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1 Introduction
In today’s conflict, missiles are a crucial tool and a vital component of military and 
national security. The navigation and positioning system makes or breaks a missile’s abil-
ity to carry out precision strike missions. Therefore, it is crucial that the navigation and 
positioning systems are highly reliable and accurate. Generally speaking, multi-source 
information fusion can be employed to increase the positioning accuracy of navigation 
systems. Currently, research on multi-source information fusion methods is separated 
into two areas: multi-sensor system modeling and information fusion filter design.

For multi-sensor system modeling, the Celestial Navigation System (CNS) is a fully 
autonomous approach that produces astronomical data from stellar sensors with excel-
lent accuracy but is subject to weather and other variables, and the output of it is dis-
continuous [1]. Although the Strapdown Inertial Navigation System (SINS) is a fully 
autonomous navigation system with outstanding short-term accuracy, the inaccura-
cies of Inertial Measurement Unit (IMU) build up over time [2, 3]. As a consequence, 
accurate estimations of accelerometer bias and gyroscope drifts in the IMU are neces-
sary. The most widely navigation system, with great positioning precision and mature 
technology, is the global navigation satellite system (GNSS). However, owing to the 
accelerating development of electronic countermeasures and other technologies, the 
satellite signals are easily blocked, and the initiative is easily lost in implementation [4]. 
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As a result, the SINS/CNS integrated systems, which are extensively utilized in various 
vehicles and have the outstanding benefits of strong autonomy and high precision, have 
become a popular research topic for missile navigation system development [5, 6]. The 
CNS can efficiently aid the SINS in correcting the gyroscope drifts in the IMU with the 
starlight caught by the stellar sensors in it, resulting in missile attitude optimization. 
These methods, however, focus on gyroscope drift estimates and attitude correction fre-
quently but do little on accelerometer bias [7, 8], which makes it difficult to optimize 
position information. Gou put out a technique that allowed for the correction of infrared 
Earth measurements using a specific force followed by the application of the modified 
values to take precise measurements with CNS, enabling the improvement of the posi-
tion accuracy [9]. However, this method necessitates the use of an infrared Earth sensor, 
which is costly and has limited accuracy due to the device. Scholars are therefore consid-
ering ways to increase system positioning precision without the aid of peripherals. It is 
still a challenge to fully utilize the CNS in a limited amount of time. Nowadays, a wide 
range of projects have been conducted by scholars throughout the SINS/CNS.

Ning presented a quick calibration technique based on movements for star sensors in 
SINS/CNS, which helps to increase navigational accuracy while catching one star at a 
time and enables incorrect of the CNS equipment mistakes quickly [10]. However, the 
constant deviation of the accelerometer is incorporated in the error matrix, which still 
impacts the performance. These tasks are completed during the initial calibration phase, 
but accurate real-time estimation and correction of the accelerometer bias are still 
required during missile flight. A low-cost navigation and positioning technique called 
the indirect sensitive horizon by starlight refraction was developed in the 1980s [11]. It 
makes use of star sensors to monitor the refracted starlight and accomplish high-preci-
sion navigation and positioning. Subsequently, the navigation system made up of star-
light refraction navigation-assisted SINS has been a popular topic for researchers [12, 
13] due to the extensive study connected to the atmospheric refraction model [14–16] 
and star identification algorithm [17, 18]. According to the optimal correction overall, 
Zhu offered a SINS/CNS strategy, as well as an analytical way to determine the position 
and horizontal reference, which has a marginally positive impact on position accuracy 
but omitted to mention the estimation of the accelerometer bias [19]. Thereby, the sys-
tem model improvement of SINS/CNS is still an issue that requires attention. Chen’s 
team conducted a preliminary study for the method of correcting accelerometer bias 
and made experimental comparisons for various misalignment angles; however, the 
high-precision IMU employed was costly [20].

