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Abstract 

Intelligent vehicles should not only be able to detect various obstacles, but also iden-
tify their categories so as to take an appropriate protection and intervention. However, 
the scenarios of object detection are usually complex and changeable, so how to 
balance the relationship between accuracy and speed is a difficult task of object 
detection. This paper proposes a multi-object detection algorithm using DarkNet-53 
and dense convolution network (DenseNet) to further ensure maximum informa-
tion flow between layers. Three 8-layer dense blocks are used to replace the last three 
downsampling layers in DarkNet-53 structure, so that the network can make full use 
of multi-layer convolution features before prediction. The loss function of coordinate 
prediction error in YOLOv3 is further improved to improve the detection accuracy. 
Extensive experiments are conducted on the public KITTI and Pascal VOC datasets, 
and the results demonstrate that the proposed algorithm has better robustness, 
and the network model is more suitable for the traffic scene in the real driving environ-
ment and has better adaptability to the objects with long distance, small size and par-
tial occlusion.

Keywords: Multiclass objects detection, DarkNet-53, DenseNet, Downsampling layers, 
Loss function

1 Introduction
The main purpose of object detection is to determine whether there are any objects 
from given categories in a still image or video data, if present, to return the spatial loca-
tion and extent of each object. It is the basis of many other computer vision detection 
tasks, such as image description [1], instance segmentation [2, 3], scene understanding 
[4], and target tracking [5]. It plays an important role in intelligent transportation, video 
surveillance, automatic driving, etc. The collision warning system is an important part 
of the advanced driving assistant system (ADAS). It can make environmental awareness 
and safety warning around the vehicle, and can make corresponding driving decisions. 
However, the application scenarios of multi-object detection in the real world are usually 
complex and changeable, so how to balance the relationship between accuracy and com-
puting costs is a difficult task of object detection.
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The object detection methods have evolved from traditional stage based on feature 
extraction plus classifier to end-to-end learning stage based on deep learning. Many 
features extracted manually made some breakthroughs at that time and were used in 
today’s object detection system. The more famous ones are LBP (local binary pattern), 
Haar (haar-like features), HOG (histogram of oriented gradient), and SIFT (scale-
invariant feature transform). Following feature extraction, the kNN (k-nearest neigh-
bor), decision tree, SVM (support vector machine), Adaboost or Bayesian classifier is 
designed to obtain object information.

The traditional feature extraction models can only determine low-level feature ins-
formation, such as color information, texture information and contour information. 
The common points of manual feature extraction are intuitive and easy. However, due 
to the limitations of detecting multi-object in complex scenes, they have very poor 
generalization performance. The quality of feature extraction directly affects the per-
formance of the classifier. How to extract more stable features to reflect the essen-
tial attributes of the object has always been a research hotspot in the field of object 
detection.

As the performance of handcrafted features tends to be saturated, CNN (convolu-
tion neural network) are reborn worldwide. In the deep learning method, many tasks 
adopt the end-to-end scheme, that is, input an image and output the final desired 
results. The details of the algorithm and learning process are all handed over to CNN. 
Two-stage detection algorithm generates candidate regions and then classifies objects. 
Representative algorithms include R-CNN (region proposal convolution neural net-
work) series. One-stage detection algorithm integrates candidate region proposal, 
feature extraction and classification. The representative algorithms include SSD [6], 
YOLO [7], etc. The CNN-based deep learning method can not only extract detailed 
texture features from the previous convolution network, but also obtain high-level 
information from the subsequent convolution layers. Although the features extracted 
by CNN are not as intuitive and abstract as those manually extracted, they are deep-
level features, more stable and more able to reflect the essential attributes of objects. 
The more convolution layers are used, the more abstract features are obtained, but it 
also means that the smaller the convolution feature map is, which is not conducive to 
object detection and location.

Based on the above analysis, we proposed a novel method for multiclass object 
detection. The method combines DarkNet-53 [7] with DenseNet [8] to further ensure 
maximum information flow between layers. On the one hand, three DenseNets 
are used to replace the last three downsampling layers in DarkNet-53 structure to 
increase the network depth, so that the network can make full use of the information 
from multi-layer convolution before prediction. On the other hand, the loss function 
is designed to improve the detection performance. Finally, the experimental compari-
son and analysis are carried out on Pascal VOC and KITTI datasets.

