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Abstract 

Federated learning is a semi-distributed algorithm, where a server communicates 
with multiple dispersed clients to learn a global model. The federated architecture 
is not robust and is sensitive to communication and computational overloads due 
to its one-master multi-client structure. It can also be subject to privacy attacks target-
ing personal information on the communication links. In this work, we introduce graph 
federated learning, which consists of multiple federated units connected by a graph. 
We then show how graph-homomorphic perturbations can be used to ensure 
the algorithm is differentially private on the server level. While on the client level, we 
show that improvement in the differentially private federated learning algorithm 
can be attained through the addition of random noise to the updates, as opposed 
to the models. We conduct both convergence and privacy theoretical analyses 
and illustrate performance by means of computer simulations.

Keywords: Federated learning, Distributed learning, Privatized learning, Differntial 
privacy

1 Introduction
Federated learning (FL) [1] is one particular distributed structure where users no longer 
need to send their data to a server for training. Instead, data remains local, and train-
ing happens in collaboration between different clients and the server. Compared to a 
fully decentralized solution, communication occurs between the server and the clients 
(or agents), instead of directly between the agents themselves. Such a solution is advan-
tageous in the sense that users no longer need to worry about sharing their data with 
an unknown party, and the high cost of sending all their raw data is eliminated. In this 
way, the data stays locally safe on a user’s device, and no extra communication cost is 
incurred for transferring the data remotely. However, such a distributed architecture is 
not robust to communication failures and computational overloads, nor it is immune 
to privacy attacks when agents are required to share their local updates. In standard 
FL, millions of users can be connected to one server at a time. This means one server 
will need to be responsible for the communication with all clients with significant com-
putational burden, thus rendering the system susceptible to communication failures. 
Furthermore, whether clients send their gradient updates or their local models, infor-
mation about their data can be inferred from the exchanges and leaked [2–5]. Consider 
for instance the logistic risk; the gradient of the loss function is a constant multiple of 
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the feature vector. Thus, even though the actual data samples are not sent to the server, 
information about them can still be inferred from the gradient updates or the models.

These considerations motivate us to propose an architecture for federated learn-
ing with privacy guarantees. In particular, we introduce the graph federated architec-
ture, which consists of multiple servers, and we privatize the algorithm by ensuring the 
communication occuring between the servers and the clients is secure. Graph-homo-
morphic perturbations, which were initially introduced in [6], focus on the communica-
tion between servers. They are based on adding correlated noise to the messages sent 
between servers such that the noise cancels out if we were to take the average of all mes-
sages across all servers. As for the privatization between the clients and their servers, we 
share noisy updates as opposed to models. The two protocols make sure the effect of the 
added noise is reduced.

Other works have also contributed to addressing the same challenges we are consider-
ing in this work, albeit differently. For example, the work [7] introduces a hierarchical 
architecture, where it is assumed there are multiple servers connected in a tree structure. 
Such a solution still has one main server and thus faces the same robustness problem as 
FL. The graph federated learning architecture in this work (and which appeared in the 
earlier conference publication [8]) is a more general structure. The work [9] generalizes 
the standard distributed learning framework to include local updates, while [10] has a 
similar architecture to the GFL architecture proposed earlier in [8], it nevertheless does 
not deal with privacy and employs different objective functions and a different learning 
algorithm based on the alternating direction method of multipliers. Likewise, a plethora 
of solutions exist that relate to privacy issues. These methods may be split into two sub-
groups: those using random perturbations to ensure a certain level of differential privacy 
[11–20], or those that rely on cryptographic methods [21–25]. Both have their advan-
tages and disadvantages. While differential privacy is easy to implement, it hinders the 
performance of the algorithm by reducing the model utility. As for cryptographic meth-
ods, they are generally harder to implement since they require more computational and 
communication power [26, 27]. Furthermore, they restrict the number of participating 
users. Moving forward, we go ahead with the study of differentially private methods.

The main contribution in this work is three-fold. We introduce a new generalized and 
more realistic architecture for the federated setting where we now consider multiple 
servers connected by some graph structure. Furthermore, many earlier works have pro-
posed adding Laplacian noise sources to the shared information among agents in order 
to ensure some level of privacy. However, these works have largely ignored the fact that 
these noises degrade the mean-square error (MSE) performance of the network from 
O(µ) down to O(µ−1) , where µ is the small learning parameter. To resolve this issue, we 
define a new noise generation scheme that mantains the MSE at O(1) while ensuring pri-
vacy. Although the work [20] proposed a noisy-distributed consensus strategy, this refer-
ence lacks a useful construction method for the perturbations. In this work, we devise 
a construction scheme. Therefore, the main difference between our proposed method 
and previous works is that we devise a noise construction scheme that ensures the total 
sum of the added noise cancels out centrally. This results in the improved MSE bound 
of O(1). Finally, we prove that clients sharing noisy updates as opposed to noisy models 
lead to improved performance relative to what is commonly done in the prior literature. 
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Moreover, we do not assume bounded gradients, as commonly assumed in previous 
works [12, 15, 16], since this condition does not actually hold in most situations in prac-
tice. Note, for instance, that even quadratic risks do not have bounded gradients. For this 
reason, we will not rely on this condition, and will instead be able to show that our noise 
construction is able to ensure differential privacy with high probability for most cases of 
interest. The main results shown in this work are as follows: 

1. Privatized GFL under graph-homomorphic perturbations converges in the MSE 
sense to an O(1) neighbourhood of the true model wo as opposed to O(µ−1) when 
random perturbations are used instead.

2. Privatized FL under perturbed gradients converges in the MSE sense to an O(µ) 
neighbourhood of the true model wo as opposed to O(µ−1) when perturbed models 
are shared instead.

3. GFL with graph-homomorphic perturbations and perturbed gradients is ǫ(i)-differ-
entially private with high probability.

2  Graph federated architecture
In the graph federated architecture, which we initially introduced in [8], we con-
sider P federated units connected by a graph structure. Each federated unit consists of 
a server and a set of K agents. Thus, the overall architecture can be represented as a 
graph depicted in Fig. 1. We denote the combination matrix connecting the servers by 
A ∈ RP×P , and we write amp to refer to the elements of A. We assume each agent of 
every server has its own dataset {xp,k ,n}

Np,k

n=1 that is non-iid when compared to the other 
agents. The subscript p refers to the federated unit, k to the agent, and n to the data sam-
ple. We note the difference between our proposed architecture and a fully distributed 
setting. The graph federated architecture consists of a network of federated units while 

Fig. 1 The graph federated learning architecture
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a fully distributed network removes the need for servers and assumes clients are con-
nected to each other based on some graph structure. Such an architecture is an improve-
ment on the original federated architecture and not necessarily on the fully distributed 
architecture. Instead of clients communicating with the same server, we split the load 
among multiple servers.

With this architecture, we associate a convex optimization problem that will take into 
account the cost function at each federated unit. Thus, the optimization goal is to find 
the optimal global model wo that minimizes an average empirical risk:

where each individual cost is an empirical risk defined over the local loss functions 
Qp,k(·; ·):

To solve problem (1) each federated unit p runs the standard federated averaging (Fed-
Avg) algorithm [1]. An iteration i of the algorithm consists of the server p selecting a 
subset of L participating agents Lp,i . Then, in parallel, each agent runs a series of sto-
chastic gradient descent (SGD) steps. We call these local steps epochs, and denote an 
epoch by the letter e and the total number of epochs by Ep,k . The sampled data point 
at an agent k in the federated unit p during the eth epoch of iteration i is denoted by 
b. Thus, during an iteration i, each participating agent k ∈ Lp,i updates the last model 
wp,i−1 and sends its new model wp,k ,Ep,k to the server after Ep,k epochs. During a single 
epoch e, the agent updates its current local model wp,k ,e−1 by running a single SGD step. 
Thus, an agent repeats the following adaptation step for e = 1, 2, . . . ,Ep,k:

with xp,k ,b be the sampled data of agent k in federated unit p, and wp,k ,0 = wp,i−1 . After 
all the participating agents k ∈ Lp,i run all their epochs, the server aggregates their final 
models wp,k ,Ep,k , which we rename as wp,k ,i since it is the final local model at iteration i:

Next, at the server level, these estimates are combined across neighbourhoods using a 
diffusion type strategy, where we first consider the previous steps (3) and (4) as the adap-
tation step and the following step as the combination step:

To introduce privacy, the models communicated at each round between the agents and 
the servers need to be encrypted in some way. We could either apply secure multiparty 

(1)wo �= argmin
w∈RM

1

P

P

p=1

1

K

K

k=1

Jp,k(w),

(2)Jp,k(w)
�=

1

Np,k

Np,k∑

n=1

Qp,k(w; xp,k ,n).