For the design of information fusion filters, Kalman filtering (KF) based on Bayes-
ian architecture is a successful and widely used technique. Regular KF, however, 
can only handle linear systems [21], despite the fact that there are no perfect linear 
systems in reality. Particularly, SINS/CNS is a typical nonlinear system. In this situ-
ation, the KF based on the minimum variance criterion is unable to achieve the opti-
mal solution. Further, a variety of nonlinear filtering strategies have been developed 
based on the KF that approximate the state posterior probability density distribution 
using various numerical integration or linear approximation methods and estimate 
the system state using various optimality criteria, such as the extended Kalman fil-
ter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF). A linearized 
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approximation to the measurement function is used in EKF [22]. Julier and Uhlmann 
recommended the UKF, which approximates the Gaussian-weighted integral using a 
trace-free transform [23, 24], to address the issue of poor EKF estimation in strongly 
nonlinear systems [25]. Arasaratnam et  al. constructed the integral function using 
the spherical-radial transform to increase the accuracy and numerical stability of 
the UKF in state estimation applications [26]. Due to its excellent numerical stabil-
ity and simplicity of use, the CKF has garnered a lot of attention. Unfortunately, the 
linear minimization mean square error (LMMSE)-based Gaussian approximation fil-
ter performs poorly when the measurement equation is significantly nonlinear, espe-
cially when the measurement noise is modest [27]. Thus, iterative filtering algorithms 
started to draw researchers’ attention. Frameworks like the iterative KF [28], iterative 
EKF [29] and the iterative UKF [30] were explored one after the other. An iterative 
CKF algorithm using Gauss--Newton iterative method is proposed and verified to be 
effective in reducing the state estimation errors, where the measurement equations 
are linearized [31]. Ghorbani added the sigma points of CKF to those of UKF, mak-
ing more sigma points and incorporating the concept of iteration, which is performed 
better in large degrees-of-freedom systems with high noise [32]. A series of studies 
were also done on topics like the correlation between the measurement iterations and 
state estimates [33]. Cui continued by confirming that maximum a posteriori (MAP)-
based iterative filters produce better estimation results with good quality measure-
ments [33]. Additionally, how to make sure that the state vector is not connected with 
the measurement vector in the iterative process following is a problem that needs to 
be taken into account. According to [34], state estimation with state-correlated noise 
is implemented using higher-order terms; however, this method requires a significant 
amount of computation since Jacobian and Hessian matrices must be calculated for 
each iterative process.

No matter how the information fusion filtering techniques mentioned above per-
form, for conventional ballistic navigation systems without GNSS, SINS/CNS might 
ignore the accelerometer bias and only work with gyroscope drifts. As a result, in this 
paper, an innovative framework for the integrated navigation named SINS/Refrac-
tion and Kinematic CNS (SINS/RKCNS) is employed, together with the kinematic 
constraints of the missile, to account for the refracted height information provided 
by the indirect sensitive horizon. So, the accelerometer bias of the IMU is able to 
be estimated, which will reduce the position errors. Due to the nonlinearity of the 
measurement model in the information fusion process, the most widely used filter-
ing algorithms exhibit inefficient linear innovation updates. We provide a modified 
iterative CKF (MICKF) algorithm based on the MAP framework to fully utilize the 
quantitative data. In the iterative stage, the state covariance is only updated once 
per filtering cycle, and the updated state estimates are not fed back to the prediction 
stage. To reduce the effect of state-dependent noise that emerges during the iterative 
process, we employ a state augmentation strategy that blends state estimation with 
measurement noise. It fully exploits the computational advantages of the CKF algo-
rithm with sampling point approximation to increase state estimation accuracy.
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In general, the major contributions of the paper are as follows:

1. A MAP-based algorithm called MICKF is developed, relying on the nonlinear navi-
gation system model, which fully utilizes the measurement data and enhances the 
accuracy of state estimation.

2. Combining the starlight indirect sensitive horizon theory with missile kinematic 
restrictions, a completely autonomous SINS/RKCNS is created that can estimate the 
accelerometer bias in the IMU.

3. The effectiveness of the suggested strategy is verified in the missile-borne SINS/CNS 
experiments.

The remainder of the paper is structured as follows: The MICKF is derived in Sect. 2. 
Starlight refraction principle is reviewed, and the optimized integrated navigation frame-
work SINS/RKCNS is established in Sect. 3. In Sect. 4, the experiments are implemented. 
After that, conclusions are drawn in Sect. 5.