Compared to the literature, the main contributions of our work are summarized as 
follows:

1. A new feature extraction network is proposed in this paper. By combining Dark-
Net-53 with DenseNet, the network can make full use of the information from multi-
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layer convolution before prediction, so as to reduce the difficulty of detecting small 
objects or partially occluded objects, and improve the performance of the object 
detection system in the driving environment of intelligent vehicle.

2. The loss function of coordinate prediction error in YOLOv3 [9] is further improved 
to improve the accuracy of the detection system.

3. We conduct extensive experiments on Pascal VOC and KITTI datasets, and the 
results indicate that the proposed algorithm in this paper is robust to the driving 
environment and achieves promising detection performance.

The remainder of this paper is structured as follows: Section 2 briefly introduces the 
related work. Section 3 describes the proposed algorithm in detail. In Sect. 4, we report 
the dataset, implementation detail and evaluation criteria of the experiments. In Sect. 5, 
we analyze and discus the experiments results on Pascal VOC and KITTI datasets. The 
conclusion and future works are given in Sect. 6.

2  Related work
In the past 2 decades, with the rapid development of machine learning theory, object 
detection algorithms have made great progress in theory and practice. Various algo-
rithms with higher precision, faster speed and stronger robustness emerge in endlessly. 
Object detection technology based on vision can be roughly divided into three methods: 
traditional object detection, machine learning-based object detection and deep learn-
ing-based object detection. The traditional object detection algorithm is based on tem-
plate matching techniques and simple part-based models. It is generally divided into two 
stages: hypothesis generation (HG) and hypothesis verification (HV). HG is responsible 
for generating all possible region of interests (RoIs) in the image. HV is responsible for 
verifying the RoIs determined in HG stage, removing no object areas, and identifying 
and locating existing objects. The object detection method based on machine learning 
usually uses the multi-scale sliding windows to slide the detected area. Compared with 
the traditional object detection method, its HV stage is to extract the low-level features 
such as gray, symmetry, texture and gradient of the object in RoIs or the middle-level 
features obtained through machine learning, train them into an object classifier through 
statistical method, and realize the recognition and verification of the object. At that 
time, most detection methods were built based on handcrafted local invariant features.  
People can only design more complex feature representations from lack of effective 
image representation,  and use  various acceleration technologies to fully utilize com-
puting resources, for example, Viola-Jones detector (VJ) [10] and Histogram of HOG 
[11]. Later, in order to detect objects with more complex appearance, Girshick et al. [12] 
proposed deformable part-based model (DPM) , which made full use of the advantages 
of HOG and SVM and made an important breakthrough in face recognition and other 
tasks.

Deep learning has revolutionized a wide range of machine learning tasks. State-of-the-
art methods for detecting objects of general classes are mainly based on deep CNNs. 
The object detection based on deep CNNs can be divided into two main categories: (1) 
Two-stage detector based on region proposal, such as Fast R-CNN [13], Faster R-CNN 
[14], and Mask R-CNN [3]. This kind of method decomposes the detection problem 
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into two stages, including region extraction and object classification. As a representa-
tive algorithm, Faster R-CNN [14] provides a high degree of precision. However, it still 
imposes a burden on the speed of detection. Later, many improvement methods includ-
ing R-FCN [15] were proposed, but they still cannot satisfy the real-time requirements 
of the system. (2) One-stage detector, such as SSD [6] and YOLO [7]. Different from the 
two-stage detector, one-stage detector integrates two steps of two-stage detector. Given 
an input image, the detector directly regresses the boundary box and the category of the 
object at multiple positions of the image.

YOLOv3 [9] complements all the shortcomings of the YOLO series algorithms and 
achieves high detection speed and accuracy. However, it is still a very challenging task 
for the multiclass object detection system applied to intelligent vehicles in complex 
traffic environment. Because there are many kinds of objects on the road, the process 
of image acquisition will be affected by many factors, such as illumination, viewpoint, 
local occlusion, scale transformation, and complex background, which greatly changes 
the appearance characteristics of the object, thus increases the difficulty of detection. 
In addition, YOLOv3 needs to abstract features by downsampling mode in the process 
of feature extraction, which will inevitably ignore the information of many small objects 
and dense objects, reducing the overall detection accuracy. All these make it a long way 
to apply multi-object detection algorithm to the actual traffic scenes.