(3)wp,k ,e =wp,k ,e−1 −
µ

Ep,k
∇wTQp,k(wp,k ,e−1; xp,k ,b),

(4)ψp,i =
1

L

∑

k∈Lp,i

wp,k ,i.

(5)wp,i =
∑

m∈Np

apmψm,i.
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computation (SMC) tools, like secret sharing, or use differential privacy. We focus on 
differential privacy or masking tools that can be represented by added noise. Thus, we let 
agent 1 in federated unit 2 add a noise component g2,1,i to its final model w2,1,i at itera-
tion i, and then let serever 2 add g12,i to the message ψ2,i it sends to server 1. More gen-
erally, we denote by gpm,i the noise added to the message sent by server m to server p at 
iteration i. Similarly, we denote by gp,k ,i the noise added to the model sent by agent k to 
server p during the ith iteration. We use unseparated subscripts pm for the inter-server 
noise components to point out their ability to be combined into a matrix structure. Con-
trarily, the agent-server noise components’ subscripts are separated by a comma to high-
light a hierarchical structure. Thus, the privatized algorithm can be written as a client 
update step (6), a server aggregation step (7), and a server combination step (8):

The client update step (6) follows from (3) by combining the multiple epochs for 
e = 1, 2, . . . ,Ep,k into one update step, with wp,k ,i = wp,k ,Ep,k and wp,k ,0 = wp,i−1 , namely:

3  Performance analysis
In this section, we show a list of results on the performance of the algorithm. We study 
the convergence of the privatized algorithm (6)–(8), and examine the effect of privatiza-
tion on performance.

3.1  Modeling conditions

To go forward with our analysis, we require certain reasonable assumptions on the graph 
structure and cost functions.

Assumption 1 (Combination matrix) The combination matrix A describing the graph 
is symmetric and doubly-stochastic, i.e.:

(6)wp,k ,i = wp,i−1 −
µ

Ep,k

Ep,k∑

e=1

∇wTQp,k(wp,k ,e−1; xp,k ,b),

(7)ψp,i =
1

L

∑

k∈Lp,i

wp,k ,i + gp,k ,i,

(8)wp,i =
∑

m∈Np

apm(ψm,i + gpm,i).

(9)

wp,k ,Ep,k = wp,k ,Ep,k−1 −
µ

Ep,k
∇wTQp,k(wp,k ,Ep,k−1; xp,k ,b)

= wp,k ,Ep,k ,−2 −
µ

Ep,k

Ep,k∑

e=Ep,k−1

∇wTQp,k(wp,k ,e−1; xp,k ,b)

= wp,k ,0 −
µ

Ep,k

Ep,k∑

e=1

∇wTQp,k(wp,k ,e−1; xp,k ,b).
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Furthermore, the graph is strongly-connected and A satisfies:

Assumption 2 (Convexity and smoothness) The empirical risks Jp,k(·) are ν − strongly 
convex, and the loss functions Qp,k(·; ·) are convex, namely for ν > 0,:

Furthermore, the loss functions have δ-Lipschitz continuous gradients, meaning there 
exists δ > 0 such that for any data point xp,n:

We also require a bound on the difference between the global optimal model wo and 
the local optimal models wo

p,k that optimize Jp,k(·) . This assumption is used to bound the 
gradient noise and the incremental noise defined further ahead. It is not a restrictive 
assumption, and it imposes a condition on when collaboration is sensical among differ-
ent agents. In other words, since the agents have non-iid data, sometimes their optimal 
models are too different and collaboration would hurt their individual performance. For 
example, when considering recommender systems, people in the same country are more 
likely to get the same movie recommended as opposed to across different countries. This 
means, people of the same country might have different models but relatively close con-
trary to different countries.

Assumption 3 (Model drifts) The distance of each local model wo
p,k to the global model 

wo is uniformly bounded, i.e., there exists ξ ≥ 0 such that �wo − wo
p� ≤ ξ.

3.2  Network centroid convergence

We study the convergence of the algorithm from the network centroid’s wc,i perspective:

We write the central recursion as:

(10)apm = amp,

P∑

m=1

amp = 1.

(11)ι2
�= ρ

(
A−

1

P
11

T

)
< 1.

�

(12)Jp,k(w2) ≥ Jp,k(w1)+∇wT Jp,k(w1)(w2 − w1)+
ν

2
�w2 − w1�2,

(13)Qp,k(w2; ·) ≥ Qp,k(w1; ·)+∇wTQp,k(w1; ·)(w2 − w1).

(14)�∇wTQp,k(w2; xp,k ,n)− ∇wTQp,k(w1; xp,k ,n)� ≤ δ�w2 − w1�.

�

(15)wc,i
�=

1

P

P∑

p=1

wp,i.



Page 7 of 31Rizk et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:87  

Next, we define the model error as w̃c,i
�= wo − wc,i and the average gradient noise:

with the per-unit gradient noise sp,i:

and

We introduce the average incremental noise qi and the local incremental noise qp,i , 
which capture the error introduced by the multiple local update steps:

We then arrive at the following error recursion:

where g i is the total added noise at iteration i:

We estimate the first and second-order moments of the gradient noise in the following 
lemma. To do so, we use the fact, shown in previous work (Lemma 1 in [28]), that the 
individual gradient noise is zero-mean with a bounded second order moment:

where the constants are defined as:

(16)

wc,i = wc,i−1 − µ
1

PL

P∑

p=1

∑

k∈Lp,i

1

Ep,k

Ep,k∑

e=1

∇wTQp,k(wp,k ,e−1; xp,k ,b)

+
1

PL

P∑

p=1

∑

k∈Lp,i

gp,k ,i +
1

P

P∑

p,m=1

apmgpm,i.

(17)si
�=

1

P

P∑

p=1

sp,i,

(18)sp,i
�= ∇̂wT Jp(wp,i−1)− ∇wT Jp(wp,i−1),

(19)∇̂wT Jp(·)
�=

1

L

∑

k∈Lp,i

1

Ep,k

Ep,k∑

e=1

∇wTQp,k(·; xp,k ,b).

(20)qi
�=

1

P

P∑

p=1

qp,i,

(21)qp,i
�=

1

L

∑

k∈Lp,i

1

Ep,k

Ek∑

e=1

(
∇wTQp,k(wp,k ,e−1; xp,k ,b)−∇wTQ(wp,i−1; xp,k ,b)

)

(22)w̃c,i = w̃c,i−1 + µ
1

P

P∑

p=1

∇wT Jp(wp,i−1)+ µsi + µqi − g i,

(23)g i
�=

1

PL

P∑

p=1

∑

k∈Lp,i

gp,k ,i +
1

P

P∑

p,m=1

apmgpm,i

(24)E

{
�sp,i�2|Fi−1

}
≤ β2

s,p�w̃p,i−1�2 + σ 2
s,p,
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and Fi−1 is the filtration defined over the randomness introduced by all the past subsam-
pling of the data for the calculation of the stochastic gradient. Using Assumption 3, we 
can guarantee that σ 2

s,p is bounded by bounding:

Lemma 1 (Estimation of first and second-order moments of the gradient noise) The gra-
dient noise defined in (17) is zero-mean and has a bounded second-order moment:

where the constants β2
s  and σ 2

s  are given by:

 Proof The above result follows from applying the Jensen’s inequality and the bounds on 
the per-unit gradient noise sp,i . 

The new term found in the bound of the gradient term is what we call the network 
disagreement:

It captures the difference in the path taken by the individual models versus the network 
centroid. We bound this difference in Lemma 3. However, before doing so, we show that 
the second order moment of the incremental noise is on the order of O(µ) . From Lemma 
5 in [28], we can bound the individual incremental noise:

where the constants are given by:

(25)β2
s,p

�=
6δ2

L

(
1+

1

K

K∑

k=1

1

Ep,k

)
,

(26)σ 2
s,p

�=
1

LK

K∑

k=1

(
12

Ep,k
+ 3

)
1

Np,k

Np,k∑

n=1

�∇wTQp,k(w
o; xp,k ,n)�2,

(27)�∇wTQp,k(w
o; xp,k ,n)�2 ≤ 2�∇wTQp,k(w

o
p,k; xp,k ,n)�

2 + 2δ2ξ2.

