)

= fn(ỹ)−G(ỹ;ρ)
fn(ỹ)+G(ỹ;ρ) . The local optimum of log-likelihood function Ln+1 near 

�0 = 1
/

2 can be written as:

Based on Eq. (31), the weight of the new components is estimated by global search as 
follows:

Then, the optimal parameter ρn+1 = (uj ,�j) of the new components can be obtained 
through Eqs. (23)–(27) of the EM clustering scheme, and the new GMM log-like-
lihood function can be further calculated. The ideal number n* of GMM components 
can be obtained by repeatedly adding new Gaussian components until condition 
Ln∗ > Ln∗+1&Ln∗ > Ln∗−1 is satisfied.

When measured sequence Ỹ =
{

ỹ1, ỹ2, . . . , ỹm
}

 is very large, optimal parameters and 
weights take many iterations to converge in the EM clustering scheme, resulting in more 
time cost than expected. Since the implicit parameter Ŵ̂kj is a posteriori probability that 
the sample ỹ belongs to the kth Gaussian component obtained through E-Step in the 

(28)fn+1

(

ỹ
)

= (1−�)fn
(

ỹ
)

+�G
(

ỹ; ρ
)

(29)Ln+1 =
m
∑

k=1

log2
[

(1−�)fn
(

ỹ
)

+�G
(

ỹ; ρ
)]

(30)L̂n+1 = Ln+1(�|�0)−
[

L′n+1(�|�0)
]2
/2L′′n+1(�|�0)

(31)L̂n+1 =
m
∑

k=1

log2
[

fn
(

ỹ
)

+ G
(

ỹ; ρ
)]

2
+

[

m
∑

k=1

δ
(

ỹ; ρ
)

]2

2
m
∑

k=1

δ2
(

ỹ; ρ
)

(32)�̂ = 1

2
−

∑m
k=1 δ

(

ỹ; ρ
)

2
∑m

k=1 δ
2
(

ỹ; ρ
)
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EM clustering scheme. In other words, the size of the implicit parameter represents the 
probability that the data ỹ belongs to the kth Gaussian component. Further, the implicit 
parameter Ŵ̂kj needs to satisfy the constraint 

∑n
j=1 Ŵ̂kj = 1 , and it is only possible for 

the final optimization result of the implicit parameter Ŵ̂kj to belong to the kth Gaussian 
component or not, i.e., Ŵ̂kj ≫ 1

/

k or Ŵ̂kj ≪ 1
/

k . Thus, most of the data in the measure-
ment sequence have an obvious tendency toward the Gaussian component to which they 
belong, implying a clear bifurcation of the implied parameters. Through multiple itera-
tions, the probability of data belonging to a certain Gaussian component is very close to 
1, and the probability of data belonging to other Gaussian components is very close to 0.

To accelerate the convergence of EM clustering scheme, it is necessary to fast elimi-
nate implicit parameters with small probability and increase the implicit parameter with 
maximum probability in the iteration process. The following restrictions on the implicit 
parameters are considered:

where γhigh, γlow is the pre-set upper and lower thresholds of restriction; t denotes the 
iteration times. Noted that to ensure the constraint 

∑n
j=1 Ŵ̂kj = 1 at any moment during 

the iterative process, it is necessary and crucial to calculate Eq. (34).
The proposed fast-greedy strategy of EM clustering scheme does not need to know the 

quantity of the Gaussian model components in advance. It can automatically obtain the 
number of the Gaussian components, improve the judgment of components, and reduce 
the calculation cost.