At present, the optimization direction of object detection mainly includes backbone 
network, positive and negative sample sampling, intersection of union (IoU), loss func-
tion, non-maximum suppression (NMS), anchor and learning rate. Reference [16–21] 
improved YOLO structure, so as to improve the detection precision or speed of the 
original model on different dataset. Reference [22] improved SSD model and proposed 
Mask- SSD including a detection branch and a segmentation branch, which could effec-
tively detect small objects in the forms of both traffic signs and pedestrian. According 
to the different information contained in low-level and high-level features, a multi-scale 
detection method with feature pyramid networks (FPN) was proposed by Girshick et al. 
[23]. This method integrated the high-resolution of low-level features and richer seman-
tics of high-level features of the image, which has an obvious detection effect on small 
objects. Girshick et al. [24] proposed the RetinaNet model again, in which focal loss was 
used to successfully solve the problem that the object detection loss was easily controlled 
by a great quantity of negative samples due to the extremely unbalanced area of positive 
and negative samples in object detection.

In 2017, Huang et al. [8] proposed DenseNet, which got rid of the traditional think-
ing formula of deepening the network layers and broadening the network structure 
to improve the network performance. From the view point of features, it connected 
each layer to the other layers in a feed-forward pattern. The network parameters were 
greatly reduced; the problems of gradient disappearance and network degradation 
were alleviated. The network was easier to train and extract the effective features, so 
as to improve the detection precision of the model. In order to extract the more rep-
resentative local and detail information, Zhu et  al. [25] designed a mixed attention 
dense network  to improve the classification accuracy. In recent years, the research-
ers have designed many models by combining DenseNet with other CNN structures 
and employed for various types of object detection applications. For example, Shen 



Page 5 of 18Yang et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:85  

et al. [26] proposed a Dsod object detector without pretraining in combination with 
SSD and DenseNet. Zhai et al. [27] proposed an improved SSD object detection algo-
rithm based on DenseNet and feature fusion (DF-SSD), which made it have advanced 
detection effect on small objects and objects with specific relationships. Li et al. [28] 
attempted to incorporate densely connected networks and spatial pyramid pooling 
and proposed an improved YOLO lightweight network. Chen et al. [29] proposed a 
multi-scale feature reuse detection model, which includes DenseNet, feature fusion 
network, multi-scale anchor region proposal network, and classification and regres-
sion network. Pan et al. [30] proposed an adaptively dense feature pyramid network 
(ADFPNet), to detect objects cross various scales. In addition, Nizarudeen et al. [31] 
also used a multi-layer DenseNet-ResNet architecture with improved random forest 
classifier to detect the subtypes of intracranial hemorrhage. Albahli et al. [32] utilized 
DenseNet-65 for computing the deep features from the given sample on which Faster 
R-CNN is trained for diabetic retinopathy recognition. Wang et  al. [33] proposed a 
novel framework based on YOLO-Dense to solve the problem of tomato anomaly 
detection in the complex natural environment. Roy et  al. [34] proposed real-time 
object detection framework based on YOLOv4-DenseNet to detect different growth 
stages of mango with high degree of occultation in a complex orchard scenario. 
Xu et  al. [35] enhanced feature extraction capability by introducing 2 DenseNet in 
YOLOv3, achieved higher accuracy of multi-scale remote sensing target detection. 
Zhao et al. [36] proposed a positioning bolt detection method based on DenseNet-4 
and YOLOv3 to improve the detection accuracy and speed of palletizing robot posi-
tioning bolts in complex scenes. In addition to improving the network structure, 
Rezatofighi et  al. [37] proposed a new metric for bounding box regression, named 
Generalized Intersection over Union (GIoU), which was applied to the most popular 
object detection methods and showed better performance. Lyu et al. [38] proposed a 
new loss function named tan squared error (TSE), which effectively reduced the influ-
ence of the gradient disappearance for sigmoid function, accelerated the convergence 
of the model and improved the detection accuracy. Wang et al. [39] proposed a new 
method of generating anchors, named Guided Anchoring, which improve detection 
performance by using high quality proposals.

Fig. 1 Overall framework combined DarkNet-53 with DenseNet



Page 6 of 18Yang et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:85 

3  Proposed method
In order to make full use of local features, improve the accuracy of object detection, 
we proposed a detection model by combining DarkNet-53 with DenseNet. The overall 
framework is shown as Fig. 1. The backbone network for performing feature extraction 
is DarkNet-53 network. It is larger and has 107 layers. The blue structure represents the 
convolution layer, the green structure represents the upsample layer, the red structure 
represents the route layer, and the orange structure represents the detection layer. In 
addition, we add 3 purple DenseNets with a size of 76 × 76, 38 × 38 and 19 × 19 in the 
No. 12, 37 and 62 layer in DarkNet-53 to modify the feature extractor. It absorbs the 
advantages of the DenseNet to alleviate gradient disappearance, enhance feature reuse, 
and reduce the number of parameters.