(28)E

{
�si�2|Fi−1

}
≤ β2

s �w̃c,i−1�2 + σ 2
s +

2

P

P∑

p=1

β2
s,p�wp,i−1 − wc,i−1�2

(29)β2
s

�=
2

P

P∑

p=1

β2
s,p, σ 2

s
�=

1

P

P∑

p=1

σ 2
s,p.

�

(30)
1

P

P∑

p=1

�wp,i − wc,i�2.

(31)E�qp,i�2 ≤aµ2
E�w̃p,i−1�2 + aµ2ξ2 +

1

K

K∑

k=1

(bkµ
4 + ckµ

2)σ 2
q,p,k ,

(32)a
�=

4δ2

K

K∑

k=1

(Ep,k + 1)(1− �)− 1+ �
Ep,k+1

E2
p,k(1− �)2

,
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The following result follows.

Lemma 2 (Estimation of second-order moment of the incremental noise) The incremen-
tal noise defined in (20) has a bounded second-order moment:

where the constant σ 2
q  is the average of σ 2

q,p,k:

 Proof The above result follows from applying the Jensen inequality and the bounds 
on the per-unit incremental noise qp,i . Furthermore, a = O(µ−1), bk = O(µ−1), and 
ck = O(1) reduce the expression to (37). 

We now bound the network disagreement. To do so, we first introduce the eigende-
composition of A = QHQT:

where Hθ is a diagonal matrix that includes the last (P − 1) eigenvalues of A and Qθ their 
corresponding eigenvectors.

Lemma 3 (Network disagreement) The average deviation from the centroid is bounded 
during each iteration i:

(33)bk
�=

2Ep,k(Ep,k + 1)(1− �)2 − 4Ep,k(1− �)+ 4�

E2
p,k(1− �)3

−
2�Ep,k+1

E2
p,k(1− �)3

,

(34)ck
�=

Ep,k − 1

3Ep,k
,

(35)�
�= 1− 2νµ+ 4δ2µ2,

(36)σ 2
q,p,k

�= 3

Np,k∑

n=1

�∇wTQp,k(w
o
p,k; xp,k ,n)�

2.

(37)

E�qi�2 ≤ O(µ)E�w̃c,i−1�2 + O(µ)ξ2 + O(µ2)σ 2
q

+
O(µ)

P

P∑

p=1

E�wp,i−1 − wc,i−1�2,

(38)σ 2
q

�=
1
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P∑

p=1

K∑

k=1

(bkµ
4 + ckµ

2)σ 2
q,p,k .

�

(39)Q
�=

[
1√
P
1 Qθ

]
, H

�=
[
1 0
0 Hθ

]
,
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where W0
�= col

{
wp,0

}P
p=1

 and �p
�=

√
1− 2νµ+ δ2µ2 + β2

s,pµ
2 + O(µ2) ∈ (0, 1) . 

Then, in the limit:

 Proof See “Appendix 2”. 
Thus, from the above lemma, we see that the individual models gravitate to the cen-

troid model with an error introduced due to the added privatization. The effect of the 
added noise overpowers that of the gradient and incremental noise, since the later is on 
the order of the step-size.

Then, using the above result, we can establish the convergence of the centroid model 
to a neighbourhood of the true optimal model wo in the mean-square-error (MSE) sense.

Theorem  1 (Centroid MSE convergence) Under Assumptions 1, 2 and 3, the network 
centroid converges to the optimal point wo exponentially fast for a sufficiently small step-
size µ:

where �c =
√

1− 2νµ+ δ2µ2 + β2
s µ

2 + O(µ2) ∈ (0, 1) . Then, letting i tend to infinity, 
we get:

(40)

1

P

P∑

p=1

E�wp,i − wc,i�2 ≤
ιi2
P
E�(Qǫ ⊗ I)W0�2 +

ι22
P

i−1∑

j′=0

ι
j′

2

P∑

p=1

{
µ2

(
2δ2

ι2(1− ι2)

+ β2
s,p + O(µ)

)(
�
j′
pA

j′ [p] col
{
E�w̃p,0�2

}P

p=1
+

j′−1∑

j=0

�
j
p

× Aj[p] col
{
µ2σ 2

s,p + O(µ2)ξ2 + O(µ3)σ 2
q,p + σ 2

g ,p

}P

p=1

)

+ µ2 2�∇wT Jp(w
o)�2

ι2(1− ι2)
+ µ2σ 2

s,p + O(µ3)ξ2 + O(µ4)σ 2
q,p

+
1

ι22
σ 2
g ,p

}
,

(41)

lim sup
i→∞

1

P

P∑

p=1

E�wp,i − wc,i�2 ≤
ι22

P(1− ι2)

P∑

p=1

µ2σ 2
s,p +

1

ι22
σ+
g ,pO(µ)σ 2

g ,p + O(µ3).

�

(42)

E�w̃c,i�2 ≤ �cE�w̃c,i−1�2 + µ2σ 2
s + O(µ2)ξ2 + O(µ3)σ 2

q + E�g i�2

+
O(µ)

P

P∑

p=1

E�wp,i−1 − wc,i−1�2,

(43)

lim sup
i→∞

E�w̃c,i�2 ≤
µ2σ 2

s + O(µ2)ξ2 + O(µ3)σ 2
q + E�g�2

1− �c
+

P∑

p=1

O(1)σ 2
g ,p + O(µ).
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 Proof See “Appendix 3”. 
The main term in the above bound is the variance of the added noise with a domi-

nating factor of µ−1 , since:

which allows us to rewrite the bound as follows:

with E‖g‖2 representing the variance of the total added noise, independent of time. 
While in general decreasing the step-size improves performance, the above result shows 
that this need not be the case with privatization. Thus, since the added noise impacts the 
model utility negatively, it is important to choose a privatization scheme that reduces 
the effect. In what follows, we look closely at such a scheme.

3.3  Graph‑homomorphic perturbations

We consider a specific privatization scheme and specialize the above results. The goal 
of the scheme is to remove the O(µ−1) term from the MSE bounds. Thus, focusing 
on the centroid model expression (16), we wish to cancel out the total added noise 
amongst servers, i.e.,

To achieve this, we introduce graph-homomorphic perturbations defined as follows [6]. 
We assume each server p draws a sample gp,i independently from the Laplace distribu-
tion Lap(0, σg/

√
2) with variance σ 2

g  . Server p then sets the noise gmp,i added to the mes-
sage sent to its neighbour m as:

With such a construction, condition (46) is satisfied:

Thus, with such a scheme, the noise components proportional to O(µ−1) resulting from 
the noise added between the servers cancel out in the error recursions, however since 

�

(44)1− �c = 1−
√
1− O(µ)+ O(µ2)− O(µ2) = O(µ)− O(µ2) = O(µ)

(45)

lim sup
i→∞

E�w̃c,i�2 ≤ O(µ)σ 2
s + O(µ)ξ2 + O(µ2)σ 2

q + O(µ−1)E�g�2

+
P∑

p=1

O(1)σ 2
g ,p + O(µ),

(46)
P∑

p,m=1

apmgpm,i = 0.

(47)gmp,i =





gp,i m �= p

− 1−app
app

gp,i.

(48)

P∑

p,m=1

apmgpm,i =
∑

p �=m

apmgp,i −
P∑

p=1

app

(
1− app

app

)
gp,i

=
P∑

p=1

(1− app)gp,i − (1− app)gp,i = 0.
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gradients are evaluated at the local models wp,i and not at the centroid wc,i , thus the 
effect of the noise is still evident. Yet, this remaining error introduced by the noise is 
controlled by the step-size. Thus, its effect can be mitigated by using a smaller step-size. 
In the next corollary, we show that if no noise is added amongst the clients and graph-
homomorphic perturbations are used amongst servers, then the error converges to 
O(1)σ 2

g .

