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Abstract 

In a congested signal environment, it is difficult to obtain estimates of weak RF signal 
parameters. Determining signal parameter estimates in real time is a challenge for elec-
tronic warfare receivers that aim to receive multiple simultaneous signals. Prior work 
provided estimates of weak signal parameters (weak signal frequency and weak signal 
amplitude) without taking into account any error introduced by analog-to-digital con-
verters that are inherently part of digital signal processing systems. In order to obtain 
realistic estimates, we need to take error introduced by an ADC into account. The pri-
mary aim of this paper is to quantify error introduced by a single ideal ADC as a func-
tion of angle. This paper presents a method to estimate angle resolution and quantiza-
tion levels in N-bit analog-to-digital converters (ADCs) for use in a weak radiofrequency 
(RF) simultaneous signal estimation process. The paper quantifies the error in the angle 
quantization of an N-bit ADC for an input complex signal that is the instantaneous 
frequency obtained for the situation in which there are two simultaneous signals 
(with one strong signal and one weak signal) in a weak RF simultaneous signal estima-
tion process. The presented method describes the process to determine the angle 
quantization range, angle quantization uncertainty, and angle quantization error. This 
approach has potential applications in electronic warfare (EW) systems. The approach 
also has potential for assessing ADC performance for measurements that approach 
the quantum limit. Results are presented for 1-bit, 2-bit, 3-bit, and 10-bit ADCs.

Keywords: Analog-to-digital converter (ADC), Electronic warfare (EW), Radiofrequency 
(RF), Signal processing

1 Introduction
This work is concerned with estimation of weak signal parameters in a congested radi-
ofrequency (RF) environment where multiple simultaneous signals exist. The motivation 
for this research is the need for a more accurate model of weak RF simultaneous signal 
estimation process that uses phase calculation approaches to obtain weak signal parame-
ter estimates [1–7]. The capability to detect at least four simultaneous signals is desirable 
in the development of electronic warfare receivers [8]. Figure 2 shows an example of the 
instantaneous frequency for the situation in which there are N = 2 simultaneous signals 
with a 5 MHz frequency difference between the strong signal frequency f1 and weak sig-
nal frequency f2 . An example of this situation occurs when the strong signal frequency 
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f1 = 850  MHz, and the weak signal frequency f2 = 855  MHz. Estimates of the weak 
signal parameters as obtained with zero crossings in the instantaneous frequency (See 
block diagram in Fig. 1) are discussed in [5, 6].

Prior work developed a multi-tier weak RF signal estimation process to obtain weak 
signal parameter estimates for the situation in which there are two simultaneous signals, 
with one strong signal and one weak signal. In this prior work, the weak RF estimation 
process provided methods to obtain estimates of the weak signal parameters. Results 
obtained in prior work showed that estimates of the signal parameters, including the 
weak signal frequency estimate and weak signal amplitude estimate, can be extracted 
from the instantaneous frequency using phase calculation approaches (see Fig. 3a). Prior 
work presented a weak radio signal estimation process [1–7] for simultaneous signals 
using phase calculation approaches developed by Tsui. Figure  3 in [9, Fig.  3] presents 
a block diagram of a typical EW system showing the signal analysis and interpreta-
tion block. Results obtained in prior work [7] showed that estimates of the weak signal 
frequency that were obtained with this process are within 1.2× 10−4 , and the error is 
within 120 parts per million. However, these estimates of the weak signal frequency and 
weak signal amplitude did not take into account error introduced by ADCs inherent in 
digital signal processing systems. Providing a method to quantify error introduced by an 
ideal ADC is the aim of this paper.

Tsui discusses the incorporation of ADCs in electronic warfare (EW) receivers for 
the desirable properties of large bandwidth and dynamic range [8]. This approach is of 
interest to the area of error vector magnitude (EVM) calculations [10–13]. The develop-
ment of ADCs has been a focus of state-of-the-art circuit designers since at least the late 
1990 s in order to develop signal processing systems with desirable properties including 
large dynamic range, wide bandwidth, low quantization noise, and the ability to resolve 
signals with complex modulation [14]. Signal processing systems incorporating ADCs 
include commercial devices [15], electronic warfare (EW) receivers [8, 16, 17], and elec-
tronic intelligence (ELINT) receivers [9, 18, 19].

More recently, in 2003, Feddeler et  al. reviewed ADC specifications [20], and in 
2008, Kester et  al. reviewed performance metrics for ADCs [21]. Feddeler et  al. 
assumes a 10-bit, 5.12-V ADC [20] and define quantization error as ± 1

2  of the least 
significant bit (LSB), which is 5.12 V per 512 bits, or 0.1 V per bit. Murmann tracks 
a 20-year summary of ADC performance trends [22–26]. Potential applications exist 

Fig. 1 Block diagram to determine the instantaneous frequency with [6]
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for detection of complex communication and radar signals, cognitive radio, and soft-
ware defined radio. Very recently, signal generators intended for 5  G and wideband 
satellite applications (SatComm) are being developed for signal frequencies up to 50 
GHz with bandwidths as high as 510 MHz. This hardware provides the capability to 
demodulate 5  G radio signals and extract signals that were not previously observa-
ble in a dense electromagnetic spectrum [27]. Keysight Technologies has introduced 
hardware with desirable phase noise characteristics with high dynamic range and 
large bandwidth (N9021B MXA X-Series Signal Analyzer) [27]. Keysight Technolo-
gies develops hardware with the capability to measure magnitude and phase error of a 
complex signal in a process referred to as Error Vector Magnitude (EVM) [27]. In this 
process, the magnitude of the error vector refers to the magnitude of the difference of 
the ideal vector and the test signal vector. The difference in phase between the phase 
of the ideal signal and the phase of the test signal is referred to as the IQ phase error, 
or angle quantization error. The magnitude of the difference in the test signal com-
pared with the magnitude of the ideal signal is referred to as the magnitude error (IQ 
error magnitude).

