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Abstract 

Accurate parameter estimation in radar systems is critically hindered by multipath 
interference, a challenge that is amplified in complex and dynamic environments. 
Traditional methods for parameter estimation, which concentrate on single parameters 
and rely on statistical assumptions, often struggle in such scenarios. To address this, 
the deep adaptive temporal network (DAT-Net), an innovative deep learning model 
designed to handle the inherent complexities and non-stationarity of time series data, 
is proposed. In more detail, DAT-Net integrates both the pruned exact linear time 
method for effective time series segmentation and the exponential scaling-based 
importance evaluation algorithm for dynamic learning of importance weights. These 
methods enable the model to adapt to shifts in data distribution and provide a robust 
solution for parameter estimation. In addition, DAT-Net demonstrates the capability 
to comprehend inherent nonlinearities in radar multipath interference signals, thereby 
facilitating the modeling of intricate patterns within the data. Extensive valida-
tion experiments conducted across parameter estimation tasks and demonstrates 
the robust applicability and efficiency of the proposed DAT-Net model. The architec-
ture yield root mean squared error scores as low as 0.0051 for single-parameter estima-
tion and 0.0152 for multiple-parameter estimation.

Keywords: Deep adaptive temporal network, Parameter estimation in radar 
systems, Multipath interference, Time series segmentation, Exponential scaling-based 
importance evaluation

1 Introduction
Radar signal processing plays a critical role in detecting and locating targets under 
diverse environmental conditions [1]. Its efficiency is substantially influenced by 
the system’s ability to accurately process and interpret received signals. An essential 
aspect of this process involves the estimation of key parameters that define the radar 
signals. This task becomes notably challenging due to the phenomenon of multipath 
interference. This interference arises when radar signals reflect off multiple surfaces, 

*Correspondence:   
kangyan@my.swjtu.edu.cn

1 School of Electrical 
Engineering, Southwest Jiaotong 
University, No. 999, Xi’an Road, 
Chengdu 611756, China
2 National Supercomputing 
Center in Shenzhen, Shenzhen, 
China
3 School of Electronic 
Information and Electrical 
Engineering, Chengdu University, 
Chengdu, China
4 Department of Electronic 
Engineering, College 
of Electronic & Information 
Engineering, Guangdong Ocean 
University, Zhanjiang, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-023-01053-8&domain=pdf
http://orcid.org/0000-0002-0637-0390


Page 2 of 16Yan et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:94 

such as the ground, sea, or other structures, before reaching the receiver [2]. This 
event can result in distorted or misleading information regarding the target’s posi-
tion, velocity, and other characteristics, thereby complicating the interpretation of 
the signals. As illustrated in Fig. 1, the direct and reflected paths, denoted by A → D 
and A → B → D , respectively, give rise to such multipath interference, where h1 and 
h2 representing the heights of the radar antenna and the receiver antenna, respec-
tively. Moreover, the path lengths of AD , AB , and BD are designated by Rd , R1 , and R2 , 
respectively. The challenge of multipath interference becomes increasingly evident in 
complex and dynamic environments, highlighting the need for advanced and robust 
techniques for parameter estimation.

Although there exists considerable research on radar multipath interference signals 
with a focus on aspects such as simulation modeling [3, 4] and interference elimina-
tion [5, 6], studies that specifically address the estimation of parameters for these sig-
nals are notably limited. The few existing studies have predominantly used traditional 
methods to estimate a single parameter of the signal [7, 8]. Although these methods 
provide partial solutions, they struggle to effectively handle complex and dynamic 
scenarios due to their dependence on statistical assumptions and linear models. Fur-
thermore, their ability to simultaneously estimate multiple parameters is limited, 
highlighting a notable gap in this crucial area of study.

To address this challenge, we propose the deep adaptive temporal network (DAT-
Net) is proposed. It consists of a deep learning (DL) model designed for the parameter 
estimation of radar multipath interference signals. Moreover, DAT-Net incorporates 
advanced techniques relative to time series segmentation and importance evaluation 
through the integration of a pruned exact linear time (PELT) approach and an expo-
nential scaling-based importance evaluation (ESBIE) algorithm.