3.1  DenseNet

It is well known that the deeper the network is, the more likely it is to extract more dis-
criminative features. However, the first problem to be considered is that the gradient 
disappearance caused by the increase of network layers. Many scholars have proposed 
solutions including Highway Network [40], FractalNet [41] dealing with this question. 
Although the structures of these networks are different, the core is to establish a short 
path between layers. DenseNet [8] continues this idea by directly concatenating all layers 
on the premise of ensuring the maximum information transmission between layers in 
the network.

DenseNet is mainly composed of dense blocks and transition blocks. The layout of one 
dense block is shown in Fig. 2. It is a 4-layer dense block with a growth rate of k = 4. H(·) 
is defined as a composite function of three consecutive operations such as batch nor-
malization (BN), rectified linear unit (ReLU) and 3 × 3 convolution (Conv). Each layer 
obtains additional inputs from the previous layers and passes on its own feature maps 
to the subsequent layers in the feed-forward manner. It is one of the best convolutional 
neural networks at present.

In DenseNet, the features of l-th layer are denoted as xl:

where [x0, x1, · · · xl−1] refers to the concatenation of the feature maps produced in layers 
0, 1,…, l− 1 . For each concatenating, the number of output channels may increase dra-
matically. In order to control the complexity of the model, the transition block is intro-
duced, which not only halves the length and width of the input, but also changes the 
number of channels by using 1 × 1 convolution. DenseNet backbone network establishes 
the connection relationship of different layers and enhances the feature flow; thus, it has 
a strong feature learning ability.

(1)xl = H [x0, x1, · · · xl−1]

Fig. 2 Dense block
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3.2  Feature extraction

In order to make the extracted object information more complete, we introduced the 
idea of dense connection in DenseNet, improved the DarkNet-53 [9] feature extraction 
network, and proposed a novel detection model, as shown in Fig. 3. Input images are 
resized to 608 × 608, the network architecture consists of 1 × 1 and 3 × 3 convolution 
layer, residual layer, upsampling layer, routing layer, detection layer and DenseNet layer. 
The new network structure has three 8-layer dense blocks that each has an equal num-
ber of layers. The feature-map sizes in the three dense blocks are 76 × 76, 38 × 38 and 
19 × 19, respectively, xl is composed of 16, 32 and 64 sub-feature layers, and the fea-
ture layers are concatenated into 76 × 76 × 256, 38 × 38 × 512 and 19 × 19 × 1024 by 
[x0, x1, x2, x3] and continue to propagated forward, respectively, so that the network can 
fully receive the multi-layer convolution features before prediction.

Fig. 3 Network structure combined DarkNet-53 with DenseNet
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For object detection in real scenes, the accurate detection of small objects will deter-
mine whether detection information is lost. The proposed network predicts at 3 differ-
ent scales at 3 different positions. In our experiments, we predict 3 bounding boxes at 
each scale. The size of the convolution kernel used for detection is 1 × 1 × B × (4 + 1 + 5), 
where B = 3 represents the number of the prior boxes, ‘4’, ‘1’ and ‘5’ represent 4 bound-
ing boxes offsets, 1 objectness prediction and 5 class predictions respectively. 608 × 608 
images are input into the network and obtain 3 feature maps of different scales. As 
shown in Fig.  3, the resolutions of each feature map from top to bottom are 76 × 76, 
38 × 38 and 19 × 19, corresponding to the detection results of 76 × 76 × 30, 38 × 38 × 30, 
and 19 × 19 × 30. Among the three feature maps used for detection, the small feature 
map is responsible for providing deep semantic information, while the large feature 
map is responsible for providing object location information. The small feature map is 
fused with the large feature map through upsampling. Because the multi-layer features 
from DenseNet are received before prediction, the new network can greatly improve the 
detection and recognition of objects, especially small objects.

3.3  Loss function

Designing an effective loss function is very important for the network training. It can 
guide the learning of network parameters by back propagating the error between the 
predicted value and the true value. The total loss function consists of three parts: the 
coordinate error of bounding box, the IoU error and the class error.