2  Modified iterated cubature Kalman filter algorithm
2.1  Motivation of the MICKF

As a widely used tool for information fusion, Kalman filter is successful method. However, 
it can only be used for first-order linear equations. EKF uses a linear approximation to solve 
the nonlinear problems that exist in the model, while CKF is usually used when the system 
nonlinear function is more complex. Based on the spherical-radial transform, the positive 
definiteness during the transfer of sampling points through the nonlinear function can be 
guaranteed, so the stability and accuracy are better than EKF.

What’s more, Gaussian approximation filter approximates the state a posterior prob-
ability density function (PDF) poorly when the measurement function is nonlinear, espe-
cially when the measurement noise is small. Nevertheless, the iterated filter based on MAP 
framework can obtain better estimation results. Furthermore, to eliminate the correlated 
noise influence in the iterative update process, state augmentation technique is applied 
in the iterative measurement update. Moreover, the convergence and stability of filtering 
need to be further considered when the above filtering methods are used for integrated 
navigation.

2.2  Derivation of MICKF

In order to make the system with nonlinear measurement equations obtain better estima-
tion result in the information fusion process and to consider the effect on the system when 
the measurement noise is small, the MICKF algorithm with state augmentation is derived.

Consider a discrete time nonlinear dynamic system:

where f (·) and h(·) represent the state and measurement functions, respectively; Xk is 
the state vector with dimension n at time k , and W k−1 is process Gaussian noise with 
zero means and covariance Qk−1 ; Zk is the measurement vector with dimension m , and 

(1)
Xk = f (Xk−1)+W k−1

Zk = h(Xk)+ V k
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V k is measurement noise with zero means and covariance Rk . Let the posterior PDF of 
Xk be:

where N
(

Xk |X̂k ,Pk|k
)

 denotes a Gaussian distribution upon such a mean of X̂k|k and a 

variance of Pk|k is satisfied by Xk . Similarly,p
(

Xk−1|Z1:k−1

)

= N
(

Xk−1|X̂k−1|k−1,Pk−1|k−1

)

 

is the posterior PDF of the Xk−1.
Furthermore, depending on the state function, the prior PDF of Xk is given by:

The moments included in the approximation can be described as follows:

Similarly, the moments in the measurement phase are given by:

Based on Bayesian theory, the posterior PDF of Xk is calculated as follows:

where a denotes a constant.
According to the above formulations, solve for X̂k|k based on the MAP framework, 

ignoring the constant term unrelated to the state vector:

(2)p(Xk |Z1:k) = N
(

Xk |X̂k|k ,Pk|k
)

(3)p
(

Xk |Z1:k−1

)

= N
(

Xk |X̂k|k−1,Pk|k−1

)

(4)X̂k|k−1 =
∫

f
(

Xk−1

)

p
(

Xk−1|Z1:k−1

)

dXk−1

(5)

Pk|k−1 =
∫

(

f
(

Xk−1

)

− X̂k|k−1)

)(

f
(

Xk−1

)

− X̂k|k−1

)T
p
(

Xk−1|Z1:k−1

)

dXk−1+Qk−1

(6)Ẑk|k−1 =
∫

h(Xk)p
(

Xk |Z1:k−1

)

dXk

(7)Pzz
k|k−1 =

∫

(

h(Xk)− Ẑk|k−1

)(

h(Xk)− Ẑk|k−1

)T
p
(

Xk |Z1:k−1

)

dXk + Rk

(8)Pxz
k|k−1 =

∫

(

Xk − X̂k|k−1

)(

h(Xk)− Ẑk|k−1

)T
p
(

Xk |Z1:k−1

)

dXk

(9)
p(Xk |Z1:k) =

p
(

Xk |Z1:k−1

)

p(Zk |Xk)
∫

p
(

Xk |Z1:k−1

)

p(Zk |Xk)dXk

= a · p
(

Xk |Z1:k−1

)

p(Zk |Xk)

(10)

X̂k|k = arg max ln [p(Xk |Z1:k)]

= arg min [ln
∣

∣

∣
Pzz
k|k−1

∣

∣

∣
+ (Zk − Ẑk|k−1)

T (Pzz
k|k−1)

−1(Zk − Ẑk|k−1)

+(Xk − X̂k|k−1)
TP−1

k|k−1(Xk − X̂k|k−1)

]

= arg minT (Xk)
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Newton--Raphson methodology is adopted to deal with it:

where j ≥ 0 represents the iteration number; ∇2T
(

X
j
k|k

)

 denotes the Hessian matrix of 

T
(

Xk|k
)

 and ∇T
(

X
j
k|k

)

 denotes the Jacobian matrix of T
(

Xk|k
)

.