Therefore, the main innovations and contributions of this paper are summarized as 
follows:

1. The introduction of the DAT-Net The DAT-Net is specifically crafted to effectively 
manage non-stationary time series data and adeptly accommodate the distribution 
shifts that can arise due to the inherent temporal variability of these data. By strategi-
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Fig. 1 Schematic diagram illustrating multipath interference effects on radar signal propagation over sea 
surface
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cally tackling these distribution shifts, the model provides a robust solution for chal-
lenges in parameter estimation, ensuring high adaptability and precision even when 
statistical properties of the data change over time.

2. The integration of the PELT method for effective time series segmentation in DAT-
Net. This approach allows to identify the periods of significant divergence in data 
distribution; thereby, it ensures the model’s adaptability to data relative to different 
periods and domains.

3. The development of the ESBIE algorithm for dynamic learning of importance 
weights in DAT-Net. This mechanism provides a better responsive adjustment of the 
importance weights according to the changes in the distribution distances, ensuring 
a controlled and stable learning process.

4. DAT-Net showcases the ability to understand inherent nonlinearities in radar mul-
tipath interference signals, and thus, it enables the modeling of intricate patterns 
within the use of data. The efficacy of the method is rigorously validated, with model 
performance appraised in both single- and multi-parameter estimation contexts, 
affirming its robust applicability.

To sum up, the remaining part of the paper is defined as follows: In Sect. 2, the related 
work is presented, whereas the methodology is proposed in Sect. 3. As for Sect. 4, the 
experimental configuration is introduced. Finally, the conclusion and some future works 
are shown in Sect. 5.

2  Related work
2.1  Existing methods for radar signal parameter estimation and their limitations 

in handling multipath interference

Despite the scarcity of research regarding the parameter estimation of radar multipath 
interference signals, several studies have contributed significantly to the understand-
ing and implementation of parameter estimation for conventional radar signals. These 
established methods, fundamental to radar signal processing, serve as an important 
starting point reference for our work.

For instance, Liu et al. [9] used the cumulative Wigner-Hough transform (CWHT) for 
estimating parameters of the linear frequency modulation continuous wave (LFMCW) 
signal, taking advantage of the signal’s periodicity. However, this method was designed 
for individual LFMCW signals, not for multiple ones. Moreover, Geroleo et  al. [10] 
introduced the periodic Wigner-Ville Hough transform (PWVHT) to detect the 
LFMCW radar signal and estimate its parameter. This method accommodated multiple 
pulses within an observation interval at the intercept receiver, extending the accumu-
lation of signal energy, and thereby enhancing detection and parameter estimation. In 
addition, Wen et al. [11] leveraged the focusing capability of the fractional Fourier trans-
form (FRFT) to estimate the pulse width and frequency modulation rate of Linear Fre-
quency Modulation (LFM) signals. This method yields accurate results even under low 
signal-to-noise ratio (SNR) conditions. Furthermore, Tang et al. [12] presented a method 
to estimate the direction of arrival (DOA) using a modified spatial time–frequency dis-
tribution (STFD) matrix. This new approach surpassed the limitations of traditional nar-
rowband methods when dealing with wideband signals. Finally, Deng et al. [13] proposed 
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a technique for carrier frequency and code period estimation of polyphase-coded radar 
signals. Their approach, utilizing the Fourier transform and a modified Choi-Williams 
distribution, was designed to facilitate parameter estimation in environments with 
low SNRs. As reported, it achieved high estimation accuracy under these challenging 
conditions.

Based on the above discussion, it becomes evident that the existing methods, although 
their good performance for conventional radar signal parameter estimation, reveal limi-
tations when it comes to more complex and dynamic scenarios. These methods often 
rely on statistical assumptions and linear models, primarily tailored for specific signal 
types. Therefore, the requirement to build a distinct mathematical model for each sig-
nal type presents a significant limitation, particularly when confronting diverse and 
dynamically varying signal conditions. For instance, Djemal et al. [14] proposed an adap-
tive threshold detection approach based on CFAR techniques for radar systems in both 
homogeneous and non-homogeneous environments. As we shift our attention to signals 
under multipath interference conditions, the scenario becomes even more challenging. 
These distorted signals display distinct characteristics and behavior compared to con-
ventional signals, thus requiring the development of innovative parameter estimation 
methods.