Finally, this improved EM clustering scheme can fast and accurately detect whether 
the GNSS measurement sequence contains many outliers. Since only one Gaussian fit 
component is present, this shows that the GNSS measurement sequence is of good qual-
ity. In contrast, the presence of more than two Gaussian mixed components with mean 
far from zero shows that the noise distribution is heavy-tailed, which further indicates 
that the GNSS measurement sequence has many outliers. Therefore, the time to use the 
robust estimation method can be adaptively determined by the outlier measurements 
detection criteria. If the measurement quality is poor, the robust estimation equation 
mentioned above in Eqs. (15)–(19) is used to suppress the outlier interference. Con-
versely, its penalty function ϑ

(

ωk ,N

)

 is bypassed to accelerate the filter’s convergence.
The steps of the fast-greedy strategy-based EM clustering scheme for GNSS outlier 

measurements detection are shown in Table 1.

3.2 � Novel robust iterated CKF structure

According to the description in Sect.  2 and Sect.  3.1, the novel robust estimation-based 
iterated CKF (IRCKF) method is designed to minimize the significant impact on the sys-
tem operating caused by outlier measurements in GNSS challenge conditions. The whole 

(33)Ŵ̂new
kj =











0, Ŵold
kj < γlow

Ŵ̂old
kj , γlow < Ŵ̂old

kj < γhigh

Ŵ̂old
kj ∗ L(t)n /L

(t−1)
n , Ŵ̂old

kj > γhigh

(34)Ŵ̂new
kj = Ŵ̂new

kj

/

n
∑

j=1

Ŵ̂new
kj
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calculation structure of IRCKF is described in Table 2. Suppose that the iteration times of 
posterior estimation is i and the iteration times of clustering scheme is t, the comparison of 
computational complexity between the proposed novel robust iterated CKF and traditional 
method is listed in Table 3.

The computational complexity of the proposed method is an important consideration 
when evaluating its efficiency. It is well known that the traditional CKF, which operates only 
once on time updates and measurement updates, mainly involves matrix operations such as 
matrix multiplication and inversion. Its computational complexity is generally determined 
by the size of the data set, and the complexity of the CKF is approximately O(d3 + m3). In 
contrast, ICKF, as an iterative variant of the CKF, performs multiple iterations of the same 
measurement update, and its main computational complexity is increased to O(id3 + m3). 
Moreover, the additional computation of outlier detection can also increase the computa-
tional complexity of the proposed novel robust iterated CKF, since outlier detection usually 
involves each measurement point and further includes a recursive convergence process of 
E and M steps.

Although the outlier detection and iterative posterior estimation introduce additional 
computational complexity O((t + 1)m3) compared to CKF and ICKF, it is worthwhile 
to address the challenges of measurement outliers and improve performance in poor 
measurement environment by investing computational resources in these additional 
steps. Meanwhile, the proposed method still meets the real-time requirement since 
both the EM clustering scheme and the posterior estimation require small regression 
times t and small iteration times i for GNSS/SINS integrated navigation applications, 
respectively.

Table 1  Outlier measurements detection criteria

˜ ˜ ˜ ˜

˜ ˜
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4 � Performance evaluation
To analyze the proposed robust iterated CKF (IRCKF)’s performance in GNSS chal-
lenge conditions, static and moving tests of GNSS/SINS integrated navigation were 
implemented. Noted that the static test is used to analyze the effectiveness of the 
proposed outlier measurement detection criterion in the presence of outliers in 
Sect.  3, and the moving test is used to examine the overall superiority of the pro-
posed algorithm over the traditional algorithms. The instruments and moving path 
in the performance evaluation are printed in Figs.  1 and 2, which mainly includes 
SPAN-IGM for collecting inertial data and GNSS pseudo-range information and 
high-precision RTK for collecting positioning and velocity reference. And the per-
formance of equipment is displayed in Table 4.