Corollary 1 (Centroid MSE convergence under graph-homomorphic perturbations) 
Under Assumptions 1, 2 and 3, the network centroid with graph-homomorphic perturba-
tions converges to the optimal point wo exponentially fast for a sufficiently small step-size 
µ:

Then, letting i tend to infinity, we get:

 Proof Starting from (43), and replacing E�g�2 = 0 because g i = 0 , we get the final 
result. 

3.4  Sharing gradients as opposed to weight estimates

We next show that sharing gradients versus models is better for the performance under 
added noise. In the remainder of this section and for the sake of simplicity, we illus-
trate this conclusion by considering one federated unit, say for p = 1 . Thus, if we were 
to introduce differential privacy to federated learning, then a random Laplacian noise 
should be added to each model by the client before aggregation by the server, and the 
new privatized aggregation step will become:

However, if we were to study the MSE convergence of this privatized algorithm, we 
would notice a new O(µ−1)σ 2

g  term in the bound (Theorem 1). To address this degrada-
tion, we now describe an alternative implementation that shares gradients as opposed to 
weight estimates. Note first that the FL algorithm can be expressed in a single step taken 
from the server’s perspective:

(49)

E�w̃c,i�2 ≤ �cE�w̃c,i−1�2 + µ2σ 2
s + O(µ2)ξ2 + O(µ3)σ 2

q

+
O(µ)

P

P∑

p=1

E�wp,i−1 − wc,i−1�2.

(50)lim sup
i→∞

E�w̃c,i�2 ≤
µ2σ 2

s + O(µ2)ξ2 + O(µ3)σ 2
q

1− �c
+

P∑

p=1

O(1)σ 2
g ,p + O(µ).

�

(51)w1,i =
1

L

∑

k∈L1,i

(
w1,k ,i + g1,k ,i

)
.
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This suggests that instead of every agent sharing its final model w1,k ,i , they could share 
the total update:

The server then aggregates the updates from all participating agents and updates the 
previous model w1,i−1 . In this case, if we were to privatize this new version of the algo-
rithm, we would add random noise to the updates which are then scaled by the step-size:

We show in the following theorem the effect of the added noise to the new FL algorithm. 
It turns out, the noise introduces an O(µ) error instead of O(µ−1).

Theorem 2 (MSE convergence of privatized FL) Under Assumptions 2 and 3, the privat-
ized FL algorithm (54)–(55) converges exponentially fast for a small enough step-size to a 
neighbourhood of the optimal model:

where � =
√
1− 2νµ+ (β2

s,1 + δ2)µ2 + O(µ2) ∈ (0, 1) . Then, in the limit:

 Proof See “Appendix 6”. 
Thus, sharing the updates instead of the models is advantageous since the effect of the 

added noise on the performance is reduced. The O(µ) factor allows us to increase the value 
of the noise variance while ensuring the model utility does not deteriorate significantly. 
Therefore, to guarantee an ǫ(i)-DP algorithm, we let the added noise be a zero-mean Lapla-
cian random variable with σ 2

g  variance.

4  Privacy analysis
We study the privacy of the algorithm (6)–(8) in terms of differential privacy. We focus on 
graph-homomorphic perturbations and show that the adopted scheme is differentially pri-
vate. To do so, we first define what it means for an algorithm to be ǫ-differentially private. 
Therefore, without loss of generality, assume agent 1 in federated unit 1 decides to not 

(52)w1,i = w1,i−1 − µ
1

L

∑

k∈L1,i

1

E1,k

E1,k∑

e=1

∇̂wT J1,k(w1,k ,e−1).

(53)
1

E1,k

E1,k∑

e=1

∇̂wT J1,k(w1,k ,e−1).

(54)ψ1,k ,i−1 =
1

E1,k

E1,k∑

e=1

∇̂wT J1,k(w1,k ,e−1),

(55)w1,i = w1,i−1 − µ
1

L

∑

k∈L1,i

(
ψ1,k ,i−1 + g1,k ,i

)
.

(56)E�w̃1,i�2 ≤ �E�w̃1,i−1�2 + O(µ2)σ 2
s,1 + O(µ2)ξ2 +

µ2

L
σ 2
g ,1 +O(µ3).

(57)lim sup
i→∞

E�w̃1,i�2 ≤ O(µ)(σ 2
s,1 + ξ2 + σ 2

g ,1)+ O(µ2).

�
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participate, and its data samples x1,1 are replaced by a new set x′1,1 with a different distribu-
tion. Then, with the new data, the algorithm takes a different path. We denote the new 
models by w′

p,k ,i . The idea behind differential privacy is that an outside observant should 
not be able to distinguish between the two trajectories wp,k ,i and w′

p,k ,i and conclude 
whether agent one participated in the training. More formally, differential privacy is defined 
bellow.

Definition 1 (ǫ(i)-Differential Privacy) We say that the algorithm given in (6)–(8) is 
ǫ(i)-differentially private for server p at time i if the following condition holds on the 
joint distribution f (·):

Thus, the above definition states that minimaly varried trajectories have comparable 
probabilities. In addition, the smaller the value of ǫ is, the higher the privacy guarantee will 
be. Thus, the goal will be to decrease ǫ as long as the model utility is not strongly affected.

Next, in order to show that the algorithm is differentially private, we require the sensitiv-
ity of the algorithm to be bounded. The sensitivity at time i is defined as:

It measures the distance between the original and perturbed weight vectors. It is shown 
in “Appendix 4” that �(i) can be bounded as follows:

for constants B and B′ chosen by the designer. Moreover, the above bound holds with 
high probability given by:

This result shows that the sensitivity can be bounded with high probability, which in 
turn is dependent on the values chosen for B and B′ . Larger values for these constants 
increase the probability, but nevertheless lead to a looser bound for privacy (as shown in 
Theorem 3). Therefore, the choice of B and B′ needs to be balanced judiciously to ensure 
the desired level of privacy.

(58)

f

({{
ψp,j + gpm,j

}
m∈Np\{p}

}i

j=0

)

f

({{
ψ ′

p,j + gpm,j

}
m∈Np\{p}

}i

j=0

) ≤ eǫ(i).

�

(59)�(i) = �W i −W ′
i�.

(60)�(i) ≤ B+ B′ +
√
P�wo − w

′o�,

(61)

P(�(i) ≤ B+ B′ +
√
P�wo − w′o�) ≥

(
1−

�
i
maxE�W0�2 + O(µ)+ O(µ−1)

B2

)

×
(
1−

�
′i
maxE�W ′

0�2 + O(µ)+ O(µ−1)

B′2

)
.
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Using the bound on the sensitivity and from the definition of differential privacy, we 
can finally show that the algorithm is differentially private with high probability.

Theorem  3 (Privacy of GFL algorithm) If the algorithm (6)–(8) adopts graph-homo-
morphic perturbations, then it is ǫ(i)-differentially private with high probability, at time i 
for a standard deviation of σg =

√
2(B+ B′√P�wo − w′o�)(i + 1)/ǫ(i).

 Proof See “Appendix 5”. 
Thus, the above theorem suggests, if we wish the algorithm to be ǫ(i)-differentially pri-

vate, then we need to choose the noise variance accordingly. The larger the variance is, 
the more private the algorithm will be. However, the longer the algorithm is run, we will 
require a larger noise variance to keep the same level of privacy guarantee. Said differ-
ently, if we fix the added noise, then as time passes, the algorithm becomes less private, 
and more information is leaked. However, with graph-homomorphic perturbations, 
we can afford to increase the variance since its effect is constant on the MSE, and thus 
decreases the leakage.

Moreover, we study the effect of the model drift on the privacy of the algorithm. Thus, 
if we examine closely the probability that the sensitivity is bounded, the model drift ξ 
appears in the O(µ) term. The smaller the model drift is, we note that the higher the 
probability that the sensitivity is bounded. This in turn implies that the algorithm is dif-
ferentially private with higher probability. Furthermore, if we study the average ǫ(i) , we 
see that:

as the model drift decreases, so does ǫ(i) on average. Therefore, with smaller model drift 
we can achieve higher privacy with more certainty.