In the area of photonics, in 2014, Golani et al. proposed a photonic analog-to-digital 
converter with 7.6 effective bits [28]. In electronics, a hybrid silicon pixel detector with 
a noise floor as low as 100 electrons has been manufactured and first implemented at 
CERN as tracking detectors. Now these Medipix and Timepix chips are widely available 
and have demonstrated that they can detect single X-rays one at a time [29–31].

This paper presents a method to quantify error introduced by an N-bit ADC [32] 
and focuses specifically on quantifying the error introduced in the instantaneous 
frequency through the quantization process for the case in which  there are N = 2 
simultaneous signals. The error is inherent in the use of an ADC. Analog-to-digital 
converters (ADCs) take an input continuous-time signal [33] and produce an output 
signal in discrete-time binary coded form [33]. This paper presents the next step in the 
development of an electronic warfare receiver because prior work (see Figs. 2, 3a) has 
not yet taken into account the effect of the quantization by the ADC.

Fig. 2 Instantaneous frequency as a function of time for N = 2 simultaneous signals with a 5 MHz frequency 
difference between a strong signal and a weak signal. The strong signal frequency is 850 MHz
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Our aim is to develop an understanding of the error introduced by an ADC when the 
ADC converts an analog signal (such as the instantaneous frequency) into a digital signal 
before any digital signal processing takes place. By taking the quantization of the signal 
into account in the model, more accurate estimates of the weak signal parameters will be 
able to be obtained in the weak RF signal estimation process (see Fig. 3b). Future work 
will need to incorporate this new understanding in order to obtain more accurate esti-
mates of weak signal parameters, and after this is completed, then these more accurate 
estimates can be compared with estimates obtained in prior work.

As a starting point, the paper considers the representation of an N-bit ADC for a com-
plex signal described by Tsui; in this representation, an N-bit ADC is modeled as an 
N × N  array of squares, where each square represents one bit. For example, a 1-bit ADC 
is represented as a 1× 1 array; a 2-bit ADC is represented as a 2× 2 array, and a 3-bit 
ADC is represented as a 3× 3 array. A complex signal can then be represented on the 
ADC array as a vector having phase angle relative to the x-axis and magnitude that takes 
on a value equal to or less than N in an N-bit ADC.

In this analysis, we choose the simplifying case of a weak signal with amplitude much 
lower (approximately 1/100) compared with the amplitude of the strong signal. This 
paper quantifies the error in the magnitude of the signal amplitude reported by an N-bit 
ADC. The paper also quantifies the error in the angle quantization reported by an N-bit 
ADC. The paper presents steps to carry out the angle quantization method to deter-
mine the angle quantization range, angle quantization uncertainty, and angle quantiza-
tion error as a function of angle. The angle quantization error is the difference between 
the angle of the sampled signal and the value of the angle reported by the ADC (phase 
error). The angle quantization uncertainty is the difference in angle (within the bit that 
captures the input signal) and the value of the angle reported by the ADC. The ampli-
tude of the instantaneous frequency produced by the weak RF signal estimation process 
is assumed to take on the maximum value that happens to be the value of the upper limit 
of the ADC.

Fig. 3 a Prior work: weak radiofrequency signal estimation process with phase calculation approaches and 
sampled instantaneous frequency (blue boxes). b Contribution of this work: model of an ADC to quantize the 
instantaneous frequency in a weak RF signal estimation process (purple boxes). Future work (green box)
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Results are presented for N-bit ADCs, where N = {1, 2, 3, 10} . For the case in which 
the ADC has 10 bits, the results show that the magnitude of the angle quantization error 
is less than ∼ 5× 10−4π  radians. Results also show that the magnitude of the angle 
quantization uncertainty is less than ∼ 5× 10−4π radians ( 0.09◦).

The contributions of this paper are:

• Notation for describing the quantization of a complex signal by an N-bit ADC;
• Method to quantify the error, angle quantization range, and angle quantization 

uncertainties in an N-bit ADC, with an application to the case in which the signal 
takes on a constant magnitude in an N-bit ADC;

• Applications to calculate the angle quantization error, angle quantization range, and 
angle quantization uncertainties for N = 1, 2, 3, and 10-bit ADCs.

• Application to calculate the signal quantization error in a N = 10-bit ADC.

The rest of this paper is as follows: Section 2 discusses a model of an N-bit ADC. Sec-
tion 3 presents the proposed method for mapping the signal amplitude and angle to the 
amplitude and angle reported by the ADC. Section 4 discusses applications to N = 1, 2, 3 
and 10-bit ADCs. Section 5 presents conclusions, and Sect. 6 discusses future work.

2  Model of an N‑bit ADC
2.1  Representation of a complex signal in the x−y plane

In an N-bit ADC, the complex signal amplitude can be represented as a two-dimensional 
diagram with a circle in the x−y plane that intersects adjacent bits on two sides (of each 
bit) in the ADC. For example, Fig. 4 shows a 3-bit ADC. The ADC can be represented 
in the x−y plane as a 2N × 2N square array. In this paper, each of the squares will be 
referred to as a bit. The length of the radius of the circle A with the center located at the 

Fig. 4 Notation for calculating θs,n,m for the sampled signal with maximum signal amplitude, ap,p+1 and bp,p+1 
in the (darker) square with coordinates (n, m) that intersects the circle representing the magnitude of the 
complex signal. This example shows a 3-bit ADC as an 8-bit×8-bit array
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ADC origin (0, 0) is taken to represent the magnitude of the amplitude of the complex 
signal. The reported value of the signal magnitude and reported value of the signal angle 
are the values of the signal magnitude and signal angle at the center (X) of the bit con-
taining the value of the signal. For the analysis that follows, the coordinates (n, m) repre-
sent the lower-left corner of the bit in the two-dimensional representation; namely, for 
bit (n, m), the other corners of the bit are identified with the notation (n+ 1,m) (lower 
right corner), (n+ 1,m+ 1) (upper right corner), and (n,m+ 1) (upper left corner). 
The values in the coordinate pair (n, m) take on values given by n = 1, 2, . . . ,N − 1 and 
m = 1, 2, . . . , (N − 1)− n+ 1 = N − n.