Table 2  The whole novel robust estimation-based Iterated CKF (IRCKF) method

Table 3  The comparison of computational complexity

Method Computational complexity

In detail In major

Traditional CKF O(16d3 + m3 + 8md2 + 2m2d + 4d) O(d3 + m3)

Standard iterated CKF O(8d3 + 2d + i*(8d3 + m3 + 8md2 + 2m2d + 2d)) O(id3 + m3)

The proposed novel robust 
iterated CKF

O(8d3 + m3 + 2d + i*(8d3 + 8md2 + 2m2d + 2d) + tm3) O(id3 + (t + 1)m3)
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4.1 � Static test

The location of static test in Fig.  3a is close to buildings and trees to simulate GNSS 
multipath errors and NLOS reception caused by severe urban canyon effect. As can be 
seen from the sky-view map in Fig. 3b that the satellite signals with the masking angle 
less than 50 degrees are difficult to be directly received by the GNSS receiver, result-
ing in the increase of GNSS outlier measurements. After comparing the collected GNSS 

Fig. 1  The instruments in the performance evaluation

Fig. 2  Moving path in performance evaluation

Table 4  The parameters of involved instruments

Instrument Bias stability Random walk Root mean square error (RMSE)

SPAN-IGM

Accelerometer 0.1 mg 0.03/
√
h –

Gyroscope 0.5°/h 0.15°/
√
h –

RTK receiver – – Velocity error < 0.05 m/s

Position error < 0.1 m
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single-point positioning information with the reference RTK positioning information, 
the obtained GNSS positioning error histogram through post-processing is shown in 
Fig. 4.

In post-processing statistics, it is clearly observed that the GNSS measurement errors 
have many outliers and presents a heavy-tailed distribution. However, it is not easy to 
determine whether a thick-tailed noise distribution occurs in real-time navigation, 
which further interferes with the time to use proposed robust estimation in Sect. 2. For 
GNSS outlier measurements detection in real-time, the proposed fast-greedy strategy-
based EM clustering scheme in Sect. 3 is used to fit the GNSS error sequence in real 

Fig. 3  Visualization details of static test in performance evaluation. Noted that the numbers denote the 
unique PRN of GPS satellites

Fig. 4  GNSS positioning error histogram in static test



Page 15 of 18Wang et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:83 	

time. The results show that the fitted GMM model has three Gaussian components 
including N1 ∼

(

−2.13, 3.702
)

 , N2 ∼
(

0.1, 0.622
)

 and N3 ∼
(

3.89, 1.842
)

 . And the Gauss-
ian mixed components N1 and N3 with mean far from zero show that the noise distri-
bution is heavy-tailed, which is consistent with the post-processing analysis results. 
Therefore, this improved EM clustering scheme can fast and accurately detect whether 
the GNSS measurement sequence contains many outliers. If the GNSS measurement 
quality is poor, the robust estimation equation mentioned above in Eqs. (15–19) is used 
to suppress the outlier interference. Conversely, its penalty function is bypassed to accel-
erate the filter’s convergence.

4.2 � Moving test

To validate the effect of the algorithm in the actual GNSS/SINS integrated navigation 
application, the moving test is provided to cover both poor quality GNSS measurements 
due to multipath error and NLOS reception and good quality GNSS measurements. The 
moving test lasts for 150 s. The first 45 s and the 61th to 114th seconds of the test are in 
the open area, the 45th to 61th seconds and the 114th to 150th seconds of the test are in 
the area with severe urban canyon effect, and the moving path is shown in Fig. 2. After 
post-processing, the navigation errors of different algorithm are plotted in Fig. 5.

In the face of the challenges posed by urban canyons, increased multipath errors 
and NLOS reception lead to outlier measurements and time-varying noise in the 45th 
to 61th seconds and the 114th to 150th seconds of the test. According to the Bayesian 
estimation framework, the probability distributions of state prior and measurement 
posterior need to be pre-computed in the corresponding filters to obtain the estimated 
parameters, with or without the sigma-point filtering technique.