The limitations of existing methods underscore the needs for universal models, such 
as those crafted using DL techniques. Their benefits include the capability for nonlin-
ear modeling, flexibility to handle a wide variety of signals, adaptability to changing sce-
narios, and ability to learn and adjust their models based on recorded data. In fact, DL 
methods have showcased their effectiveness in several signal processing areas and are 
well-positioned to address the challenges incorporated within multipath interference. 
The exploration of DL techniques, particularly their potential in achieving robust radar 
signal parameter estimation under multipath interference conditions, offers an exciting 
pathway for future research.

2.2  Deep learning for radar signal processing

The progress in radar signal classification has been significantly influenced by the adop-
tion of DL architectures, notably convolutional neural networks (CNNs), owing to their 
success in image classification tasks. For instance, Sun et al. [15] proposed a technique 
that leverages a unidimensional convolutional neural network (U-CNN) for radar emit-
ter classification, demonstrating competitive accuracy levels. Similarly, Liu et  al. [16] 
utilized a triplet convolutional neural network (T-CNN) to enhance the identification 
of different modulations of low probability of intercept (LPI) radar signals, particularly 
effective in harsh electromagnetic environments with low SNRs. To further enhance the 
performance in radar signal classification, fusion strategies, based on CNN architec-
tures, have been explored. An approach, proposed by Akyon et.al [17], employed two 
independent CNNs to separately process frequency- and phase-related aspects of radar 
signals.

Moreover, efforts have also been made to accelerate CNN’s feature learning. A princi-
pal component analysis (PCA)-based CNN architecture, proposed by Ye et al. [18], was 
developed to reduce the dimensionality of time–frequency distribution (TFD) images. 
Additionally, techniques, such as convolutional denoising auto-encoder (CDAE) and 
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inception-based deep CNN, have been employed to facilitate the signal recognition and 
noise reduction in TFD images [19].

Furthermore, deep time series networks have been employed in radar signal pro-
cessing. For instance, Zhang et  al. [20] utilized recurrent neural networks (RNNs) for 
theclassify, denoise, and deinterleave pulse streams, aiming to exploit long-term tem-
poral patterns to enhance processing outcomes. Furthermore, Apfeld et  al. [21] used 
long short-term memory (LSTM) RNNs to identify multifunction radar emitters. Their 
approach utilized the frequency and agility of emissions to encode radar pulses into 
symbolic representations. This enabled the discrimination between similar emitter types 
by analyzing emission parameters and employing resource management techniques. In 
another study, Notaro et  al. [22] applied RNNs to classify radar emitters, capitalizing 
on temporal dependencies within pulse streams. For this purpose, they introduced two 
techniques: per-sequence normalization to improve the temporal pattern extraction, and 
attribute-specific RNN processing to enhance information efficiency. Their approach 
outperformed previous methods in terms of accuracy and robustness, especially in noisy 
environments.

These DL-based techniques have shown promising results in radar signal recognition. 
However, the application of DL methods for radar signal parameter estimation remains 
limited. Given that radar signals are typical non-stationary time series data, leveraging 
deep time series networks for radar signal parameter estimation present an intuitive 
research direction.

3  Methodology
3.1  Problem definition

In the context of multi-step time series prediction, we consider the scenario known as 
temporal covariate shift (TCS) [23]. This concept refers to situations in which the distri-
bution of input data, or features, varies across different time intervals, whereas the con-
ditional distribution of labels, based on these features, remains consistent.

Consider a time series dataset consisting of n segments with corresponding labels. 
This dataset is denoted as Dtrn = xi, yi

n

i=1
 and is applied for training. It encompasses 

an unknown quantity K  of underlying time periods. Within a constant period i , seg-
ments adhere to a specific data distribution, PDi(x, y) . However, when evaluating two 
distinct periods, i and j (where 1 ≤ i �= j ≤ K  ), the input data distributions diverge, 
i.e., PDi(x)  = PDj (x) . Despite this shift, the conditional distributions of labels given the 
inputs remain consistent, represented as PDi(y|x) = PDj (y|x) , and constituting a TCS. 
Figure 2 provides a visual depiction of this scenario. It displays four distinct periods of 
the time series data. The first three periods are part of the data training process, each 
with its unique data distribution, whereas the fourth period represents the test data.