Define H i = ∂h
(

X
j
k|k

)/

∂X
j
k|k , then X̂k|k can be expressed as

Combining the solution of the covariance matrix and the matrix inverse derivation, 
the iterative factor αi is introduced, and the iterative solution result can be calculated:

MAP-based measurement updates can reduce the impact of a priori estimation 
errors on the results, and the iterative CKF described in the above equation can fur-
ther reduce the approximation errors and thus the loss of volume measurement infor-
mation. It allows the measurement information to be fully utilized and the results to 
be more accurate.

In order to use the volume point transfer function and make a weighted approxima-
tion to the PDF, it is necessary to generate a set of equally weighted cubature points 
according to the cubature rule:

where ξ =
√
2n/2[1]i represents the cubature point, ωi = 1/2n denotes the weight of 

cubature point and i = 1, 2, · · · 2n , [1]i is the i − th column vector of set [1].
Similar to the standard CKF, the prior state estimation X̂k|k−1 and prior covariance 

matrix Pk|k−1 at time k can be obtained:

(11)X
j+1
k|k = X

j
k|k −

(

∇2T
(

X
j
k|k

))−1
∇T

(

X
j
k|k

)

(12)
X
j+1
k|k = X

j
k|k −

(

P−1
k|k−1 +HT

i (P
zz
k|k−1)

−1H i

)−1

×
[

P−1
k|k−1(Xk − X̂k|k−1)−HT

i (P
zz
k|k−1)

−1(Zk − Ẑk|k−1)

]

(13)

X
j+1

k|k = X
j
k|k + αj

{(

X
j
k|k − X̂k|k−1

)

+ K k

[(

Zk − Ẑk|k−1

)

+
(

P
xz
k|k−1

)T
P
−T
k|k−1

(

X
j
k|k − X̂k|k−1

)]}

= X
j
k|k + αj�

(14)I(f ) ≈
2n
∑

i=1

ωif (ξi)

(15)Xi,k−1|k−1 =
√

Pk−1|k−1ξi + X̂k−1|k−1

(16)Xi,k|k−1 = f
(

Xi,k−1|k−1

)

(17)X̂k|k−1 =
2n
∑

i=1

ωiXi,k|k−1
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To eliminate the correlated noise influence in the iterative update process, state 
augmentation technique is applied as follows [33]:

where O1×m represents the zero vector with dimension m . Then, the final result will take 
the state vector of the first n dimensions and the covariance matrix of the first n× n 
dimensions.

After this, iterated algorithm is executed throughout the measurement update pro-
cess with the iteration number L:

Once the new measurement has been obtained, the updated correlation covariance 
is determined using:

where j = 0, 1, ...L represents the iteration number.
In the conventional iterative Kalman filtering algorithm, αj is usually set to 1. When 

there is a strong nonlinearity of the system model, the large value of � in Eq. (13) 
leads to the fact that the posterior estimates do not necessarily converge completely 
after a finite number of iterations. Therefore, αj < 1 is set so that a smaller amount of 
correction is gradually introduced in � . Bertsekas pointed out that in the EKF based 

(18)Pk|k−1 =
2n
∑

i=1

ωiXi,k|k−1X
T
i,k|k−1 − X̂k|k−1X̂

T

k|k−1 +Qk−1

(19)

⌣

Xk|k−1 =
[

X̂k|k−1 O1×m

]T

⌣

Pk|k−1 =
[

Pk|k−1 Om×m

Om×n Rk

]

(20)χi,k|k−1 =
√

Pk|k−1ξi +
⌣

Xk|k−1

(21)Zi,k|k−1 = h
(

χi,k|k−1

)