We introduce a term p that denotes the bit(s) in an N-bit ADC that intersect(s) the 
complex signal. The value of p for each bit is assigned in order of increasing angle 
θADC,n,m . We count the p bits intersected by the circle and index the bits with value p 
in order of increasing angle from the positive x-axis  (counter clockwise). One of each 
of the other two sides of the right triangle, ap,p+1 and bp,p+1 , has integer length given 
by one of the following lengths: {1, 2, . . . , 2

N

2 } , and the other side has length obtained 
by the Pythagorean theorem. Note that p denotes the number of the bit (n, m) that is 
intersected by a circle representing a complex signal with signal magnitude equal to the 
radius of the circle. For simplicity, we consider the first quadrant of the ADC (that is, for 
angles between 0 and 90 degrees); the rest of the quantization angles for this signal can 
be obtained using symmetry.

The complex signal amplitude will intersect a subset ( p ≥ 1 ) of the bits in the two-dimen-
sional representation of the N-bit A DC in such a way that length of the line connecting the 
ADC origin (0, 0) to each bit edge forms the hypotenuse, c, of a right triangle having one 
side parallel to the x-axis. The length of the hypotenuse of this right triangle is equal to the 
magnitude A of the complex signal, such that c = A . Each bit in the N-bit ADC is inter-
sected twice by the circle except where the circle precisely intersects one corner of a bit.

The magnitude of the signal reported by the ADC is the length of the sampled signal, s, 
and the reported value for the magnitude of the sampled signal sADC is the length of the 
vector pointing to the center of the bit (n = 0,m = 0) . For a 1-bit ADC, 
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 i. For a 1-bit ADC, each bit is intersected twice by the circle with amplitude A = 1;
 ii. For a 2-bit ADC, each bit is intersected twice by the circle except for the single case 

in which the signal amplitude A takes on a value that is equal to 12 and 
√
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 iv. Each bit in the N-bit ADC is intersected twice by the circle except for the cases 
in which the signal amplitude A takes on values that are given by 
√
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 , where n = 0, 1, . . . ,N  and m = 0, 1, . . . ,N .
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As an example, the visualization of a complex signal s = Aei2π fst with constant amplitude 
A and constant frequency ωs = 2π fs is shown in Fig. 4 as a circle with center at the origin 
(0,0) with radius A. For the case in which the signal takes on the maximum value of the 
ADC, then A = 2N−1.

2.2  Notation

The sampled signal of interest is shown as the red arrow taking on the maximum signal 
amplitude shown in Fig. 4. For simplicity, the discussion that follows will identify each 
bit with coordinates (n, m). In the figure, the angle of the maximum signal s in bit (n, m) 
is θs,n,m ; the angle reported by the ADC is θADC,n,m ; the corners of the bit are located 
at the coordinates {(n,m), (n+ 1,m), (n,m+ 1), (n+ 1,m+ 1)} ; and the numbers of the 
bit (n, m) that intersects the signal with maximum amplitude, where −2N−1 ≤ n ≤ 2N−1 
and −2N−1 ≤ m ≤ 2N−1 . In the first quadrant, 0 ≤ n ≤ 2N−1 and 0 ≤ m ≤ 2N−1 , 
respectively.

Figure 5 shows three diagrams of a (a) 1-bit, (b) 2-bit, and (c) 3-bit ADC. In each figure, 
the red arrow indicates the sampled signal used to illustrate the notation for the angle of 
the sampled signal at the coordinates (n, m). The angle reported by each ADC, θADC,n,m , 
is the angle at the center of the bit (n, m) that captures the sampled signal. For the 1-bit 
ADC (Fig. 5a), the sampled signal is captured in the bit with coordinates (n = 0,m = 0) . 
The sampled signal has angle θs,n=0,m=0 , and the reported angle by the ADC using the 
center of the bit is θADC,n=0,m=0 . For the 2-bit ADC (Fig. 5b), the sampled signal with the 
same magnitude as in Fig. 5a is captured in the bit with coordinates (n = 1,m = 1) . The 
sampled signal has angle θs,n=1,m=1 , and the reported angle by the ADC using the center 
of the bit is θADC,n=1,m=1 . For the 3-bit ADC (Fig. 5c), the sampled signal with the same 
magnitude as in Fig. 5a is captured in the bit with coordinates (n = 3,m = 2) . The sam-
pled signal has angle θs,n=3,m=2 , and the reported angle by the ADC using the center of 
the bit is θADC,n=3,m=2.

Figure 6 shows the magnitude and quantized angles of (a) 1-bit, (b) 2-bit, and (c) 3-bit 
ADCs in the first quadrant, for the case in which the complex signal takes on the maxi-
mum value of the ADC. The magnitude and quantized angles in the other quadrants are 
obtained using symmetry. The values are shown in Table 2.

2.3  Angle quantization error

This section focuses on developing an understanding of the angle quantization error, 
presents a method to calculate the angle quantization error, and quantifies the perfor-
mance of an N-bit ADC. This section also presents an analysis of bounds on the angle 
quantization error, angle quantization uncertainty, and angle quantization range. The 
angle quantization error for a sampled signal is taken to be the difference between the 
angle of the sampled signal and the angle reported by the ADC. The number of samples 
for a signal with constant magnitude at the maximum value of the ADC produces a wide 
variation in the angle quantization range and angle quantization uncertainty, depending 
on the angle of the sampled signal. This situation occurs specifically because there exist 
some (rare) cases where the error is very small. These cases occur when the signal mag-
nitude intersects a corner of each bit of the ADC.
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Fig. 5 Diagrams of a 1-bit, b 2-bit, and c 3-bit ADC, with the sampled signal (red arrow) with maximum 
signal amplitude, angle θs,n,m of the maximum signal s in bit (n, m), angle reported by the ADC θADC,n,m
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Fig. 6 Diagrams of the quantized angles that can be reported θADC,n,m by a a 1-bit, b 2-bit, c 3-bit ADC (first 
quadrant) as tabulated in Table 2
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The steps to determine the angle quantization error are shown in the block diagram in 
Fig. 7 and are listed below: 

 1. Assume that the signal s (see the red vector in Figs. 4 and 5 ) has magnitude A that 
takes on a value up to the maximum of the N-bit ADC such that the signal magni-
tude is less than N. 

 i. For the case in which the amplitude A takes on a constant value, the signal 
defines a circle in the ADC.

 ii. The signal projection on the ADC will take on a non-circular shape in the case 
that the signal is time-varying, such as for a linear FM pulsed waveform with 
time-varying amplitude.