This paper takes the road object detection applied to intelligent vehicles as the 
research background. In the image to be detected, different road objects have significant 
differences in size, while small objects have a higher risk of missed   detection due to 
low downsampling or quantity. Therefore, in order to reduce the rate of missed detec-
tion or false detection for the occluded objects or small objects and improve the locating 
precision of objects, this paper mainly modifies the loss from coordinate predictions in 
YOLOv3.

As shown in the first line of Eq.  (2), it consists of two parts. The first is the central 
coordinate error and the second is the coordinate error of width and height. �coord is the 
weight coefficient of coordinate prediction error, �noobj is the weight coefficient that does 
not contain the object. S is the number of grids divided, and B is the number of the prior 
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boxes by each grid. In this paper, we use �coord = 5 , �noobj = 0.5S = 7 , B = 9 . 
(

xi, yi,wi, hi
)

 and 
(

x̂i, ŷi, ŵi, ĥi

)

 represent the ground truth and predict value of each 

bounding box. 
(

x, y
)

 represent the center of the box relative to the boundary of the grid 
cell. (w, h) represent the width and the height relative to the whole image. When the 
object falls into cell i and the jth bounding box, Iobjij = 1 , otherwise, Iobjij = 0.

4  Experiments
4.1  Experimental setup and Dataset

The hardware configuration is Intel (R) core (TM) i7-10510u processor, the main fre-
quency is 4.10 GHz, and the memory is 16 GB. The GPU is NVIDA 2080TI GeForce. 
Python version is 3.6.10, and TensorFlow version is 1.14.0.

We have conducted experiments on the PASCAL VOC [42] and KITTI [43] datasets. 
PASCAL VOC has two version: VOC2007 and VOC2012. The dataset includes 11,540 
images and 20 categories that are common in everyday life. We focus exclusively on 
objects on the road, so we choose 5 categories (person, bicycle, bus, car and motorbike) 
for the training and testing (training set: 5000 images; and test set: 720 images). KITTI 
dataset covers scenes such as urban, rural and highway in Germany, including pictures 
and videos. There are up to 15 vehicles and 30 pedestrians in each image, as well as vari-
ous degrees of occlusion and truncation. Among them, the 3D object detection training 
set contains 7481 stereo images, including 8 different categories: car, truck, van, pedes-
trian, sitting people, cyclist, tram and mixture. We exclude those categories with a very 
low number of objects (sitting people, tram and mixture) (training set: 5385 images; and 
test set: 749 images).

4.2  Implementation details

We adopt DarkNet-53 as the basic backbone and use the TensorFlow framework to 
implement our model, which is trained on an NVIDA GeForce 2080TI GPU. We use 
three eight-layer dense blocks on 608 × 608 images. During training, we use the initial 
learning rate of  10–4 in the training process, reducing it to  10−5 after the first 40 K itera-
tions, and to  10−6 after the next 60 K iterations. According to the actual performance of 
the GPU, we use a batch size of 64, a decay of 0.0005, a momentum of 0.9, a loss thresh-
old of IoU of 0.5, and non-maximum suppression.

4.3  Evaluation criteria

In order to evaluate the effectiveness of the proposed algorithm, Average Precision ( AP ), 
mAP and Frames Per Second (FPS) are selected as the evaluation criteria of the perfor-
mance of algorithms.

where r represents the recall of an object detection, pr=i represents the precision of 
r = i . In general, the better the classifier, the higher the AP . Whether an object detected 
is determined according to the intersection over union (IoU).

(3)AP =
1

N

∑

r(0,0.1,...,1)

pr=i
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where RIOdet and RIOgt represent the detection box and the ground truth box, respec-
tively. AP is generally evaluated in a category specific manner, i.e., calculated for each 
object category separately. In order to compare the performance of all objects catego-
ries, the mean AP of all objects categories, that is, mAP is always used as the final meas-
ure of performance. mAP is the most important index in object detection algorithm.

5  Results and analysis
5.1  Qualitative analysis

DarkNet-53 and dense block are used as feature extractor to extract features from RGB 
images. The visual results are compared with the results of feature extraction only on 
DarkNet-53, as shown in Fig.  4. The first row is the RGB images, the second row is 
YOLOv3 detection results, and the last row is our results. Figure 4a~c are three different 
scenes on KITTI. The ground truth boxes and the predict boxes of the proposed method 

(4)IoU =
area

(

RIOdet ∩ RIOgt

)

area
(

RIOdet ∪ RIOgt

)

Fig. 4 Visual results on KITTI. The first row to the last row are the original images and the results of the 
YOLOv3 and the proposed algorithm, respectively