Since the measurement noise model does not conform to the assumed single Gauss-
ian distribution but presents a heavy-tailed distribution, the accuracy approximation 
of the probability distribution in the measurement update process is impaired. As a 
result, in Fig. 5, the traditional CKF cannot deal with the effect of GNSS outliers, the 
robustness in the filtering process is reduced, and the estimation effect of navigation 
parameters is not adequate for actual needs in GNSS challenge conditions. Moreover, 
the ICKF, improved by the iterative algorithm and MAP criterion, incorporates non-
linear regression and numerous iteration processes for ameliorating error compensa-
tion. ICKF reduces the linearization truncation error in the nonlinear measurement 

Fig. 5  Navigation errors in moving test after post-processing
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update and brings effective innovation to speed up the estimation. However, the 
GNSS measurement with outliers are incorrectly absorbed by the iterated filter dur-
ing the iterative process, resulting in the posterior PDF is still inaccurate. Thus, outli-
ers continue to have an impact on the navigation system despite ICKF attempts to 
restrict them.

Aim at the aforementioned problem in GNSS challenge conditions, the proposed 
novel robust estimation-based iterated CKF (IRCKF) introduced the GM loss function 
to construct penalty mechanism on GNSS measurement with outlier in Sect.  2.3. As 
shown in Fig. 6a, the weights of all measurement sequences are updated in real time. For 
GNSS measurements with large outliers, small weights are given to limit their impact on 
the filter. On the contrary, it will be given a large weight to absorb the effective informa-
tion as soon as possible. It is clear from Fig. 5 that IRCKF has very good resistance to 
outliers. In addition, the outlier measurement detection criteria is established to fully 
absorb the effective information of innovation and speed up the operation of the pro-
posed algorithm when there are no outliers in GNSS measurement. Therefore, as shown 
in Fig. 6b, the penalty mechanism is only used to calculate the weight of GNSS measure-
ment when the noise of the GNSS measurement sequence is detected to be not a single 
Gaussian distribution based on the analysis in Sect. 4.1. The IRCKF statistical navigation 
errors in the area with GNSS outliers in Table 5 are the smallest, which indicates that the 
IRCKF outperforms the traditional methods in GNSS challenge conditions. Addition-
ally, the limit range of GNSS measurement update rate is 1–10 Hz, which is substantially 
greater than the filter processing time of about 0.0384 s. As a result, the proposed IRCKF 
can still fulfill real-time processing requirements in this case even though it may have 
higher time costs than the CKF and ICKF.

(a) before the outlier measurement detection  (b) after the outlier measurement detection 
Fig. 6  The weights of GNSS measurements under penalty mechanism

Table 5  The comparison of statistical errors

Algorithm RMSE in the open area RMSE in the area with severe urban 
canyon effect

Processing 
time (s)

Position (m) Velocity (m/s) Position(m) Velocity (m/s)

East North East North East North East North

CKF 0.70 0.72 0.15 0.13 2.14 7.87 0.23 0.23 0.0176

ICKF 0.55 0.95 0.14 0.11 1.72 5.28 0.21 0.18 0.0276

Novel IRCKF 0.53 0.63 0.11 0.11 0.67 0.47 0.14 0.13 0.0384
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5 � Conclusions
Faced with the challenges posed by urban canyons, the traditional nonlinear Kalman fil-
ters primarily address truncation errors while overlooking the potential impact of the 
outlier measurements induced by the increased multipath errors and NLOS reception. 
As a result, the accuracy approximation of the probability distribution in the measure-
ment update process is impaired and the robustness in the whole process is diminished 
in GNSS challenge conditions. This paper presents an iterated CKF utilizing a novel 
robust estimation technology to enhance the robustness of the nonlinear filter employed 
in a tightly coupled GNSS/SINS system operating in GNSS challenge conditions. But 
it is still required to choose between disturbance resistibility and sensitivity since the 
chosen robust kernel functions do not have global convexity due to the fixed modula-
tion index. In the forthcoming research, it is imperative to delve deeper into the adaptive 
modulation index and outlier detection criteria embedded in the robust kernel function 
to cater to the navigation demands of various GNSS challenge conditions.
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