The objectives of this work are twofold: (1) automatically identify the K  periods within 
the training time series data, visually represented by the first three periods in Fig. 2, and 
(2) construct a predictive model M capable of harnessing the shared characteristics 
across these periods. This model should provide accurate forecasts for the forthcom-
ing r segments, represented as the fourth time interval in Fig. 2 and formally denoted 
as Dtst = {xj}

n+r
j=n+1 . Assuming that the test segments belong to a uniform time period, 

these segments exhibit a distinct input data distribution, separate from that of any the 
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training periods, i.e., PDtst (x)  = PDi(x) . However, even with the variation in input data 
distribution, the conditional distribution of labels given the inputs remains consistent 
across all periods. It is, expressed as PDtst (y|x ) = PDi(y|x ) for any 1 ≤ i ≤ K .

3.2  Time series segmentation using the PELT approach

In order to reach the goal of maximizing shared knowledge extraction from a time series 
in the presence of temporal covariate shift, this study presents an innovative and effi-
cient method to identify periods that exhibit the highest degree of divergence from each 
other. These periods represent the extreme cases of temporal covariate shift, where the 
cross-period distributions, denoted as Di and Dj , are the most diverse. As a result, they 
hold considerable importance for training a predictive model that aims to be robust 
against distribution shifts, as illustrated in Fig. 2.

An easy approach to time series segmentation involves an even division of the data 
into a fixed number of parts, N  , where each part is considered as a minimal-unit period 
that cannot be further subdivided. Given a set of predefined K  values, the optimal K  is 
determined according to a method that maximizes the distribution distance [23]. Never-
theless, this approach has significant limitations. Although it is simple, it does not allow 
for time series data fine-grained segmentation. In addition, it may not always result in 
the most optimal solution, especially when dealing with large-scale data sets.

In response to these limitations, this paper recommends the use of the PELT method. 
This technique, a state-of-the-art changepoint detection algorithm, is recognized for its 
computational efficiency, precision, and ability to efficiently segment time series data. 
It operates based on the primary principle of identifying significant shifts in data dis-
tribution, represented as "changepoints.” Moreover, it employs a dynamic programming 
to achieve computational efficiency while preserving the accuracy of the changepoint 
detection. The computational efficiency is achieved a pruning rule in the dynamic pro-
gramming process, which discards unnecessary computations, hence the name pruned 
exact linear time.

More formally, given a time series data with n time points, the PELT approach mini-
mizes the cost function as described in Eq. (1):

(1)C(τ ) =
∑m

i=0
[F(τi+1 − 1)− F(τi)]+ f (m)

Fig. 2 Multi-period time series data distribution under temporal covariate shift
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In this function, τ1, τ2, ..., τm denote the locations of changepoints, with τ0 = 1 and 
τm+1 = n+ 1 . Moreover, F(i) symbolizes the cumulative sum of model-fitting costs up to 
time point i , and f (m) represents a penalty term proportional to the number of change-
points m.

By adopting the PELT technique, an efficient computation is ensured and the need for 
pre-specifying a range for K  is no more required. This approach can detect periods of vary-
ing lengths, yielding to enhance its adaptability to data. The output of PELT, in terms of 
the identified changepoints, enables segmentation of the time series into K  periods. Fur-
thermore, the distributions Di and Dj of each period can subsequently be investigated for 
further analysis.

3.3  Temporal distribution matching enhanced with exponential scaling‑based importance 

evaluation

Once the distinct time periods have been established, a temporal distribution matching 
(TDM) module is constructed. Its main objective is to extract the shared knowledge across 
these periods by aligning their distributions. Through this process, the model, symbolized 
as M , would outperform on unseen test data compared to models that rely solely on local 
or statistical data.

The prediction loss of TDM, denoted as Lpred , in Eq. as follows:

where (xji , y
j
i) represents the ith labeled segment from period Dj , ℓ(·, ·) denotes the mean 

squared error (MSE) loss function, and θ signifies the learnable model parameters. In 
the proposed model model, M adopts the LSTM technique, a form of deep time series 
model. The LSTM, through its specialized architecture, effectively processes time series 
data by capturing long-range temporal dependencies. Its strength lies in learning from 
and retaining information over extended periods, which renders it particularly suited for 
our scenario involving time-dependent features across different periods.

However, minimizing solely the prediction loss, as given in Eq. (2), would fosters the pre-
dictive knowledge inherent in each individual period and results in failing to reduce the 
distributional divergence across the different periods. Moreover, this divergence could 
potentially carry common knowledge valuable to the training model.