Fig. 5 Ground truth boxes and predict boxes
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are showed in Fig. 5. Although there are few objects in the scenario (a), YOLOv3 misses 
a car due to the long distance and small objects, and all objects are successfully detected 
by using the proposed algorithm. For the following two scenes, the background is more 
complex, there are many categories and more than 10 objects with different sizes. The 
size of distant objects is smaller, and there are also varying degrees of occlusion and 
truncation. From the comparison in Fig. 4, it can be observed that both algorithms can 
detect some objects when there are dense targets on the road. However, YOLOv3 algo-
rithm is insensitive to overlapping targets and pedestrian background information, while 
our algorithm can accurately detect an overlapping and distant car more than YOLOv3 
algorithm in scene (b). In scene (c), YOLOv3 not only misjudges one more object, but 
also misses two pedestrians in the distance. According to Fig. 5, all objects using the pro-
posed algorithm are successfully detected and correctly classified, which shows that our 
algorithm reduces the difficulty of detecting small objects or partially occluded objects, 
and improves the performance of the object detection.

The P-R curve of 5 classes of objects generated by the proposed algorithm is shown 
in Fig. 6. The lateral axis represents the recall and the vertical axis represents the preci-
sion. It intuitively shows the comprehensive performance of the recall and precision of 
the 5 objects of cars, pedestrians, trucks, cyclists and trucks. Figure 7 shows the results 

Fig. 6 P-R curve of 5 classes of objects. a Car. b Pedestrian. c Van. d Cyclist. e Truck

Fig. 7 Results of predicted objects. a Ground truth. b Predicted objects by YOLOv3. c Predicted objects by 
DarkNet-53 and DenseNet
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of predicted objects using YOLOv3 and the proposed method. Figure 7a–c shows the 
ground truth, predicted objects by YOLOv3 and the proposed algorithm, respectively. 
For example, the actual number of the cars in 749 testing images is 2886, and YOLOv3 
predicts 3170 cars, of which 2682 objects are correctly classified and 488 objects are 
misjudged. The proposed algorithm predicts 3008 cars, of which 2691 are correctly clas-
sified and 317 are misjudged. The network structure used in this paper has improved the 
missed or false detection rate of objects and improved detection accuracy.

From Fig. 7a, it can be seen that the sample size of car is the highest, while the sample 
size of truck is the lowest. In Fig. 6, the AP of truck is 96.61%, indicating that although 
its sample number is small, it achieves the best AP in 5 categories due to its large 3D 
geometric size and strong distinguishability, In contrast, there is no significant differ-
ence in shape between car and van, but the sample size of car is too high, and due to 
various degrees of occlusion and truncation between objects on KITTI dataset, more 
cars are easily misclassified. However, the sample number and 3D size of pedestrian and 
cyclist are relatively small, and if there is partial occlusion, their detection difficulty will 
be greater.

5.2  Quantitative evaluation

5.2.1  Comparison with baseline methods

According to the evaluation criteria described in Sect.  4.3, we compared the perfor-
mance of our method with baseline YOLOv3. The results on PASCAL VOC dataset 
show that the mAP of the proposed algorithm outperforms the baseline YOLOv3 by 
2.92% with same backbone and same input image size (Table 1). For the KITTI dataset, 
the results demonstrate that the proposed algorithm increases the mAP from 88.34% 
to 91.13 (Table 2). From Tables 2 and 3, we can also see that the APs of 5 classes have 

Table 1 The mAP (%) comparison of the proposed method with YOLOv3 on PASCAL VOC

Method Backbone Input size AP (%) mAP (%)

Person Bicycle Bus Car Motorbike

YOLOv3 DarkNet53 608 × 608 90.26 89.94 89.35 84.08 76.01 85.92

Ours DarkNet53 608 × 608 91.34 91.56 89.92 88.54 82.88 88.84

Table 2 The mAP (%) comparison of the proposed method with YOLOv3 on KITTI

Method Backbone Input size AP (%) mAP (%)

Car Pedestrian Cyclist Van Truck

YOLOv3 DarkNet53 608 × 608 92.22 78.97 83.24 92.99 94.30 88.34

Ours DarkNet53 608 × 608 92.74 81.96 89.83 94.50 96.61 91.13

Table 3 Impact of different dense block layers

Method mAP (%)

Four-layer dense block 89.76

Eight-layer dense block 91.13

Sixteen-layer dense block 90.58
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significantly improved on both dataset. Thanks to the combination of DarkNet-53 and 
DenseNet, the information from multi-layer convolutions before prediction is fully uti-
lized, thereby reducing the difficulty of detecting small objects. Therefore, the algorithm 
has a more significant improvement in the detection precision for small objects on the 
road, including pedestrian (person), cyclist (bicycle) and motorbike.