 2. Count the p bits intersected by the signal and index the bits with value p in order of 
increasing angle from the positive x-axis. 

 i. For example, p = 1 indicates the first bit intersected by the signal, and p = 2 
indicates the next bit intersected by the signal.

 ii. Each bit in the N-bit ADC is intersected twice by the circle, except in the rare 
cases where the circle is precisely intersecting one corner of a bit.

 3. The rest of these steps consider the case in which the signal magnitude A takes 
on a constant value. For this case, we observe that the circle defined by the signal 
intersects each bit at two locations specified by pairs of coordinates (xA1, yA1) and 
(xA2, yA2) according to one of the following three scenarios: 

 i. Two vertical sides are intersected by the circle;
 ii. Two horizontal sides are intersected by the circle;
 iii. One horizontal size and 1 vertical side are intersected by the circle.

Fig. 7 Block diagram of steps to determine the angle quantization error
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 4. Construct a right triangle with the hypotenuse defined by the signal vector with sig-
nal magnitude A. One side of the triangle is parallel to the x-axis, and the other side 
is parallel to the y-axis. For the case of a signal with constant amplitude A, we con-
sider the symmetry of the circle intersecting the bits and focus our analysis on the 
first half quadrant, 0 ≤ θ ≤ π

4  , without loss of generality: 

 i. One corner of each triangle is located at (0, 0).
 ii. The distance from the origin to point of intersection defines the hypotenuse 

with magnitude A.
 iii. The right triangle has at least one side with integer length a = 1, 2, . . . ,N .
 iv. The third side has length b given by b =

√
A2 − a2.

 5. Identify all triangles with integer sides along the vertical, parallel to the y-axis, in the 
first 18 of the circle, 0 ≤ θ ≤ π

4  , and calculate the acute angle θi relative to the x-axis 
for each triangle; create a list of the values {θi} , where i = 0, . . .H − 1 , and H is the 
number of triangles with integer sides along the vertical.

 6. Identify all triangles with integer sides along the horizontal, parallel to the x-axis, in 
the first 18 of the circle and calculate the acute angle θj relative to the y-axis for each 
triangle; create a list of the values {θj} , where j = 0, . . . ,V − 1 , and V is the number 
of triangles with integer sides along the horizontal.

 7. Create a list of all angles {θk} by concatenating the lists {θi} and {θj} , where k takes on 
values k = 0, 1, 2, . . . ,H + V − 1.

 8. Sort the combined list obtained in the previous step in order of increasing angle, 
starting from angle with the least value, 0 radians, to the angle with the largest value, 
π
4  , for k = 0, 1, . . . ,H + V − 1.

 9. For each bit, form pairs of angles (θk , θk+1) that indicates the pair of intersections 
at each bit, where the angle with lowest value is listed first, and the angle with the 
larger value is listed second in the pair, where k = 0, 1, . . . ,H + V − 1.

 10. Calculate the coordinates of a point within the bit by calculating the average of the 
x-value and y-values of each intersection such that 

 11. Identify the bit index (n, m) of the bit containing the point identified in the previous 
step by calculating the integer values of the coordinates of the lower left coordinate 
of the bit where n = ⌊xave⌋ and m = ⌊yave⌋.

 12. Calculate the coordinates (xn, yn) of the center of the bit corresponding to the value 
reported by the ADC, 

 where 

(1)xave =
1

2
(xA1 + xA2),

(2)yave =
1

2
(yA1 + yA2).

(3)
(

xn = n+
1

2
, ym = m+

1

2

)

=
(

⌊xave⌋ +
1

2
, ⌊yave⌋ +

1

2

)

,
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 13. Calculate the angle reported by the ADC such that 

 14. Calculate the angle quantization range for each bit p having coordinates (n, m). 

 i. The angle quantization range is taken to be the difference between adjacent 
pairs of acute angles of triangles formed at the intersections of the circle and 
each bit, such that 

 ii. Note that θi and θi+1 represent the angles of the two intersected sides of each 
bit ( θi < θi+1).

 iii. Note that θi = θp,p+1 and θi+1 = θp+1,p+2.

 15. Calculate the angle quantization uncertainties (“high” and “low”) for each bit (n, m). 

 i. These are calculated such that they taken on positive values.
 ii. The “low” angle quantization uncertainty is taken to be the difference between 

the angle reported by the ADC and the lower angle θi , such that 

 iii. The “high” angle quantization uncertainty is taken to be the difference between 
the upper angle θi+1 and the angle reported by the ADC, such that 

3  Mapping the signal amplitude and angle to the amplitude and angle 
reported by the ADC

The proposed method is obtained in a straightforward manner using geometry as 
discussed in the preceding figures. The complexity arises when the actual sample 
obtained by the ADC is taken into account. The reason that the actual sample matters 

(4)xn = ⌊xave⌋ +
1

2
,

(5)yn = ⌊yave⌋ +
1

2
.

(6)θADCn,m
= arctan

(m+ 1
2

n+ 1
2

)

.

(7)�θp = θi+1 − θi,

(8)= θp+1,p+2 − θp,p+1.

(9)δθADC,n,m,low = θADC,n,m − θi,

(10)= θADC,n,m − θp,p+1.

(11)δθADC,n,m,high = θi+1 − θADC,n,m,

(12)= θp+1,p+2 − θADC,n,m.
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is that, for a signal with a given amplitude, depending on the phase angle of the sam-
ple, the angle value reported by the ADC may have more or less error (that is, the 
angle quantization error) because of the bit that detects the sample. As will be shown 
in figures that follow, the angle quantization error is a function of angle, and for some 
values of the angle, the error can be minimal whereas for other values of the angle, the 
error can be much larger. From the understanding of the angular dependence of the 
angle quantization error provided in this paper, future work might take this effect into 
account in future ADCs and digital signal processing systems.