�

(62)

E ǫ(i) =
√
2

σg

i∑

j=1

E�(j)

≤
√
2

σg

i∑

j=1

E�w̃p,j� + E�w̃′
p,j� + �wo − w′o�

≤
√
2

σg

i∑

j=1

�
j/2

E�w̃p,0� +
1

√
1− �

(
O(µ)(σ 2

s,p + ξ2 + σ 2
g )+ O(µ3/2)

)

+ �
′j/2

E�w̃′
p,0� +

1
√
1− �′

(
O(µ)(σ ′2

s,p + ξ ′2 + σ 2
g )+ O(µ3/2)

)

+ �wo − w′o�

≤
1− �

i/2

1− �1/2
E�w̃p,0� +

1− �
i/2

1− �′1/2
E�w̃′

p,0� + i�wo − w′o�

+
i

√
1− �

(
O(µ)(σ 2

s,p + ξ2 + σ 2
g )+ O(µ3/2)

)

+
i

√
1− �′

(
O(µ)(σ ′2

s,p + ξ ′2 + σ 2
g )+ O(µ3/2)

)
,



Page 16 of 31Rizk et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:87 

5  Experimental analysis
We conduct a series of experiments to study the influence of privatization on the GFL 
algorithm. The aim of the experiments is to show the superior performance of graph-
homomorphic perturbations to random perturbations and perturbations to gradients 
versus models, and to study the effect of different parameters on the performance of the 
algorithm.

5.1  Regression

We first start by studying a regression problem on simulated data. We do so for the trac-
tability of the problem. We consider the quadratic loss that has a closed form solution, 
i.e., a formal expression for the true model wo is known, which makes the calculation of 
the mean square error feasible and more accurate.

Therefore, consider a streaming feature vector up,k ,n ∈ RM with output variable 
dp,k(n) ∈ R given by:

where w⋆ ∈ RM is some generating model, and vp,k(n) is some zero-mean Guassian ran-
dom variable with σ 2

vp,k
 variance and independent of up,k ,n . Then, the optimal model that 

solves the following problem:

is found to be:

where R̂u and r̂uv are defined as:

We consider P = 10 units, each with K = 100 total agents. We assume, Np,k = 100 for 
each agent. We randomly generate two-dimensional feature vectors up,k(n) from a 
Gaussian random vector with zero-mean and a randomly generated covariance matrix 
Rup,k . We then calculate the corresponding outputs according to (63). To make the data 
non-iid across agents, we assume the covariance matrix Rup,k is different for each agent, 
as well as the variance σ 2

vp,k
 of the added noise. When running the algorithm, we assume 

(63)dp,k(n) = uT

p,k ,nw
⋆ + vp,k(n),

(64)min
w

1

P

P∑

p=1

1

K

K∑

k=1

1

Np,k

Np,k∑

n=1

�dp,k(n)− uT

p,k ,nw�
2 + ρ�w�2

(65)wo = (R̂u + ρI)−1(R̂uw
⋆ + r̂uv),

(66)R̂u
�=

1

P

P∑

p=1

1

K

K∑

k=1

1

Np,k

Nk∑

n=1

up,k ,nu
T

p,k ,n,

(67)r̂uv
�=

1

P

P∑

p=1

1

K

K∑

k=1

1

Np,k

Nk∑

n=1

vp,k(n)up,k ,n.
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each unit samples at random L = 11 agents, and each agent runs Ep,k ∈ [1, 10] epochs 
and uses a mini-batch of Bp,k ∈ [5, 10] samples.

We compare three algorithms: the standard GFL algorithm, the privatized GFL 
algorithm with random perturbations, and the privatized GFL with homomorphic 
perturbations. We do not add noise between the clients and their server to focus on 
the effect of the perturbations between the servers. In the first set of simulations, we 
fix the step-size µ = 0.7 and the regularization parameter ρ = 0.1 . We fix the variance 
of the added noise for privatization in both schemes to σ 2

g = 0.1 . We then plot the 
mean-square-deviation (MSD) at each time step for the centroid model:

as seen in Fig.  2. We observe that the privatized GFL with random perturbations has 
lower performance compared to the other two algorithms. While, using homomor-
phic perturbations does not result in such a decay in performance. Thus, our suggested 
scheme does a good job at tracking the performance of the original GFL algorithm, while 
not compromising with the privacy level.

We next study the extent of the effect of the noise on the model utility. Thus, we 
run a series of experiments with varying added noise σ 2

g = {0.001, 0.01, 0.1, 1, 2, 10} for 
the two privatized GFL algorithms. We plot the resulting MSD curves in Fig. 3a. We 
observe for a fixed step-size, as we increase the variance, the MSD of the algorithm 
with random perturbations increases significantly as opposed to the algorithm with 
homomorphic perturbations. Thus, we conclude that the algorithm with random per-
turbations is more sensitive to the variance of the added noise. In fact, at some point, 
while using random perturbations, for some variance, the algorithm breaks down. 
While using graph-homomorphic perturbations, delays that effect for much larger 
variance. In addition, as long as the step-size is small enough, we can always control 
the effect of the graph-homomorphic perturbations.

However, if we were to look at the individual MSD for one federated unit, we 
would discover that the performance of the algorithm decays as the noise variance 
is increased. Nonetheless, it is not to the extent of random perturbations. We plot in 
Fig. 3b the average individual MSD for the varying noise variance:

(68)MSDi
�= �wc,i − wo�2,

Fig. 2 Performance of GFL with no perturbations (blue), with graph-homomorphic perturbations (green), 
and random perturbations (red)
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We observe that for a fixed noise variance, homomorphic perturbations results in 
a better performance. Furthermore, as we increase the noise variance, the network 
disagreement increases for both schemes. This comes as no surprise and is in accord-
ance with Lemma 3. Furthermore, as previously mentioned, graph-homomorphic 
perturbations have the added value of not being negatively affected by the decrease 
in the step-size. In addition, even though the improvement does not seem significant, 
the source of the error of the two schemes is different. Furthermore, the informa-
tion of the true model is distributed in the network and can be retrieved by running 
at the end of the learning algorithm a consensus-type step. At that point, the local 
models no longer contain information about the local data, and thus agents can safely 
share their models. However, when random perturbations are used, reconstruction 
is not possible since the information has been lost in the network due to the added 
perturbations.

We next fix the noise variance σ 2
g = 0.1 and varying the step-size µ = {0.1, 0.5, 1, 5} . 

According to Theorem 4, the MSD resulting from random perturbations includes an 
O(µ−1) term, which is not the case when using graph-homomorphic perturbations. 
Thus, we expect a decrease in the step-size will not significantly affect the privatized 
algorithm with graph-homomorphic perturbations as opposed to random perturba-
tions. Indeed, as seen in Fig. 4, as µ is increased, the final MSD increases; this is prob-
ably due to the O(µ)σ 2

s  term in the bound. In contrast, for significantly small or large 
µ , the performance of the privatized algorithm with random perturbations decreases. 

(69)MSD avg ,i
�=

1

P

P∑

p=1

�wp,i − wo�2.

(a) centroid model

(b) individual models
Fig. 3 Performance curves of privatized GFL with varying noise variance
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In addition, what we observe for both privacy schemes, is that the rate of convergence 
slows down as we decrease the step-size. Thus, there exists an optimal step-size that 
achieves a good compromise between a fast convergence and a low MSD.

5.2  Privatized federated learning

We focus on the single server FL setting (i.e., P = 1 ), where we assume we have 
K = 1000 agents of which we choose L = 30 at a time. We generate non-iid datasets 
of varying size for each agent as in the previous section. We allow each agent to run 
varying epochs Ek ∈ [1, 10] during an iteration of the algorithm. We set the step-size 
µ = 0.2 , ρ = 0.007 and σ 2

g = 0.02 . We compare three algorithms: the standard FL algo-
rithm, the privatized FL algorithm with sharing of models, and the privatized FL algo-
rithm with sharing of updates. We plot the average MSD curves after repeating the 
experiment 100 times. As expected, the effect of the added noise is worse when mod-
els are shared (yellow curve Fig. 5) than when updates are shared (red curve Fig. 5).

We next study the effect of the step-size on the MSD of the privatized FL algorithm. 
We expect that as µ is increased the MSD increases for the FL algorithm when updates 
are shared. While, when models are shared, since the gradient noise variance is tuned by 
µ and the added noise variance by µ−1 , we expect to observe a trade-off. On one hand, as 
µ is increased the effect of the gradient noise is increased while that of the added noise is 
diminished. On the other hand, as µ is decreased, the effect of the added noise overpow-
ers that of the gradient noise. Indeed, we observe this phenomenon in (a) and (b) of Fig. 6.