To address this issue, TDM introduces the concept of an importance evaluation, denoted 
α, with dimensions α ∈ R

V  . This vector is responsible for assessing the relative significance 
of the V hidden states within the LSTM, each state being weighted by a normalized α. This 
approach dynamically reduces the distribution divergence across periods.

For a pair of periods, 
(

Di,Dj

)

 , the loss associated with the temporal distribution match-
ing, as expressed in Eq. (3), is expressed as follows:

where αt
i,j represents the distributional importance between periods Di and Dj at state t.

(2)Lpred(θ) =
1

K

K
∑

j=1

1
∣

∣Dj

∣

∣

|Dj|
∑

i=1

ℓ(y
j
i ,M(x

j
i; θ))

(3)Ltdm(Di,Dj; θ) =
∑V

t=1
αt
i,jd(h

t
i ,h

t
j ; θ)
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Furthermore, calculating all the hidden states in an LSTM model is a straightforward 
process. Let δ(·) represent the computation of a subsequent hidden state based on a pre-
vious state. The state computation can be expressed as shown in Eq. (4):

Finally, by merging Eqs. (2) and (3), the comprehensive objective of temporal distribu-
tion matching can be defined as in Eq. (5):

where λ is a trade-off hyper-parameter. The second term calculates the average distribu-
tion distances of all pairwise periods. For computational efficiency, we take a mini-batch 
of Di and Dj to conduct the forward operation in LSTM layers and subsequently concat-
enate all hidden features. The resulting TDM can then be performed using Eq. (5).

Therefore, we propose the ESBIE algorithm to learn and identify the importance 
weights, αt,(n)

i,j  . The schematic representation of the ESBIE algorithm is displayed in 
Fig. 3. The initial step involves pre-training the network parameter θ on a fully labeled 
data from all periods, which leads to get superior hidden state representations that help 
in the learning process of αt,(n)

i,j  . We assign the symbol θ0 to this pre-trained parameter. 
Once θ0 is defined, the ESBIE algorithm is applied to discern the importance of the hid-
den states. All weights within each LSTM layer are uniformly initialized and denoted 
α
t,(0)
i,j = {1/V }V  . To guide the weight updates, we utilize the cross-domain distribution 

distance. This distance is calculated using the Maximum Mean Discrepancy (MMD) 
metric [24], recognized for its ability to quantify the disparity between two probability 

(4)hti = δ(xti ,h
t−1
i )

(5)L(θ ,α) = Lpred(θ)+ �
2

K (K − 1)

i �=j
∑

i,j

Ltdm(Di,Dj; θ ,α)

Fig. 3 ESBIE algorithm in temporal distribution matching
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distributions, making it an effective choice for high-dimensional spaces. As for the 
ESBIE algorithm, it follows a nonlinear approach in adjusting weights according to the 
alterations in distribution distance. When the distribution distance increases, indicating 
larger divergence, the ESBIE algorithm adjusts the importance weights upwards to work 
toward reducing this divergence. Conversely, when the distribution distance decreases, 
indicating a reduced divergence, the importance weights are adjusted downward-.

The adopted update rules are as follows:

where the scaling function G is defined as follows:

here, ηn = η0 × e−p×n represents the learning rate at the n th epoch, which is exponen-
tially decayed from the initial value η0 . Moreover, the decay rate is controlled by the 
decay constant p , a hyperparameter that is empirically set. In Eq.  (6), 
d
t,(n)
i,j = D(hti ,h

t
j ;α

t,(n)
i,j ) represents the distribution distance at time step t in epoch n . 

Finally, the weights are normalized after each update using this formula: 

α
t,(n+1)
i,j =

α
t,(n+1)
i,j

V
∑

j=1

α
t,(n+1)
i,j

. Therefore, by applying Eqs. (3) and (6), the importance evaluation 

can be learned.
Furthermore, the ESBIE mechanism provides a more responsive adjustment of the 

importance weights to the changes in distribution distances. By integrating a learning 
rate with exponential decay, this approach allows a more controlled and stable learn-
ing process. The learning rate’s decay throughout epochs ensures a gradual fine-tuning 
phase in which the weights are adjusted more subtly, enhancing the chances of converg-
ing to an optimal solution. Leveraging the effectiveness of temporal distribution match-
ing across domains, the model’s overall performance is improved when managing data 
from diverse periods and domains, resulting in a more robust generalization on unseen 
test data.