Table 1 shows the mapping of bit locations (n, m) to bit numbers p for a complex 
signal with maximum signal magnitude in a 1-, 2-, 3-, and N-bit ADC. For each bit 
(n, m) intersected by the complex signal, the ADC reports the value of the center of 
the bit that is intersected by the complex signal. For each bit (n, m), the bit center is 
located at coordinates (n+ 1

2 ,m+ 1
2 ).

For a signal sampled with magnitude (radius) A and phase angle that is contained 
within bit (n, m), the ADC reports the angle θADC,n,m given by the expression,

such that

(13)tan θADC,n,m =
(m+ 1

2

n+ 1
2

)

,

(14)θADC,n,m = arctan
(m+ 1

2

n+ 1
2

)

.

Table 1 Mapping of bit locations (n, m) to bit numbers p for a complex signal with maximum signal 
magnitude in N-bit ADCs

N-bit ADC pth bit (in order of increasing angle) (n, m)

N = 1 1 (0, 0)

N = 2 1 (1, 0)

2 (1, 1)

3 (0, 1)

N = 3 1 (3, 0)

2 (3, 1)

3 (3, 2)

4 (2, 2)

5 (2, 3)

6 (1, 3)

7 (0, 3)

N 1 (N, 0)

2 (N, 1)
.
.
.

.

.

.
p (0, N)
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For bit (n, m), the ADC reports the amplitude sADC,n,m for the complex signal according 
to the expression,

As a result of the quantization, the reported amplitude is not generally equal to the com-
plex signal amplitude.

The values of the angle obtained {θADC,n,m} are then sorted in increasing value for those 
angles contained within bits (n, m) with distance to the signal magnitude less than or equal 
to the distance between the center of the bit and the closest point in the bit to the origin of 
the ADC ( 

√
2
2  ). The sorted values represent the angle quantization values of the N-bit ADC.

3.1  Angle quantization range

Figure  8a shows the angle quantization range for sampled signal s in an N-bit ADC. 
In the figure, the sampled bit (n,  m) is in the (p+ 1)th bit in order of increasing sam-
pled angle in the first quadrant of the ADC. Each bit is identified by its coordinates 
(n,  m) in the lower left corner with corners that are adjacent to neighboring bits 
{(n,m+ 1), (n+ 1,m+ 1), (n+ 1,m)} . The lower and upper angles at which the sam-
pled signal intersects the bit (n,m) are denoted by the terms θp+1,p+2 and θp,p+1 , respec-
tively, where coordinates (n, m) denote the pth bit sampled by the signal with maximum 
amplitude. The coordinates (p, p+ 1) indicate that the maximum signal intersects the pth 
bit (n, m) at the boundary between bit p and bit p+ 1 , and the coordinates (p+ 1, p+ 2) 
indicate that the maximum signal intersects the pth bit at the boundary between bit p+ 1 
and bit p+ 2 . We let θp+1,p+2 represent the angle at which the complex signal amplitude 
intersects the pth bit with coordinates (n, m) at the boundary between the (p+ 1)th bit and 
the (p+ 2)th bit. We let θp,p+1 represent the angle at which the complex signal amplitude 
intersects the pth bit (n, m) at the boundary between the pth bit and the (p+ 1)th bit.

We introduce the angular quantization range θADC,n,m of the ADC as the angular range 
between the angles at which the maximum signal amplitude intersects the pth bit (n, m) 
according to

The ADC reports the value of the angle θADC,n,m in the pth bit with coordinates (n, m) at 
the bit center ( ′X ′ ), namely (n+ 1

2 ,m+ 1
2 ) (see Fig. 8a).

Consider the case in which the complex signal magnitude takes on a constant value of 
the maximum signal amplitude c = 2N

2  . The length of the hypotenuse of each right triangle 
then has length N2  (that is, the maximum signal amplitude). One of the other sides of the 
triangle has lengths {j = 1, 2, . . . , 2

N

2 } , as discussed above. The length of the third side of 
each triangle, bp,p+1 , can then be obtained from c and ap,p+1 according to the Pythagorean 
Theorem, such that

(15)sADC,n,m =
√

(

n+
1

2

)2
+

(

m+
1

2

)2
.

(16)θADC,n,m = θp+1,p+2 − θp,p+1.

(17)bp,p+1 =
√

c2 − a2p,p+1.
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Fig. 8 a Angle quantization range (green dashed semicircle), b angle quantization uncertainty, both “low” 
and “high” (green dashed arcs), c angle quantization error (green dashed arc) in an N-bit ADC
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We consider the jth right triangle for which the side parallel to the abscissa is equal to an 
integer number of bits. In this case, the angle of the jth triangle relative to the x-axis is 
given by the expression,

where j = {1, 2, . . . , 2N2 − 1} . Next, we consider the kth right triangle for which the side 
parallel to the ordinate is equal to an integer number of bits. In this case, the angle of the 
kth triangle relative to the x-axis is given by,

where k = {1, 2, . . . , 2N2 − 1}.
These angles are ordered according to increasing angle {θj , θk} . The angles in the sorted 

list are then grouped into a sequential list of angle pairs. Each pair of angles is an arc seg-
ment and an angle quantization range for the ADC. The series of the angle pairs forms 
a series of arc segments and the set of angle quantization ranges for the ADC. We let M 
denote the number of bits p that intersect the complex signal represented by a circle tak-
ing on a radius equal to the magnitude of the complex signal in the x−y plane. Then, the 
sequence of arc segments between the pairs of points along adjacent bits that intersect the 
maximum signal amplitude can be written in order of increasing angle as 
θk,k+1θk+1,k+2,, where θk=0,1 = 0 radians for k = 0, 1, . . . ,M.