5.2.2  Impact of the dense block layers and the loss function

The  KITTI dataset is  currently  one of  the  largest  evaluation  datasets in autonomous 
driving scenarios. Therefore, to verify the effectiveness of different dense block layers, 
we compare the results of using different layers dense block on KITTI. The experimen-
tal results are summarized in Table 3. We can see that the mAP of the eight-layer dense 
block is 91.13%, which is higher than that of the other two dense blocks. So, we choose 
the eight-layer dense block as our building block.

In addition, in order to verify the effectiveness of the improved loss function, we com-
pare the effects of different loss function in Table 4. By comparing the effects of different 
loss function on the model, we can see that the mAP of the improved loss function is 
91.13%, which is 1.08% higher than that of the loss function of YOLOv3.

5.2.3  Comparison with other methods

To verify the effectiveness of the proposed network, firstly, we compare with repre-
sentative algorithms of two-stage detector and one-stage detector with the same input 
data on KITTI. All comparison algorithms are trained on the same hardware platform 
and software framework using the initialization and training mechanisms described in 
Sect. 4.2 for the four algorithms. The comparison results are shown in Table 5. In the 
comparison of several methods, whether VGG-16 or ResNet-101 is used as the back-
bone network, Faster R-CNN has relatively low detection accuracy. Faster R-CNN only 
uses the deep features of the last stage for prediction. The features extracted by both of 
the algorithms have incomplete information. It does not take into account that the actual 

Table 4 Impact of different loss function

Method mAP (%)

Original loss function 90.05

Improved loss function 91.13

Table 5 Comparison with different methods on KITTI dataset

Method Backbone AP (%) mAP

Car Pedestrian Cyclist Van Truck (%)

Faster R-CNN VGG-16 81.42 62.36 73.66 81.05 88.78 77.45

Faster R-CNN ResNet-101 80.68 61.40 71.58 80.91 81.78 75.27

YOLOv3 DarkNet53 92.22 78.97 83.24 92.99 94.30 88.34

Ours DarkNet53 92.74 81.96 89.83 94.50 96.61 91.13
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semantic information of small objects has been lost after the continuous convolution 
and the pooling. Therefore, it affects the overall detection performance of the algorithm. 
The proposed method independently predicts at different feature layers, overcoming the 
defect of Faster R-CNN only using deep features, and significantly improving the detec-
tion accuracy of the model. The AP and mAP of our method for 5 classes of objects are 
significantly better than other network structures.

Secondly, we compared with the combination of DenseNet and other CNN networks 
mentioned in Sect. 2 on PASCAL VOC dataset. As shown in Table 6, it can be seen that 
the AP of motorbike is in the middle level of several methods, while the AP of car is only 
slightly inferior to the method of D-MIF [29] method, and our method achieves the AP 
of 91.34%, 91.56% and 89.92% on person, bicycle and bus, which demonstrates the effec-
tiveness and advantage of proposed method. Moreover, our method achieves the best 
mAP among 6 methods.

Lastly, we compare our method with the popular methods on KITTI detection bench-
mark [43]. The results are obtained from monocular image only, stereo image only and 
fusion data. Table  7 shows the AP of each methods for car, pedestrian and cyclist in 

Table 6 Comparison of other methods combined with DenseNet on PASCAL VOC

07 +:07 trainval + 07test in the Pascal VOC. P; 07 +  + 12: 07 trainval + 07 test + 12trainval in the Pascal VOC

Method Data Backbone AP (%) mAP (%)

Person Bicycle Bus Car Motorbike

Dsod [26] 07 +  + 12 DS/64-192-48-1 84.6 85.3 83.6 80.6 86.8 84.18

DF-SSD [27] 07 +  + 12 DenseNet-S-32-1 85.7 85.6 82.9 79.9 86.4 84.10

DS–YOLO [28] 07 +  + 12 DarkNet-53 80.9 78.96 76.3 85.58 79.9 80.33

D-MIF [29] 07 + DenseNet-Evo 85.12 85.65 86.10 89.50 82.86 85.85

ADFPNet [30] 07 +  + 12 VGG-16 88.70 88.60 86.60 87.40 89.70 88.20

Ours 07 +  + 12 DarkNet53 91.34 91.56 89.92 88.54 82.88 88.84

Table 7 Comparison with several popular methods on KITTI dataset (%)