Finally, we study the effect of the variance of the added noise. We fix the step-size at 
µ = 0.2 and vary the noise variance σ 2

g = {0.01, 0.05, 0.1, 0.5} . In the two cases, as we 
increase σ 2

g  the performance diminishes ((c), (d) of Fig. 6). However, the larger values of 

Fig. 4 Performance curves of privatized GFL with varying step-size

Fig. 5 MSD plots of FL
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the added noise variance affect the perturbed models more than the perturbed gradi-
ents. The algorithm diverges for lower values of σ 2

g  in the case when models are shared as 
opposed to when gradients are shared. Thus, sharing updates can handle larger values of 
σ 2
g  before the algorithm diverges. In addition, since the variance is tuned by the step-size, 

we can always find a suitable µ to decrease its effect.

5.3  Classification

We now focus on a classification problem applied to a dataset on click rate predic-
tion of ads. We consider the Avazu click through dataset [29]. We split the 5101 data 
unequally among a total of 50 agents. We assume there are P = 5 units each with 
K = 10 agents. We add non-idd noise to the data at each agent to change their dis-
tributions. We again compare three algorithms: standard GFL, privatized GFL with 
homomorphic perturbations, and privatized GFL with random perturbations. We use 
a regularized logistic risk with regularization parameter ρ = 0.03 . We set the step-
size µ = 0.5 . We repeat the algorithms for multiple levels of privacy. We then settle 
on a noise variance σ 2

g = 0.6 for which the privatized algorithm with random pertur-
bations still converges. We plot in Fig. 7 the testing error on a set of 256 clean samples 
that were not perturbed with noise to change their distributions. We use the centriod 
model learned during each iteration to calculate the corresponding testing error. We 
observe that the graph-homomorphic perturbations do not hinder the performance 
of the privatized model. As for random perturbations, they significantly reduce the 
utility of the learnt model.

(a) Varying µ (b) Varying µ

(c) Varying σ2
g (d) Varying σ2

g

Fig. 6 MSD plots of privatized FL with varying step-size and variance of added noise
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6  Conclusion
In this work, we introduced graph federated learning and implemented an algorithm 
that guarantees privacy of the data in a differential privacy sense. We showed general 
privatization based on adding random perturbations to updates in federated learning 
have a negative effect on the performance of the algorithm. Random perturbations drive 
the algorithm farther away from the true optimal model. However, we showed by adding 
graph-homomorphic perturbations, which exploit the graph structure, performance can 
be recovered with guaranteed privacy. We also showed that using dependent perturba-
tions does not result in the same trade-off between privacy and efficiency. In federated 
learning, we proved that sharing perturbed gradients versus perturbed models signifi-
cantly reduces the effect of the added noise on the model utility. Thus, we no longer have 
to choose what to prioritize, and instead, we can have both a highly privatized algorithm 
with a good model utility.

Appendix 1: Secondary result on individual MSE performance
We first introduce the following theorem, which will be used to bound the network 
disagreement. We loosely bound the individual MSE for each federated unit. A tighter 
bound can be found, however, it is not needed.

Theorem 4 (Individual MSE convergence) Under Assumptions 1, 2 and 3, the individ-
ual models converge to the optimal model wo exponentially fast for a sufficiently small 
step-size:

where � is the elementwise comparison, � is a diagonal matrix with the pth entry given by 
�p =

√
1− 2νµ+ δ2µ2 + β2

s,pµ
2 + O(µ2) ∈ (0, 1) , σ 2

q,p the average of σ 2
q,p,k , and σ 2

g ,p is 
the total variance introduced by the noise added at server p. Then, taking the limit of i to 
infinity:

(70)

col {E�w̃p,i�2}Pp=1

� �i col {E�w̃p,0�2}Pp=1 +
i∑

j=0

�j col {µ2σ 2
s,p + O(µ2)ξ2 + O(µ3)σ 2

q,p + σ 2
g ,p}

P
p=1,

Fig. 7 Testing error of GFL with no perturbations (blue), with graph-homomorphic perturbations (green), 
and random perturbations (red)
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Proof Focusing on the error of a single server p, we can verify that:

where we define σ 2
q,m to be the average of σ 2

q,m,k . Step (a) follows from independence of 
random variables and the zero-mean of the gradient noise and the added noise, (b) from 
Jensens’ inequality and the bound on the gradient noise (24) and the incremental noise 
(37), (c) from ν-strong convexity and δ-Lipschtz continuity. Then, choosing 
α =

√
1− 2νµ+ δ2µ2 = 1− O(µ) and taking the expectation over the filtration, we 

get:

(71)
lim sup
i→∞

col
{
E�w̃p,i�2

}P

p=1

� (I −�)−1 col
{
µ2σ 2

s,p + O(µ2)ξ2 +O(µ3)σ 2
q,p + σ 2

g ,p

}P

p=1
.
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+ E





����
�

m∈Np

apm

L

�

k∈Lm,i

gm,k ,i

����
2����Fi−1





+ E





����
�

m∈Np

apmgpm,i

����
2����Fi−1



,

(b)
≤

�

m∈Np

apm

�
1

α
��wm,i−1 + µ∇wT Jm(wm,i−1)�2 +

µ2

1− α

�
O(µ)��wm,i−1�2

+ O(µ)ξ2 + O(µ2)σ 2
q,m

�
+ µ2

�
σ 2
s,m + β2

s,m��wm,i−1�2
�
+

1

LK

K�

k=1

E�gm,k ,i�2

+ E�gpm,i�2
�
,

(c)
≤

�

m∈Np

apm

��
1− 2νµ+ δ2µ2

α
+ β2

s,mµ
2 +

O(µ3)

1− α

�
��wm,i−1�2 + µ2σ 2

s,m

+
O(µ3)ξ2 + O(µ4)σ 2

q,m

1− α
+

1

LK

K�

k=1

E�gm,k ,i�2 + E�gpm,i�2
�
,

(73)

E�w̃p,i�2 ≤
∑

m∈Np

apm

(
�mE�w̃m,i−1�2 + µ2σ 2

s,m + O(µ2)ξ2 + O(µ3)σ 2
q,m + σ 2

g ,m

)
,
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where we introduce the constants �m and σ 2
g ,m:

Next, taking the column vector of every local mean-square-error, we get the following 
bound in which we drop the indexing from the column vectors:

where we define the diagonal matrix � with �p as entries on the diagonal. Then choosing 
µ small enough such that �p < 1 for every p, we know the limit of �i as i goes to infinity 
is zero. Furthermore, if the eigenvalues of � are less than 1, which they are, then the geo-
metric series converges to (I −�)−1 . Thus, we get the desired result. 

Appendix 2: Proof of Lemma 3
Consider the aggregate model vector, i.e., W i

�= col
{
wp,i

}P
p=1

 , for which we write the 
model recursion as:

where Gi is a matrix whose entries are the noise gpm,i , and the diag(·) function extracts 
the diagonal entries of a matrix and transforms them into a column vector.

Since A is doubly-stochastic, then it admits an eigendecomposition of the form 
A = QHQT , with the first eigenvalue equal to 1 and its corresponding eigenvector equal 
to 1/

√
P.

Next, we define the extended centroid model Wc,i
�=

(
1
P11

T ⊗ I
)
W i , and write:

(74)�m
�=

√
1− 2νµ+ δ2µ2 + β2

s,mµ
2 +O(µ2).