3.2  Angle quantization uncertainty

The angle quantization uncertainty δθADC,n,m,low for bit (n, m) is defined as the difference 
between the angle θADC,n,m and the lower angle corresponding to the point of intersection 
at the side of the bit, such that

Similarly, the angle quantization uncertainty δθADC,n,m,high for bit (n, m) is defined as the 
difference between the angle θADC,n,m and the upper angle corresponding to the point of 
intersection at the upper side of the bit, such that

Figure  8b shows the “low” angle quantization uncertainty δθADC,n,m,high and “high” 
angle quantization uncertainty δθADC,n,m,low for an N-bit ADC.

(18)tan θj =
j

√

c2 − j2
,

(19)=
j

√

( 2
N

2 )2 − j2
,

(20)tan θk =
√
c2 − k2

k
,

(21)=

√

( 2
N

2 )2 − k2

k

(22)δθADC,n,m,low = θADC,n,m − θp,p+1.

(23)δθADC,n,m,high = θp+1,p+2 − θADC,n,m.
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3.3  Angle quantization error

We introduce the ADC quantization sampling error δθs,n,m in an N-bit ADC as the 
difference between the actual angle of the sampled signal θADC,n,m and the angle θs,n,m 
reported by the ADC for this sampled signal, such that

Figure 8c shows the angle quantization error δθs,n,m in an N-bit ADC.
The sequence of arc segments between the pairs of points intersecting the maximum 

signal follow from Tables 3 and 4 for the N-bit ADC in order of increasing angle as
θk,k+1θk+1,k+2,, where θk=0,1 = 0.

4  Application to N = 1, 2, 3, and 10‑bit ADCs
Figures  9 and 10 show the angle quantization error and output for a (a) 1-bit, (b) 
2-bit, and (c) 3-bit ADC, respectively, where the amplitude of the input complex sig-
nal takes on the maximum amplitude. For the 1-bit ADC, there is one bit that inter-
sects the complex signal, namely p = 1 . For the 2-bit ADC, there are three bits (in the 
first quadrant) that intersect the complex signal taking on the maximum signal ampli-
tude; these bits are p = {1, 2, 3}.

For the first quadrant of the 3-bit ADC, seven bits of the ADC intersect the 
signal with maximum radius and seven corresponding arc segments with lengths 
given by the sequence in order of increasing angle as 

θk,k+1θk+1,k+2 = {θ0,1θ1,2, θ1,2θ2,3, θ2,3θ3,4, θ3,4θ4,5, θ4,5θ5,6, θ5,6θ6,7, θ6,7θ7,8}.

For the 3-bit ADC, the actual values of the angular quantization ranges for each pth 
bit (assuming a complex signal with maximum signal amplitude) can be written as  
    {0 arctan 1

( 23
2 )2 12

, 

arctan 1

( 23
2 )2−12

arctan 2

( 23
2 )2−22

, 

arctan 2

( 23
2 )2 22

arctan

√
( 23

2 )2−32

3 ,
 

arctan

√
( 23

2 )2−32

3 arctan 3

( 23
2 )2 32

,
 

arctan 3

( 23
2 )2 32

arctan

√
( 23

2 )2−22

2 ,
 

arctan
( 23

2 )2−22

2 arctan
( 23

2 )2−12

1 ,}.

Table  2 shows the values of the quantization angles θADC,n,m and quantization signals 
sADC,n,m of the 3-bit ADC. The values of the remaining quantization angles for the other 
three quadrants can be obtained using symmetry).

(24)δθs,n,m = θs,n,m − θADC,n,m.
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Fig. 9 Angle quantization error of a 1-bit, b 2-bit, and c 3-bit ADCs, where the amplitude of the input 
complex signal takes on the maximum amplitude



Page 19 of 32Lanzerotti et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:89  

Fig. 10 Digital output of  a 1-bit, b 2-bit, and c 3-bit ADCs, where the amplitude of the input complex signal 
takes on the maximum amplitude



Page 20 of 32Lanzerotti et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:89 

Tables 3 and 4 show the angle quantization range for each bit of the 1-bit, 2-bit, and 3-bit 
ADCs. The tables list the values of the angles at the limits of the angle quantization range 
for each bit (the limits correspond to the values of the angles of the triangles with sides 
{ap,p+1, bp,p+1} intersecting the signal with maximum signal amplitude (first quadrant) in 
each ADC). Here, the notation {p, p+ 1} denotes the two adjacent bits having sides that are 
intersected by the signal with maximum amplitude that has length smax given by

(25)smax = cmaximum signal,

Table 2 ADC angle quantization θADC,n,m and ADC signal quantization sADC,n,m (first quadrant)
(

xn = n+
1
2
, ym = m+

1
2

)

sADC,n,m =
√

(xn)2 + (ym)
2

θADC,n,m = arctan

(

ym
xn

)

N = 1 1-bit ADC n m (xn , ym) sADC,n,m θADC,n,m

(0,0) 0 0 {0.5, 0.5} sADC,1,1 =
√

(0.5)2 + (0.5)2 θADC,1,1 ≃ 0.2500π

N = 2 2-bit ADC n m (xn , ym) sADC,n,m θADC,n,m

(1,0) 1 0 {1.5, 0.5} sADC,1,0 =
√

(1.5)2 + (0.5)2 θADC,1,0 ≃ 0.1024π

(1,1) 1 1 {1.5, 1.5} sADC,1,1 =
√

(1.5)2 + (1.5)2 θADC,1,1 ≃ 0.2500π

fv (0,1) 0 1 {0.5, 1.5} sADC,0,1 =
√

(0.5)2 + (1.5)2 θADC,0,1 ≃ 0.3976π

N = 3 3-bit ADC n m (xn , ym) sADC,n,m θADC,n,m

(3,0) 3 0 {3.5, 0.5} sADC,3,0 =
√

(3.5)2 + (0.5)2 θADC,3,0 ≃ 0.0455π

(3,1) 3 1 {3.5, 1.5} sADC,3,1 =
√

(3.5)2 + (1.5)2 θADC,3,1 ≃ 0.1289π

(3,2) 3 2 {3.5, 2.5} sADC,3,2 =
√

(3.5)2 + (2.5)2 θADC,3,2 ≃ 0.1974π

(2,2) 2 2 {2.5, 2.5} sADC,2,2 =
√

(2.5)2 + (2.5)2 θADC,2,2 ≃ π
4

(2,3) 2 3 {2.5, 3.5} sADC,2,3 =
√

(2.5)2 + (3.5)2 θADC,2,3 ≃ 0.3026π

(1,3) 1 3 {1.5, 3.5} sADC,1,3 =
√

(1.5)2 + (3.5)2 θADC,1,3 ≃ 0.3711π

(0,3) 0 3 {0.5, 3.5} sADC,0,3 =
√

(0.5)2 + (3.5)2 θADC,0,3 ≃ 0.4545π

Table 3 ADC angle quantization range for complex signal with maximum signal amplitude in 1-bit 
and 2-bit ADCs