More details can be found on KITTI benchmark homepage (https:// www. cvlibs. net)

Method Data Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Faster R-CNN [14] Image 88.97 83.16 72.62 79.97 66.24 61.09 72.40 62.86 54.97

YOLOv3 [9] Image 88.71 74.40 65.58 67.23 49.47 44.99 50.88 36.89 32.64

YOLOv5X6 Image 96.64 93.82 81.54 81.88 64.53 57.44 75.21 52.99 45.67

Stereo R-CNN [44] Stereo
Image

93.98 85.98 71.25 – – – – – –

3DOP [45] Stereo
Image

92.96 89.55 79.38 83.17 69.57 63.48 80.52 68.71 61.07

MV3D [46] Image
Lidar

96.47 90.83 78.63 – – – – – –

F-PointNet [47] Image
Lidar

95.85 95.17 85.42 89.83 80.13 75.05 86.86 73.16 65.21

Ours Image 92.05 86.89 80.52 82.91 67.37 58.45 75.36 58.97 46.31

https://www.cvlibs.net
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three scenario regimes: easy, moderate, and hard, which are defined according to the 
level of occlusion and truncation. We set the IoU threshold 70% for car and 50% for 
pedestrian and cyclist. Above these thresholds, the object is regarded as detected. Com-
pared with Faster R-CNN and YOLOv3 based on monocular image, our method outper-
forms them. For YOLOv5X6, our method is slightly inferior to its detection on car, but 
slightly superior to its detection of pedestrians and cyclists. It is equivalent to 3DOP and 
Stereo R-CNN based on stereo image. Compared with MV3D and F-PointNet based on 
data fusion, the detection precision is slightly lower. However, according to Table 8, our 
detection speed is greatly improved.

6  Conclusions and future works
This paper proposed a multi-object detection algorithm combined DarkNet-53 with 
DenseNet. Three 8-layer dense blocks to replace the last three downsampling layers in 
DarkNet-53, making full use of the feature information extracted by the convolutional 
neural network before prediction. Three feature maps of different scales provide both 
the deep semantic information and the shallow location feature information, so that 
they not only strengthen the algorithm’s sensitivity to objects of different sizes but also 
strengthen the transmission of feature information. The loss function of coordinate pre-
diction error in YOLOv3 is further improved to improve the detection accuracy. We 
conducted extensive experiments on the KITTI and Pascal VOC datasets and made 
quantitative analysis and qualitative comparisons to demonstrate the effectiveness of our 
method. The results demonstrated that the AP and mAP of our method are significantly 
improved than other network structures, indicating that the proposed algorithm has 
better robustness, and the network model is more suitable for the traffic scene in the real 
driving environment and has better adaptability to the objects with long distance, small 
size and partial occlusion. In addition, this method also achieves a good balance between 
detection accuracy and inference speed. In the experimental environment, the detec-
tion time of each image is about 0.029 s, and our network run at 24 frames per second 
on NVIDA 2080TI GeForce GPU, which can better meet the real-time requirements of 
intelligent vehicle in complex traffic environment.

The future improvements can be conducted in the following aspects: (1) The algo-
rithm will continue to be optimized by modifying the network structure to reduce the 
size of convolutional neural network and the amount of parameters, so as to shorten the 

Table 8 Time inference comparison

Method Environment Runtime 
(1/FPS) 
( s)

Faster R-CNN [14] GPU @ 3.5 Ghz (Python + C/C + +) 0.23

YOLOv3 [9] GPU @ 2.5 Ghz (Python) 0.027

YOLOv5X6 GPU @ 3.5 Ghz (Python) 0.05

Stereo R-CNN [44] GPU @ 2.5 Ghz (Python) 0.3

3DOP [45] GPU @ 2.5 Ghz (Matlab + C/C + +) 3

MV3D [46] GPU @ 2.5 Ghz (Python + C/C + +) 0.24

F-PointNet [47] GPU @ 3.0 Ghz (Python) 0.17

Ours GPU @ 2.5 Ghz (Python) 0.029
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running time of the network. (2) Further design new loss function and use data augmen-
tation technique to improve the positioning precision. (3) Further design the multiclass 
obstacles detection algorithm based on LiDAR and camera information fusion for intel-
ligent vehicle.
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