4  Experimental evaluation
4.1  Dataset: details and specifications

For our experiments, we utilized a dataset derived from the “Radar Signal Simulation 
Platform under Complex Electromagnetic Environment,” located at Southwest China 
Research Institute of Electronic Equipment. The platform incorporates a parabolic equa-
tion method to generate synthetic radar signal data. This method serves as the basis of 
radar signal processing, aligning and filtering received echo signals with a reference sig-
nal, essentially a duplicate of the transmitted signal. This procedure yields a complex sig-
nal exhibiting a parabolic trajectory within the time domain. Simulated echo signals are 
designed to encompass noise and the Doppler effect to mimic real-world radar signals.

A representation of the simulated scenario is displayed in Fig. 4. The setup takes into con-
sideration the multipath effects induced by specular reflections from the sea surface. These 
effects result in distorting the received signal as it traverses different routes before reaching 

(6)α
t,(n+1)
i,j = α

t,(n)
i,j × G(d

t,(n)
i,j , d

t,(n−1)
i,j )

(7)G(d
t,(n)
i,j , d

t,(n−1)
i,j ) = e

ηn×(di,jt,(n)−d
t,(n−1)
i,j )
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the receiver. This latter, which simulates a flight at an elevation of 8,000 m, follows a circu-
lar trajectory while the emitter maintains a linear path from the origin, at an elevation of 
3,000 m, directing toward the circular path’s center. Both the transmission and reception 
elements are simulated as dipole antennas having vertical polarization. The power of the 
transmitted signal is set at 100 W, with a transmission gain of 20 dB, and a receiver gain of 
13 dB. The simulation generates four signal types: LFM, nonlinear frequency modulation 
(NLFM), binary phase shift keying (BPSK), and quadrature phase shift keying (QPSK). To 
meet the requirements of the model training, 9000 instances of each signal type are gener-
ated, which were divided into sets of 7000 instances for training, 1000 for validation, and 
1000 for testing.

4.2  Model parameter settings

The model was implemented using the PyTorch deep learning framework, and the exper-
iments were executed on a machine equipped with an RTX 3080TI graphics card, using 
CUDA version 11.7 and the Windows 10 operating system.

The PELT method, available in the Python ruptures library, was used for the changepoint 
detection, It utilized the radial basis function (RBF) model as the cost model. The penalty 
term was set to 10. In the LSTM model, a two-layer network structure was utilized with a 
hidden state dimension of 32. The Adam optimizer was used with a learning rate of 0.002. 
Finally, in the ESBIE algorithm, the initial learning rate η0 was set at 0.2 and the decay con-
stant p was equal to the unit.

y

x

Emitter Start

[0, 0, 3000]

Receiver Start

20km

50km
Receiver Center

[300000, 0, 8000]150m/s

100m/s
sea surface

Fig. 4 The schematic diagram of the simulation scenario
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4.3  Application and performance comparison: parameter estimation in radar multipath 

interference signals

In this study, our model is applied to time-domain data from three distinct sets of simu-
lated radar multipath interference signals, where each set features distinctive patterns of 
parameter variation.

• In Set 1, all signals—LFM, NLFM, BPSK, and QPSK—have variable bandwidths 
(BW) while the other parameters remain constant. This requires an estimation of the 
BW for these signals.

• In Set 2, the pulse width (PW) for LFM and NLFM and the number of sub-pulses 
(NSP) for BPSK and QPSK are varied while the other parameters are kept constant, 
thus requiring an estimation of PW for LFM and NLFM, and NSP for BPSK and 
QPSK.

• In Set 3 a more complex scenario is proposed. It consists of having two parameters 
that vary simultaneously. For LFM and NLFM, we aim to estimate both PW and BW, 
whereas for BPSK and QPSK, both BW and NSP must be estimated.

The performance of the model in estimating parameters is evaluated using two sta-
tistical measurement approaches: the root mean squared error (RMSE) and the mean 
absolute error (MAE). The former technique employs a quadratic scoring rule that com-
putes the average magnitude of the error by effectively squaring the difference between 
predicted and observed values before calculating the mean. This technique puts more 
weight on large errors. Conversely, MAE consists of computing the average absolute dif-
ference between predicted and observed values. Moreover, it provides a linear score that 
can be easily interpretable as it directly averages the absolute error magnitudes.