N-bit ap,p+1 bp,p+1 cmax = smax Angle θp,p+1 ADC angle quantization range in pth bit
ADC

N = 1 ap,p+1 bp,p+1 2N−1 θp,p+1 �θp

a0,1 = 0 b0,1 = 0 smax = 1 tan θ0,1 = 0 ∆θp=1 = θ0,1θ1,2 = θ1,2 θ0,1

N = 2 ap,p+1 bp,p+1 2N−1 θp,p+1 �θp

a1,2 b1,2 = 1 smax = 2 tan θ1,2 = 1
√

( 2
2

2
)2−12

∆θp=1 = θ0,1θ1,2 = θ1,2 − 0 = arctan 1

( 22
2 )2 12

a2,3 = 1 b2,3 smax = 2
tan θ2,3 =

√

( 2
2

2
)2−12

1

∆θp=2 = θ1,2θ2,3 = θ2,3 − θ1,2 =

√
( 22

2 )2−12

1 − 1

( 22
2 )2 12

∆θp=3 = θ2,3θ3,4 = θ3,4 θ2,3 = π
2

( 22
2 )2−12

1
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For the case in which the sampled angle is within any of the given arcs, the correspond-
ing (quantized) angle reported by the ADC will be θADC,n,m = {θADC,3,0 , θADC,3,1 , θADC,3,2 , 
θADC,2,2 , θADC,2,3 , θADC,1,3 , θADC,0,3} , respectively, which take on the corresponding values 
{0.0455π , 0.1289π , 0.1974π , π4  , 0.3026π , 0.3711π , 0.4545π} , as shown in Tables 3 and 4.

Figure 11 shows the output of a 10-bit ADC as a function of input angle for input sig-
nal sampled at 10,000 data points for angles between 0 and π4  radians. The dashed sloped 
line indicates the result for an ideal ADC in which there is no quantization error. The 
upper figure, Fig. 11a, shows that the angle reported by the ADC for the entire range of 
0 to π4  radians. In Fig. 11b, the staircase structure is evident, and the figure shows that 
the angle reported by the ADC takes on quantized values. The horizontal stairs shown in 
the figure have nonuniform length because the arclength of the sampled values through 
each bit of the ADC is not uniform since the ADC is modeled as a square array.

Figure 12 shows the angle quantization range (a), angle quantization uncertainty (low) 
(b), and angle quantization uncertainty (high) (c) of a 10-bit ADC as a function of input 
angle between 0 and π4  radians. The results are obtained by sampling the input signal at 
10,000 data points. The results in (a) show that the angle quantization range increases 
from approximately 6 rad

π
 at small angles and increase to approximately 8 rad

π
 as the angle 

approaches π4  in the first half quadrant. At the same time, the results also show that the 
angle quantization range can take on much smaller values, close to 0 rad

π
 , when the sam-

pled signal is close to one of the corners of a bit in the ADC.
The results in Fig. 12 show that the angle quantization ranges “high” and “low” take 

on values close to ≈ ±3 rad
π

 for small angles and that the range of the angle quantiza-
tion range tends to increase as the angle increases. The figures also show the underly-
ing structure in the “high” and “low” angle quantization ranges. This structure reflects 
the underlying square structure in the model of the ADC that is capturing the sam-
pled signal.

Figure  13a and b show histograms of the angle quantization uncertainty (Fig.  12) 
to the lower edge of the bit containing the maximum signal and to the upper edge of 
the bit, respectively, containing the maximum signal of a 10-bit ADC as a function of 
input angle for an input signal sampled at 10,000 data points for angles between 0 and 
π
4  radians with 300 bins. The red lines show fits with the extreme value distribution 
with mean 0.000336 and standard deviation 6.4 × 10−5 in Fig. 13a and mean 0.000334 
and standard deviation 6.3× 10−5 in Fig. 13b.

As the number of bits in the ADC increases, the size of each bit decreases, and the 
nonuniformity of where the circle representing the signal is intersecting each bit has 
a greater variation, and the value reported by the ADC becomes more sensitive to the 
actual sample taken of the signal.

Figure 14 shows the angle quantization error of a 10-bit ADC as a function of input 
angle for input signal sampled at 10,000 data points for angles between 0 and π4  radians. 
The results in this figure show that the angle quantization error is centered at zero rad

π
 

(26)=
2N

2
,

(27)= 4 bits.
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and takes on values in the range ≈ ±3 rad
π

 . The results in the figure also show that the 
range of values increase as the angle increases to π2  to ≈ ±3 rad

π
 . The figures also show the 

underlying structure in the angle quantization error that reflects the underlying square 
structure in the model of the ADC.