(22)Ẑk|k−1 =
2n
∑

i=1

ωiZi,k|k−1

(23)Pzz
k|k−1 =

2n
∑

i=1

ωi(Zi,k|k−1 − Ẑk|k−1)(Zi,k|k−1 − Ẑk|k−1)
T + Rk

(24)Pxz
k|k−1 =

2n
∑

i=1

ωi(χi,k|k−1 −
⌣

Xk|k−1)(Z
T
i,k|k−1−Ẑk|k−1)

T

(25)K k = Pxz
k|k−1

(

Pzz
k|k−1

)−1

(26)

X
j+1

k|k = X
j
k|k+αj

{(

X
j
k|k −

⌣

Xk|k−1

)

+ K k

[(

zk − ẑk|k−1

)

+
(

P
xz
k|k−1

)T
(

⌣

Pk|k−1

)−1 (

X
j
k|k −

⌣

Xk|k−1

)]}
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on the Gauss--Newton algorithm, the system converges faster when αj < 1 than when 
αj = 1 [35]. Therefore, αj < 1 is chosen here to speed up the iterative process. Back-
tracking line search is performed to choose αj here.

Eventually, the posterior state vector X̂k|k can be calculated after iteration:

The error covariance Pk|k is updated by:

2.3  Computational complexity

Computational complexity of the conventional CKF is calculated according to floating-
point operations (flops) [8, 36]:

The ICKF includes Eqs. (14)–(18) and (20)–(28), and the computational complexity of it 
can be calculated referring to Table 1:

The MICKF includes Eqs. (14)–(28), and the computational complexity is:

(27)X̂k|k = X
j+1

k|k

(28)Pk|k = Pa
k|k−1 − K kP

zz
k|k−1K

T
k

(29)TCKF = 20

3
n3 + 10n2 + 10n2m+ 8nm2 + 2nm+m3 + 3m2 +m

(30)
TICKF =19+ 4L

3
n
3 + (7+ 2L+ 2m+ 10Lm)n2 + (2+ 6L)m2

n

+ (4Lm−m+ 2L)n+ Lm
3 + 3Lm

2 + Lm

(31)

TMICKF =19+ 4L

3
n
3 + (7+ 3L+ 2m+ 14Lm)n2

+
[

6m
2 −m+ L

(

26m
2 + 14m+ 2

)]

n

+
(

49

3
L+ 4

)

m
3 + (10L− 1)m2 + 5Lm

Table 1 Computational complexity of some Equations

Eq. ICKF MICKF Eq. ICKF MICKF

(15) 1
3
n3 + 3n2 1

3
n3 + 3n2 (22) 2nm 2nm+ 2m2

(16) 4n3 − 2n2 4n3 − 2n2 (23) 4nm2 + 3m2 4nm2 + 4m3 + 3m2

(17) 2n2 2n2 (24) 4n2m+ 2nm 4n2m+
(

8m2 + 2m
)

n

+4m3 + 2m2

(18) 2n3 + 4n2 2n3 + 4n2 (25) m3 + 2nm2 − nm
(

2m2 −m
)

n+ 3m3 −m2

(20) 1
3
n3 + 3n2 1

3
n3 + (3+m)n2

+
(

m2 + 6m
)

n+ 1

3
m3 + 3m2

(26) n3 + 2n2m+ 2n

+3nm+m

n3 + 5n2m+ (7m+ 2)n

+m3 + 3m2 + 3nm2 + 5m

(21) 4n2m− 2nm 4mn2 +
(

8m2 − 2m
)

n

+4m3 − 2m2

(28) 2nm2 − nm+ 2n2m 2n2m+ 6nm2 − nm

+3m3 −m2
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It can be seen that the computational complexity of CKF, ICKF, and MICKF are both 
O
(

n3
)

 and O
(

m3
)

 . Therefore, the computational complexity of MICKF is the same order 
of magnitude as that of the other two methods, just with larger coefficients than the others.

3  Optimized integrated navigation model
3.1  Starlight refraction principles

The light of a star will be bent toward the center of the earth as it travels through the atmos-
phere as a result of the optical propagation laws [20]. The apparent location, as seen from 
the missile, will thus not be the same as the actual one.