(75)

col
{
E�w̃p,i�2

}

� �A col
{
E�w̃p,i−1�2

}
+ A col

{
µ2σ 2

s,p + σ 2
g ,p + O(µ2)ξ2

}
+ A col

{
O(µ3)σ 2

q,p

}
,

� �iAi col
{
E�w̃p,0�2

}
+

i∑

j=0

�jAj col
{
µ2σ 2

s,p + σ 2
g ,p

}

+�jAj col
{
O(µ2)ξ2 + O(µ3)σ 2

q,p

}
,

� �i col
{
E�w̃p,0�2

}
+

i∑

j=0

�j col
{
µ2σ 2

s,p + σ 2
g ,p + O(µ2)ξ2 + O(µ3)σ 2

q,p

}
,

�

(76)

W i = (A⊗ I)T
�
W i−1 − µ col

�
∇wT Jp(wp,i−1)+ sp,i + qp,i

�

+ col





1

L

�

k∈Lp,i

gp,k ,i






+ diag

�
(A⊗ I)TGi

�
,
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Then, taking the conditional expectation given the past models of �(Qǫ ⊗ I)W i�2 , we 
can split the gradient noise and the added privacy noise from the model and the true 
gradient. Taking again the expectation over the past data, and then using the sub-multi-
plicity property of the norm followed by Jensen’s inequality, we have:

Next, we focus on each individual term. Using Jensen for some constant α and then the 
Lipschitz condition and the bound on the incremental noise, we can bound the below 
norm as follows:

Using the bound on the gradient noise (24), we get another E�w̃p,i−1�2 term, which can 
be bounded by the result in Theorem 4. Thus, we write:

(77)

W i −Wc,i =
�
I −

1

P
11

T ⊗ I

�
W i

=
�
(QT ⊗ I)(Q⊗ I)−

1

P
11

T ⊗ I

�
W i

= (QT
ǫ ⊗ I)(Qǫ ⊗ I)W i

= (QT
ǫ ⊗ I)Hǫ(Qǫ ⊗ I)

�
W i−1 − µ col

�
∇wT Jp(wp,i−1)+ sp,i + qp,i

�

+(QT
ǫ ⊗ I)(Qǫ ⊗ I)diag

�
(A⊗ I)TGi

�
+ col





1

L

�

k∈Lp,i

gp,k ,i






.

(78)

E�(Qǫ ⊗ I)W i�2

≤ �Hǫ�2
�
E

���(Qǫ ⊗ I)W i−1 − (Qǫ ⊗ I)µ col
�
∇wT Jp(wp,i−1)+ qp,i

����
2

+ µ2�Qǫ ⊗ I�2
P�

p=1

E�sp,i�2+�Qǫ ⊗ I�2
P�

p=1

E

������
1

L

�

k∈Lp,i

gp,k ,i

������

2



+ �Qǫ ⊗ I�2E�diag
�
(A⊗ I)TGi

�
�2

≤ �Hǫ�2
�

1

�Hǫ�
E�(Qǫ ⊗ I)W i−1�2 +

µ2�Qǫ ⊗ I�2

1− �Hǫ�

P�

p=1

E�∇wT Jp(wp,i−1)+ qp,i�2

+ µ2�Qǫ ⊗ I�2
P�

p=1

E�sp,i�2+�Qǫ ⊗ I�2
P�

p=1

E

������
1

L

�

k∈Lp,i

gk ,p,i

������

2



+ �Qǫ ⊗ I�2E�diag
�
(A⊗ I)TGi

�
�2.

(79)

E�∇wT Jp(wp,i−1)+ qp,i�2 ≤
2

α

(
δ2E�w̃p,i−1�2 + �∇wT Jp(w

o)�2
)

+
1

1− α

(
O(µ)E�w̃p,i−1�2 +O(µ)ξ2 + O(µ2)σ 2

q,p

)
.
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The noise term can be witten in a more compact way, �Qǫ ⊗ I�2
P∑

p=1

σ 2
g ,p. Thus, putting 

everything together, we get:

Going back to the network disagreement, it is bounded by the above bound multiplied 
by �QT

ǫ ⊗ I�2/P . If we were to drive i to infinity, since �Hǫ� = ι2 < 1 , with ι2 being the 
second eigenvalue of A, and choosing α = ι2 we would have:

(80)

1

1− �Hǫ�
E�∇wT Jp(wp,i−1)+ qp,i�2 + E�sp,i�2

≤
(

2δ2

α(1− �Hǫ�)
+ β2

s,p +
O(µ)

(1− α)(1− �Hǫ�)

)
E�w̃p,i−1�2 +

2�∇wT Jp(w
o)�2

α(1− �Hǫ�)

+ σ 2
s,p +

O(µ)ξ2 + O(µ2)σ 2
q,p

(1− α)(1− �Hǫ�)

≤
(

2δ2

α(1− �Hǫ�)
+ β2

s,p +
O(µ)

(1− α)(1− �Hǫ�)

)(
�
i
pA

i[p] col
{
E�w̃p,0�2

}

+
i−1∑

j=0

�
j
pA

j[p] col
{
µ2σ 2

s,p + O(µ2)ξ2 + O(µ3)σ 2
q,p + σ 2

g ,p

})

+
2�∇wT Jp(w

o)�2

α(1− �Hǫ�)
+ σ 2

s,p +
O(µ)ξ2 + O(µ2)σ 2

q,p

(1− α)(1− �Hǫ�)
.

(81)

E�(Qǫ ⊗ I)W i�2

≤ �Hǫ�E�(Qǫ ⊗ I)W i−1�2 + µ2�Qǫ ⊗ I�2�Hǫ�2
P∑

p=1

((
2δ2

α(1− �Hǫ�)

+β2
s,p +

O(µ)

(1− α)(1− �Hǫ�)

)(
�
i
pA

i[p] col
{
E�w̃p,0�2

}
+

i−1∑

j=0

�
j
pA

j[p]

× col
{
µ2σ 2

s,p + O(µ2)ξ2 + O(µ3)σ 2
q,p + σ 2

g ,p

})
+

2�∇wT Jp(w
o)�2

α(1− �Hǫ�)

+ σ 2
s,p +

O(µ)ξ2 + O(µ2)σ 2
q,p

(1− α)(1− �Hǫ�)

)
+ �Qǫ ⊗ I�2

P∑

p=1

σ 2
g ,p

≤ �Hǫ�iE�(Qǫ ⊗ I)W0�2 +
i−1∑

j′=0

�Hǫ�j
′+2�Qǫ ⊗ I�2

{
µ2

P∑

p=1

((
2δ2

α(1− �Hǫ�)

+β2
s,p +

O(µ)

(1− α)(1− �Hǫ�)

)(
�
j′
pA

j′ [p] col
{
E�w̃p,0�2

}
+

j′−1∑

j=0

�
j
pA

j[p]

× col
{
µ2σ 2

s,p + O(µ2)ξ2 + O(µ3)σ 2
q,p + σ 2

g ,p

})
+

2�∇wT Jp(w
o)�2

α(1− �Hǫ�)

+ σ 2
s,p +

O(µ)ξ2 + O(µ2)σ 2
q,p

(1− α)(1− �Hǫ�)

)
+

1

�Hǫ�2
P∑

p=1

σ 2
g ,p

}
.
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Appendix 3: Proof of Theorem 1
First taking the conditional mean of the ℓ2-norm of the centroid error given the past 
models, splits the mean into three independent terms: the centralized recursion, the gra-
dient noise and the added noise. Then, taking the expectation again, we get:

(82)

lim sup
i→∞

1

P

P∑

p=1

E�wp,i − wc,i�2

≤
�Qǫ ⊗ I�4ι22

P

{
µ2

P∑

p=1

((
2δ2

ι2(1− ι2)
+ β2

s,p +
O(µ)

(1− ι2)2

) ∞∑

j′=0

ι
j′

2

j′−1∑

j=0

�
j
pA

j[p]

× col
{
µ2σ 2

s,p + O(µ2)ξ2 + O(µ3)σ 2
q,p + σ 2

g ,p

}
+

2�∇wT Jp(w
o)�2

ι2(1− ι2)2

+
σ 2
s,p

1− ι2
+

O(µ)ξ2 + O(µ2)σ 2
q,p

(1− ι2)3

)
+

1

(1− ι2)ι
2
2

P∑

p=1

σ 2
g ,p

}

≤
ι22
P

{
µ2

P∑

p=1

((
2δ2

ι2(1− ι2)
+ β2

s,p +
O(µ)

(1− ι2)2

)

×
∑

m∈Np

ι2(µ
2σ 2

s,m + O(µ2)ξ2 + O(µ3)σ 2
q,m + σ 2

g ,m)

1− ι2�papm
+

2�∇wT Jp(w
o)�2

ι2(1− ι2)2

+
σ 2
s,p

1− ι2
+

O(µ)ξ2 + O(µ2)σ 2
q,p

(1− ι2)3

)
+

1

(1− ι2)ι
2
2

P∑

p=1

σ 2
g ,p

}

=
ι22

P(1− ι2)

P∑

p=1

µ2σ 2
s,p +

1

ι22
σ 2
g ,p + O(µ)σ 2

g ,p + O(µ3).