The proposed evaluations involve comparing the DAT-Net model against XGBoost 
[25], LSTM, LSTNet [26], and AdaRNN [23]. However, in the case of Set 3, the XGBoost 
model does not provide RMSE and MAE values as it is unable to simultaneously gener-
ate two parameter estimates. As a result, these values are represented as "–" in Tables 1 
and 2. In more detail, Table 1 (for RMSE) and Table 2 (for MAE) present the results of 

Table 1 Comparison of RMSE for parameter estimation in radar multipath interference signals 
across various models

Set Parameter(s) Signal Type XGBoost LSTM LSTNet AdaRNN DAT‑Net

1 BW LFM 0.2356 0.0346 0.3247 0.0151 0.0051

1 BW NLFM 0.2389 0.0352 0.0524 0.0248 0.0067

1 BW BPSK 0.2935 0.2441 0.2297 0.0459 0.0476

1 BW QPSK 0.2701 0.2356 0.2207 0.0840 0.0475

2 PW LFM 0.1539 0.0680 0.0871 0.0164 0.0087

2 PW NLFM 0.1506 0.0549 0.0788 0.0186 0.0062

2 NSP BPSK 0.2650 0.2371 0.2307 0.1344 0.0342

2 NSP QPSK 0.2564 0.2305 0.2022 0.0432 0.0242

3 BW, PW LFM – 0.1782 0.2362 0.0319 0.0193

3 BW, PW NLFM – 0.2040 0.2384 0.0272 0.0152

3 BW, NSP BPSK – 0.3235 0.3219 0.0944 0.0709

3 BW, NSP QPSK – 0.3142 0.3001 0.0911 0.0706
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these comparisons when performing different simulation scenarios for radar multipath 
interference signal parameter estimation.

When considering the RMSE and MAE metrics, the DAT-Net consistently emerges 
as the preferred model as it achieves lower error values. This underscores its capability 
in accurately handling complex temporal dependencies in radar multipath interference 
signals.

Concerning the single-parameter estimation scenarios (simulations regarding Sets 1 
and 2), the DAT-Net method continues to demonstrate superior performance. It reflects 
remarkable accuracy in estimating BW across all signal types in Set 1. However, in the 
case of BPSK, although DAT-Net performs well, the AdaRNN technique manages to 
achieve slightly lower RMSE and MAE values. Similarly, in Set 2, DAT-Net effectively 
estimates the PW for LFM and NLFM signals as well as the NSP for BPSK and QPSK 
signals, achieving lower errors than its counterparts.

Going to scenarios that involve the simultaneous estimation of two parameters 
(mainly the simulation of Set 3), DAT-Net maintains its exemplary performance, as it 
consistently achieves lower RMSE and MAE values across all signal types, knowing that 
XGBoost fails to provide any estimates in this set due to its limitations.

As the estimation task shifts from single-parameter scenarios (Sets 1 and 2) to multi-
parameter scenarios (Set 3), there is a notable escalation in error metrics is observed 
across all models. This increase reflects the complexity inherent with multi-parameter 
estimation. Nonetheless, this increase is notably less severe for DAT-Net compared to 
the other models. This result shows, once again, robustness ability of DAT-Net to tackle 
the intricacies of multi-parameter estimation with a remarkable level of error control. 
Despite the increased complexity, DAT-Net manages to keep error growth in check, 
highlighting its resilience and adaptability across several estimation scenarios.

Upon a detailed examination of the error values, the DAT-Net’s performance with 
LFM and NLFM signals consistently results in lower RMSE and MAE compared to the 
results obtained with BPSK and QPSK signals across all sets. This finding could poten-
tially reflect the differences in signal structures as well as the DAT-Net’s specific profi-
ciency in handling LFM and NLFM signals.