As measured from Earth in Fig. 1, according to the geometric principle and atmospheric 
refraction principle [37]:

where ha is the starlight height that is being viewed; hg denotes the height of the star-
light that has been refracted; and ha is a minor diminution of hg ; the refraction angle 
R is between the observable unrefracted and refracted beams; S in Fig.  1 denotes the 
geographic location of the missile. ηc denotes the direction vector of the ray before 
refraction in geocentric inertial frame, and rc denotes the position vector of the missile. 
rc = |rc| and η =

∣

∣rc · ηc
∣

∣ ; o is so little that can be ignored. Re is the radius of the earth.
Let the unit vector of the beam after refraction be S′l while the unit vector before it be Sl . 

Then, the refraction angle R can be calculated using the following formula:

As a consequence, the position of the missile has now become indirectly observable with 
the aid of the directly measurable height.

(32)
ha = η tan R− Re +

√

r2c − η2 − o

ha ≈ hg+K (�)ρg (h)Re

(33)R = arccos(Sl · S′/)

Fig. 1 Refraction illustration of starlight
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3.2  SINS/RKCNS integrated navigation framework

In the missile navigation system, the state equation is established as Eq. (1). The state vector 

is comprised of the SINS errors X =
[

Φ δv δp ε ∇
]T ; Φ =

[

φx,φy,φz
]

 represents the 
misalignment angle errors; δv =

[

δvx, δvy, δvz
]

 denotes the velocity errors; δp = [δx, δy, δz] 

denotes the position errors. What’s more, ε =
[

εx, εy, εz
]

 represents the gyroscope constant 
drift, while ∇ =

[

∇x,∇y,∇z

]

 denotes the accelerometer constant bias.
The system equation is generated by attitude, velocity and position equations, employing 

the SINS update technique:

where b denotes the body frame while i represents the launch inertial one; Cb
i  denotes 

the attitude transformation matrix; ψ = − arctan C13
C33

 represents the yaw angle, 

ϕ = arcsin(C23) represents the pitch angle and γ = − arctan C21
C22

 represents the roll 
angle; viib represents the velocity vector, f iib denotes the specific force, riib is the Cartesian 
position vector, and γ i

ib is the gravitational acceleration related to riib.
In contrast to the conventional framework, non-directly observable position informa-

tion as well as kinematic constraints are contained in the SINS/RKCNS, in addition to 
attitude. Therefore, more measurement information can be introduced to the correction 
of accelerometer bias.

For the measurement equation, ϕins,ψins, γins are the attitude angles from the IMU, 
and ϕcns,ψcns, γcns are provided by the CNS:

Then, the measurement equation involved in attitude is:

where h(1)(·) denotes the measurement function, V (1)
k  represents the measurement noise.

Furthermore, constructed from the celestial data mentioned in Sec. 3.1 is the measure-
ment equation for location information:

where i ∈ N ∗ represents the amount of observed refracted stars; νh denotes the measure-
ment errors; the CNS-derived refraction height is ha,cns [37], while the one calculated 
from SINS is ha,ins:

(34)Cb
i =





C11 C12 C13

C21 C22 C23

C31 C32 C33





(35)v̇iib = f iib + γ i
ib(r

i
ib)

(36)ṙiib=viib

(37)





δϕ

δψ

δγ



 =





ϕins − ϕcns
ψins − ψcns

γins − γcns





(38)Z
(1)
k = h(1)(Xk)+V

(1)
k

(39)δhia = hia,cns − hia,ins + νh
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The apparent height measurement equation may thus be described as follows:

where h(2)(·) denotes measurement function, V (2)
k  is the related measurement noise.

In addition, an active stage and a free flight stage are contained in the ballistic missile 
trajectory. Once the engines shut down at the end of the active period, the missile loses 
the propulsion provided by them and has already exited the atmosphere. After then, the 
ballistic missile may be thought of as constituting a two-body motion with the Earth, 
meaning that it is just impacted by the gravity field of the Earth. The theoretical out-
put of the accelerometer during the free-flight stage is regarded as zero, according to 
kinematic theory. Hence, the accelerometer bias as well as disturbances might both be 
responsible for the nonzero accelerometer output.