(83)

E�w̃c,i�2

= E

∥∥∥∥w̃c,i−1 + µ
1

P

P∑

p=1

∇wT Jp(wp,i−1)+ µqi

∥∥∥∥
2

+ µ2
E�si�2 + E�gc,i�2

(a)
≤

1

α2
E

∥∥∥∥w̃c,i−1 + µ
1

P

P∑

p=1

∇wT Jp(wc,i−1)

∥∥∥∥
2

+
µ2

1− α
E�qi�2

+
δ2µ2

α(1− α)P

P∑

p=1

E�wp,i−1 − wc,i−1�2 + µ2
E�si�2 + E�gc,i�2

(b)
≤
(

1

α2
(1− 2νµ+ δ2µ2)+ β2

s µ
2 +

O(µ3)

1− α

)
E�w̃c,i−1�2 + µ2σ 2

s + E�gc,i�2

+
(

δ2

α(1− α)
+

O(µ3)

1− α
+ β2

s,max

)
µ2

P

P∑

p=1

E�wp,i−1 − wc,i−1�2

+
O(µ3)ξ2 + O(µ4)σ 2

q

1− α
,
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where inequality (a) follows from Jensen with constant α ∈ (0, 1) and Lipshcitz, and (b) 
from applying Lemma 1. Then, choosing α = 4

√
1− 2νµ+ δ2µ2 = 1− O(µ) , the bound 

becomes:

Finally, using the result on the network disagreement, recusrively bounding the error, 
and taking the limit of i, we get the final result:

Appendix 4: Secondary result involving a bound on E‖W̃ i‖
2

To show the sensitivity of the algorithm is bounded with high probability, we require a 
bound on E‖W̃ i‖2 and E�W̃

′
i�2 . From Theorem 4 we can bound the individual errors 

by:

where �max = maxp �p . Then, E‖W̃ i‖2 can be bounded as follows:

It follows that for some constants B and B′ , the probability that E‖W̃ i‖ and E�W̃
′
i� are 

unbounded can be bounded using Markov’s inequality by:

and similarly for P(�W̃
′
i� ≥ B′).

(84)

E�w̃c,i�2 ≤ �cE�w̃c,i−1�2 + µ2σ 2
s + E�gc,i�2 + O(µ2)ξ2 + O(µ3)σ 2

q

+
O(µ)

P

P∑

p=1

E�wp,i−1 − wc,i−1�2.

(85)

lim sup
i→∞

E�w̃c,i�2 ≤
µ2σ 2

s + E�gc�2 + O(µ2)ξ2 + O(µ3)σ 2
q

1− �c
+

P∑

p=1

O(1)σ 2
g ,p + O(µ).

(86)

E�w̃p,i�2 ≤ �pE�w̃p,i−1�2 + µ2σ 2
s,p + O(µ2)ξ2 + O(µ3)σ 2

q,p + σ 2
g ,p

≤ �maxE�w̃p,i−1�2 + µ2σ 2
s,p + O(µ2)ξ2 + O(µ3)σ 2

q,p + σ 2
g ,p

≤ �
i
maxE�w̃p,0�2 +

1− �
i
max

1− �max

(
µ2σ 2

s,p + O(µ2)ξ2 + O(µ3)σ 2
q,p + σ 2

g ,p

)

≤ �
i
maxE�w̃p,0�2 + O(µ)+O(µ−1),

(87)

E�W̃ i�2 =
P∑

p=1

E�w̃p,i�2

≤
P∑

p=1

�
i
maxE�w̃p,0�2 + O(µ)+ O(µ−1)

= �
i
maxE�W̃0�2 + O(µ)+ O(µ−1).

(88)
P(�W̃ i� ≥ B) ≤

E�W̃ i�2

B2

≤
�
i
maxE�W̃0�2 + O(µ)+ O(µ−1)

B2
,
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Appendix 5: Proof of Theorem 3
To evaluate the probability distribution in Definition 1, we note that the randomness of 
the models ψp,j arises from the subsampling of the data for the calculation of the sto-
chastic gradient at each iteration. Thus, given the subsampled dataset, the models are 
now deterministic and since the added noises gpm,j are Laplacian random variables, the 
distribution of the added noise over the neighbourhood of agent p and over the itera-
tions is given by:

where yj =
{
ψp,j + gpm,j

}
m∈Np\{p}

 and the ratio in Definition 1 is bounded with high 

probability:

where the inequalities follow from the triangle inequality and the bound on the sensitiv-
ity of the algorithm.

Appendix 6: Proof of Theorem 2
We start by writing the error recursion:

where we introduce the gradient noise s1,i and the incremental noise q1,i:

(89)

f

({{
ψp,j + gpm,j

}
m∈Np\{p}

}i

j=0

)
= f (y0)f (y1|y0) · · · f (yi|y0, · · · , yi−1)

=
i∏

j=0

1
√
2σg

exp

(
−

√
2

σg
�ψp,j + gp,j�

)

=
1

√
2σg

exp

(
−

√
2

σg

i∑

j=0

�ψp,j + gp,j�
)
,

(90)

exp


−

√
2

σg

i�

j=0

�ψp,j + gp,j� − �ψ ′
p,j + gp,j�




≤ exp



√
2

σg

i�

j=0

�ψp,j − ψ ′
p,j�




≤ exp



√
2

σg

i�

j=0

�(j)




≤ exp



√
2

σg

i�

j=0

(B+ B′ + �wo − w′o�)




= exp

�√
2

σg
(B+ B′ + �wo − w′o�)(i + 1)

�
,

(91)w̃1,i = w̃1,i−1 +
µ

K

K∑

k=1

∇wT J1,k(w1,i−1)+ µs1,i + µq1,i +
µ

L

∑

k∈L1,i

g1,k ,i,
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We have already shown in previous work that the gradient noise is zero-mean and 
has bounded second order-moment [28, Lemma 1], while the incremental noise has 
bounded second order-moment [28, Lemma 5]:

where the constants β2
s,1, σ

2
s,1, σ

2
q,1 are given by:

Taking the conditional mean of the ℓ2-norm of the error, we can split the noise term 
from the rest and then apply Jensen’s inequality with some constant α ∈ (0, 1):

(92)s1,i =
1

L

∑

k∈L1,i

∇̂wT J1,i(w1,i−1)−
1

K

K∑

k=1

∇̂wT J1,k(w1,i−1),

(93)q1,i =
1

L

∑

k∈L1,i

1

E1,k

E1,k∑

e=1

∇̂wT J1,k(w1,k ,e−1)− ∇̂wT J1,k(w1,i−1).

(94)E{�s1,i�2|Fi−1} ≤ β2
s,1�w̃1,i−1�2 + σ 2

s,1,

(95)E�q1,i�2 ≤ O(µ)E�w̃1,i−1�2 + O(µ)ξ2 + O(µ2)σ 2
q,1,

(96)β2
s,1 =

6δ2

L

(
1+

1

K

K∑

k=1

1

E1,k

)
,

(97)σ 2
s,1 =

1

LK

K∑

k=1

(
12

E1,k
+ 3

)
1

N1,k

N1,k∑

n=1

�∇wTQ1,k(w
o; x1,k ,n)�2,

(98)σ 2
q,1 =

3

K

K∑

k=1

N1,k∑

n=1

�∇wTQ1,k(w
o
1,k; x1,k ,n)�

2.

(99)

E{�w̃1,i�2|Fi−1,L1,i} = E

{∥∥∥∥w̃1,i−1 +
µ

K

K∑

k=1

∇wT J1,k(w1,i−1)+ µs1,i

+ µq1,i

∥∥∥∥
2∣∣∣∣Fi−1,L1,i

}
+

µ2

L2

∑

k∈L1,i

E�g1,k ,i�2

≤
1

α

∥∥∥∥∥w̃i−1 +
µ

K

K∑

k=1

∇wT J1,k(w1,i−1)

∥∥∥∥∥

2

+
µ2

α
E{�s1,i�2|Fi−1,L1,i} +

µ2

L
σ 2
g ,1

+
µ2

1− α
E{�q1,i�2|Fi−1,L1,i}.
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Using strong convexity and Lipschitz continuity of the functions we can bound the first 
term as:

Then, taking the expectations again over the past models and the selected agents, and 
using the bound on the gradient noise and incremental noise:

Then, recursively bounding the error with α =
√
1− 2νµ+ (β2

s,1 + δ2)µ2:

and taking the limit of i:
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