Figure 15 shows histograms of angle quantization error of a 10-bit ADC for an input 
signal sampled at 10,000 data points for angles between 0 and π4  radians, for (a) 100 
bins, (b) 200 bins, and (c) 300 bins. The results in these figures show that the histo-
grams are centered on an angle quantization error equal to zero and range as large 
as ≈ ±4 rad

π
 . The red curves in the histograms show a fit to the Normal distribution 

(Gaussian) with mean −3.2× 10−7 and standard deviation 0.00018145.
Figure 16 shows the (a) signal quantization for a 10-bit ADC with 10,000 samples as 

a function of angle from 0 to π4  radians and (b) difference in signal quantization, where 
the difference is obtained by subtracting the signal (radius) to the lower left corner of the 

Fig. 11 Output (solid dots) of a 10-bit ADC as a function of input angle for an input signal sampled at 10,000 
data points for angles between a 0 and π

4
 radians and b 0.1 to 0.104 radians showing the quantization by the 

ADC. The dashed line indicates the result for an ideal ADC (no quantization error). The horizontal dotted blue 
lines indicate the quantization levels of the ADC; these levels are not visible in (a)
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Fig. 12 Angle quantization range (a), angle quantization uncertainty (to lower edge of bit containing the 
maximum signal) (b), and angle quantization uncertainty (c) of a 10-bit ADC as a function of input angle for 
an input signal sampled at 10,000 data points for angles between 0 and π

4
 radians
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ADC square (containing the signal) from the signal (radius) to the upper right corner of 
the same square. The results show that the value of the difference ranges from 1 to 

√
2
2 .

Figure 17 shows histograms of signal quantization error of a 10-bit ADC for an input 
signal sampled at 10,000 data points for angles between 0 and π4  radians, for (a) 100 bins, 
(b) 200 bins, and (c) 300 bins. The results in these figures show that the histograms are 

Fig. 13 Histograms of the angle quantization uncertainty shown in Fig. 12 a to lower bit edge containing 
the maximum signal and b to upper bit edge containing the maximum signal of a 10-bit ADC as a function 
of input angle for an input signal sampled at 10,000 data points for angles between 0 and π

4
 radians with 300 

bins. The red lines show fits with the extreme value distribution with mean 0.000336 and standard deviation 
6.4× 10−5 in (a) and mean 0.000334 and standard deviation 6.3× 10−5 in (b)
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centered on an angle quantization error equal to 512 and range approximately from 
511.3 to 512.7. The red curves in the histograms show a fit to the Normal distribution 
(Gaussian) with mean 511.98 and standard deviation 0.29.

Figure  18 shows histograms of the product of the signal quantization error and the 
angle quantization error of a 10-bit ADC for an input signal sampled at 10,000 data 
points for angles between 0 and π4  radians, for (a) 100 bins, (b) 200 bins, and (c) 300 
bins. The red line in the figures shows fits using the kernel distribution with bandwidth 
1.45× 10−5.

5  Conclusions
The main contribution of this paper is a method to determine estimates of the angle 
quantization error in N-bit ADCs with the aim toward obtaining a quantitative under-
standing of the inherent nature of the quantization error which has the potential to lead 
to additional capabilities in error vector magnitude (EVM) calculations and, ultimately, 
to correct for the error. In this way, this approach could have the desirable effect to 
improve the ADC performance closer to the quantum limit, which is desirable for RF 
signal estimation applications in congested environments. The signal-to-noise ratio can 
be obtained by dividing the signal (radius of the circle) by whichever noise characteristic 
is of interest (such as angle quantization error and signal quantization error).

Results obtained with the proposed method show that the magnitude of the angle 
quantization uncertainty and error take on values that are less than ∼ 5× 10−4π radi-
ans. The results for the 10-bit ADC show that the magnitude of the angle quantization 
uncertainty, which is the difference in angle (within the bit that captures the input sig-
nal) and the value of the angle reported by the ADC, is less than ∼ 5× 10−4π radians. 

Fig. 14 Angle quantization error of a 10-bit ADC as a function of input angle for an input signal sampled at 
10,000 data points for angles between 0 and π

4
 radians
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Fig. 15 Histograms of angle quantization error of a 10-bit ADC for an input signal sampled at 10,000 data 
points for angles between 0 and π

4
 radians, for a 100 bins, b 200 bins, and c 300 bins. The red curves in the 

histograms show a fit to the Normal distribution (Gaussian) with mean −3.2× 10−7 and standard deviation 
0.00018145
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The results also show that the magnitude of the angle quantization error is less than 
∼ 5× 10−4π radians.

6  Future work
Quantization error is inherent in the signal conversion process, and there is a need to 
quantify the quantization error [32, 33] introduced by an ideal ADC in the conversion 
of complex signals. In addition, a quantitative understanding of the inherent nature of 
the quantization error has the potential to lead to methodologies to correct for the error 
and thereby could have the desirable effect to improve the ADC performance toward the 
quantum limit [14].

The method that we are using to estimate the weak signal parameters is for the situ-
ation in which there are N = 2 simultaneous signals, and we are currently starting to 
estimate weak signal parameters for the situations in which N = 3 and N = 4 because 

Fig. 16 a Signal quantization for a 10-bit ADC with 10,000 samples as a function of angle from 0 to π
4

 radians. 
b Difference in signal quantization, where the difference is obtained by subtracting the signal (radius) to the 
lower left corner of the ADC square (containing the signal) from the signal (radius) to the upper right corner 
of the same square
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these cases are of interest in developing an electronic warfare receiver. The method is 
not yet able to respond in a completely blind scenario; however, the method to quan-
tify error introduced by an ADC is general and can be applied for any signal since the 
signal amplitude will intersect at least one bit of the ADC. Recognizing this, future 
work will explore more common scenarios and additionally take into account the effect 
of the quantized sampled instantaneous frequency on the estimation of the weak sig-
nal parameters (See green box in Fig. 3). Future work will consider applications of the 

Fig. 17 Histograms of signal quantization error of a 10-bit ADC for an input signal sampled at 10,000 data 
points for angles between 0 and π

4
 radians, for a 100 bins, b 200 bins, and c 300 bins. The red curves in the 

histograms show a fit to the Normal distribution (Gaussian) with mean 511.98 and standard deviation 0.29
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Fig. 18 Histograms of the product of the signal quantization error and the angle quantization error of 
a 10-bit ADC for an input signal sampled at 10,000 data points for angles between 0 and π

4
 radians, for a 

100 bins, b 200 bins, and c 300 bins. The red line in the figures show fits using the kernel distribution with 
bandwidth 1.45× 10−5
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zero-crossing phase calculation approaches to the situation in which the signal is time-
varying, such as a multi-tier detection process [2] and to the situation in which the weak 
signal is linear FM pulsed waveform.
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