Thus, the velocity equation is rewritten as v̇iib = 0+ γ i
ib(r

i
ib) . Moreover, the following is 

the kinematic constraint measurement equation:

where h(3)(·) represents the measurement function; f̃
b

ib denotes the actual specific force 
generated by accelerometers and f K = 0 denotes the kinematic constraint model, V (3)

k  
represents the accelerometer noise related.

It is possible to create the measurement model by combining Eqs. (38), (41) and (42). The 
attitude and position data are simultaneously compensated when accelerometer bias and 
gyroscope drifts are evaluated in SINS.

The proposed SINS/RKCNS framework is illustrated in Fig. 2 in its entirety.

(40)
ha,ins = η tan R− Re +

√

r2ins − η2 − o

ha,cns = 57.08− 6.44 ln R+K (�)ρg (h)(57.08− 6.44 ln R+ Re)

(41)Z
(2)
k = h(2)(Xk)+V

(2)
k

(42)
Z
(3)
k = f̃

b

ib − f K

= h(3)(Xk)+V
(3)
k

Fig. 2 Structure of the proposed SINS/RKCNS integrated system
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4  Experiments results and discussion
In this section, experiments have been carried out to validate the effectiveness of the sug-
gested SINS/RKCNS-MICKF and to evaluate the positioning accuracy of the system. Fig-
ure 3 depicts the whole trajectory of a simulated real ballistic missile employed in all the 
experiments, where the integrated navigation system begins to perform at the 160th sec-
ond. The SINS is engaged throughout the entire procedure. Moreover, all of the sensor set-
tings are listed in Table 2. For all experiments, the initial misalignment angles are set as 
[

10′′, 6′, 10′′
]

.
The performance of proposed SINS/RKCNS-MICKF was evaluated by comparison with 

a number of different approaches, including the conventional SINS/CNS-CKF, the SINS/
RKCNS-CKF, the SINS/RKCNS-ICKF, and the SINS/RKCNS-MICKF, and the compara-
tive results were examined using the following metrics [8]:

(43)TRMSE = 1

M

M
∑

1

(

Xk − X̂k|k
)

Fig. 3 Ballistic trajectory: a Real three-dimensional ballistic trajectory on Earth; b Real trajectory of the missile 
in i  frame

Table 2 Experimental parameters

Sensors Characteristic Value

Gyroscope Constant drift (◦/h) 1

Random walk noise 
(

◦/
√
h
)

0.5

Output frequency (Hz) 100

Accelerometer Constant bias (µg) 100

Random walk noise 
(

µg/
√
Hz

)

50

Output frequency (Hz) 100

Star sensor Random noise (“) 3

Output frequency (Hz) 1
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where M denotes the experiment number, while N denotes the time steps of experi-
ments; TRMSE represents the mean signal error of M Monte Carlo experiments at each 
epoch; RMSE means the root-mean-square error.

For each approach, 100 Monte Carlo experiments were carried out under the afore-
mentioned parameters and metrics. Figure 4 illustrates the TRMSEs of the positions 
for the four approaches. The corresponding RMSEs from  160th second during the 
experiments are indicated in Table 3. And the TRMSEs of the accompanying accel-
erometer bias ∇x,∇y,∇z estimated by the four approaches are demonstrated in Fig. 5.

Similarly, Fig.  6 displays the TRMSEs of the attitude angles worked by different 
approaches. The associated RMSEs of the attitude angles are revealed in Table  4.  
Figure 7 reports the TRMSEs of corresponding gyroscope drifts εx,εy,εz . The refer-
ence values for accelerometer bias and gyroscope drifts are represented by green 
dotted lines in Figs. 5 and 7, respectively.