Table 2 Comparison of MAE for parameter estimation in radar multipath interference signals across 
various models

Set Parameter(s) Signal Type XGBoost LSTM LSTNet AdaRNN DAT‑Net

1 BW LFM 0.1977 0.0275 0.2727 0.0121 0.0039

1 BW NLFM 0.2043 0.0273 0.0414 0.0196 0.0054

1 BW BPSK 0.2399 0.1910 0.1759 0.0171 0.0188

1 BW QPSK 0.2164 0.1833 0.1756 0.0486 0.0202

2 PW LFM 0.1539 0.0526 0.0685 0.0138 0.0067

2 PW NLFM 0.1215 0.0428 0.0623 0.0149 0.0043

2 NSP BPSK 0.2198 0.1776 0.1826 0.0914 0.0197

2 NSP QPSK 0.2121 0.1768 0.1571 0.0323 0.0163

3 BW, PW LFM – 0.1407 0.1945 0.0267 0.0150

3 BW, PW NLFM – 0.1602 0.1926 0.0231 0.0118

3 BW, NSP BPSK – 0.2667 0.2611 0.0623 0.0429

3 BW, NSP QPSK – 0.2548 0.2429 0.0543 0.0369
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Furthermore, Fig.  5 illustrates the comparative proficiency of the DAT-Net and 
other models in approximating real values, with a specific emphasis on the BW esti-
mation of QPSK signals from Set 1. This visual evaluation is inline with the con-
clusions drawn from the error metric analyses, showcasing clearly that DAT-Net 
provides a better approximation of the actual values compared to the other models. 
The close alignment between the fluctuations in the actual data and the outputs pro-
duced by DAT-Net reflects its effective learning and adaptation to model the radar 
multipath interference signals. Conversely, the plots for the other models, such as 
XGBoost, LSTM, LSTNet, and AdaRNN, reflect greater deviations from the actual 
values. These variations highlight the efficiency of DAT-Net in modeling complex 
temporal dependencies in radar multipath interference signals.

Fig. 5 Comparative visualizations of model fits to real values
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4.4  Convergence speed analysis

As an advancement over AdaRNN, DAT-Net not only enhances estimation accuracy but 
also improves the efficiency in model training. Evaluating of model performance goes 
beyond the estimation precision to encompass the speed at which these accurate estima-
tions are achieved.

By integrating the ESBIE algorithm, DAT-Net gains a significant advantage in this 
respect. ESBIE enables a swift decrease in loss during the initial training stages, thereby 
accelerating the convergence speed. Furthermore, in the later stages of model training, 
ESBIE contributes to smaller fluctuations in the loss function, promoting stability in the 
learning process and helping in preventing overfitting.

The improvements in the convergence speed are vividly depicted in Fig. 6a where the 
graph demonstrates clearly that DAT-Net’s reduces faster the loss compared to AdaRNN 
during the early phases of training, along with having lower variation in loss during the 
later learning stages.

This enhanced convergence speed and stability, especially notable in the context of 
large datasets and time-critical tasks, further validates the DAT-Net method position as 
an improved model over AdaRNN.

Finally, as shown in Fig. 6b, the proposed DAT-Net architecture demonstrates compu-
tational efficiency improvements over AdaRNN. However, this improvement is offset by 
longer training times compared to traditional LSTM, as well as XGBoost and LSTNet. 
The additional time demands of DAT-Net’s series segmentation and TDM components 
are justified by its superior performance over existing methods across assessed bench-
marks. Once the model training is completed, DAT-Net does not significantly elevate 
computational consumption in the inference phase compared to LSTM.

5  Conclusion
This paper introduced and thoroughly examined the performance of DAT-Net, a deep 
learning model specifically designed to manage complex and non-stationarity time 
series data, while considering radar multipath interference signals. Notably, DAT-
Net’s ability to manage various signal types contributes toward addressing the com-
plexities frequently encountered in the current research problems. Moreover, the 
DAT-Net incorporates advanced techniques, such as time series segmentation via the 
PELT method, and importance evaluation using the ESBIE algorithm. These methods 
enhance the model’s capability to adapt to shifts in data distribution and offer a robust 

Fig. 6 Convergence speed and training time
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solution for parameter estimation. The comprehensive comparative analysis achieved 
in this work underscored the advantages of DAT-Net, demonstrating its superior per-
formance in terms of precision over other commonly used models through various 
scenarios. Specifically, the DAT-Net’s ability to understand and model inherent non-
linearities and non-stationarities in radar multipath interference signals distinguishes 
it from other approaches.

Future work could aim to further enhance DAT-Net and broaden its applicability to 
a wider array of scenarios and datasets. Such improvements might include integrating 
more advanced machine learning techniques or applying the model to other time-
dependent signal processing tasks.
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