(44)RMSE = 1

M

M
∑

1

√

√

√

√

1

N

N
∑

1

(

Xk − X̂k|k
)2

Fig. 4 TRMSEs of position under various approaches

Table 3 RMSEs of position under various approaches

Approaches RMSE of px(m) RMSE of py(m) RMSE of pz(m)

Conventional SINS/CNS 104.2658 506.7657 237.6792

SINS/RKCNS-CKF 50.8478 87.4702 153.8121

SINS/RKCNS-ICKF 28.2319 81.9790 97.2022

*SINS/RKCNS-MICKF 27.2984 59.8424 63.7790
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Fig. 5 TRMSEs of accelerometer bias estimated by various approaches

Fig. 6 TRMSEs of attitude under various approaches
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5  Results and Discussion 1
As shown in Figs. 4, 5 and Table 3, the precision of the missile position gets improved by 
employing the proposed SINS/RKCNS framework with the same devices and movement 
trajectory as the conventional SINS/CNS. As mentioned above, Fig.  5 shows that the 
proposed SINS/RKCNS framework allows for accurate estimation of accelerometer bias, 
whereas the SINS/CNS framework does not. The RMSEs of the positions for 100 Monte 
Carlo runs are expressed in Table 3.

Additionally, the state characteristics are non-directly observable when the refrac-
tive apparent height is adopted as a measurement in the proposed SINS/RKCNS 
framework. ICKF plays a role in estimating the nonlinear measurement equa-
tions more accurately owing to the incorporation of the iterative technique. It can 
be observed from the Fig.  4 that the system positions have a superior steady-state 

Table 4 RMSEs of attitude angles of various approaches

Approaches RMSE of yaw angle (”) RMSE of pitch angle  (”) RMSE of roll 
angle  (”)

Conventional SINS/CNS 0.8731 0.9265 0.8880

SINS/RKCNS-CKF 0.8897 0.8218 0.9105

SINS/RKCNS-ICKF 0.8282 0.7805 0.7638

*SINS/RKCNS-MICKF 0.8479 0.7525 0.8081

Fig. 7 TRMSEs of gyroscope drifts estimated by various approaches
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accuracy and a better convergence trend than utilizing the regular CKF. Table 3 indi-
cates that, in comparison with the CKF approach, the RMEs of positions are decreased 
by 44.48%, 6.28%, and 36.80% with ICKF, respectively, when SINS/RKCNS frame-
works are employed. Working with the MICKF, the RMEs of positions decreased by 
46.31%, 31.59%, and 58.53%, respectively. In ICKF, the iterations are transmitted only 
for the first moment, according to the design, and the state variables are updated after 
the iterations are finished because the CKF is substantially better at predicting the 
state vector than the covariances. Consequently, the mean and covariances are bet-
ter synchronized, and the computational complexity is decreased. The innovation is 
fully employed and the ultimate steady-state bias is smaller through slowing down the 
rate of decay of the error covariance matrix. Furthermore, the MICKF has a greater 
advantage of steady-state error, because the first moment of the likelihood function 
can be approximated during update with varying accuracy owing to the iteration fac-
tor and the solutions for the state-dependent noise during the iterative process. The 
excellent steady-state performance and the rapid approximation of the accelerometer 
bias support this.

6  Results and Discussion 2.
The attitude angles statistics are evaluated in accordance with Figs. 6, 7, and Table 4. 
Conventional SINS/CNS can obtain high-precision attitude angles by a star sensor. As 
indicated by the RMSEs in Table 4, few noticeable differences occur when the SINS/
RKCNS framework is employed, since the attitude angles may be seen as independ-
ent. Additionally, the iterative approach approximates the first moment with varying 
accuracy, as Discussion 1, which results in a minor improvement in the steady-state 
accuracy of attitude angles. The proposed method, however, does not improve atti-
tude accuracy significantly, as is clearly observed.

In summary, the proposed SINS/RKCNS-MICKF can estimate the acceleration bias 
and enhance the position accuracy of the nonlinear system. It works well on the state 
variables with weak observability, while doing less work on the state variables that are 
observable directly.

7  Conclusions
In order to estimate the accelerometer bias as well as enhance the position precision 
of the system, the SINS/RKCNS-MICKF algorithm is presented in this work. The 
SINS/RKCNS refers to a framework that is concentrated on attitude, apparent height, 
and kinematic constraints. The MAP-based MICKF is equipped with an iteration 
technique for states with weak observability and a state augmentation technique for 
the elimination of correlated noise in the nonlinear system. Experiments reveal that it 
is effective in estimating accelerometer bias and improving the position precision of 
the nonlinear navigation system. Later, further theoretical justification and compara-
tive experiments will be included.
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