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1 Introduction
For active sonar, low-speed small target detection is a challenging problem in engineer-
ing applications. In coastal and harbor areas, a large number of reefs, artificial facilities, 
fish and other strong scatterers, coupled with the movement of the sea surface, platforms 
and multipath effects, make the reverberation complex and variable. Consequently, it 
may cause severe Doppler spread, and the low-speed target is blended with high-level 
energy clutter. Due to the time-varying clutter, suppressing the Doppler spread clutter in 
real-time is the key to reverberation suppression.

Traditional methods of reverberation suppression include array design, waveform 
design and post-processing algorithm design. Typically, the essence of array design is 
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to design narrow beamwidth [1], reduce the spatial size of the resolving unit to increase 
the signal-to-reverberation ratio (SRR). Moreover, the essence of the waveform design 
method is to increase the product of pulse width bandwidth and improve the matched 
filter gain [2]. In addition, the post-processing algorithm design contains pre-whitening 
[3], spatial processing method [4], principal component inverse (PCI) subspace method 
[5], graphic method to suppress reverberation [6]. Pre-whitening converts reverberation 
from colored noise into white noise, improves output signal-to-noise ratio (SNR) with 
matched filters, improves receiver and increases active sonar detection capability. The 
PCI subspace method decomposes the echo into reverberation subspace and target echo 
plus white noise subspace. Since the energy of the reverberation subspace is stronger 
than the target plus white noise subspace components. Hence, setting a threshold to 
subtract the stronger components to suppress reverberation. In addition, the graphic 
approach is to improve the contrast between the reverberation and the target in the 
active sonar image, thus improving the detection capability. However, the above method 
unable to adjust the detection waveform according to the time-varying reverberation 
environments. Furthermore, the above method only adaptively adjusts the receiver side 
without joint the transmitter side for reverberation suppression, the active sonar compu-
tational resource is wasted and the parameter estimation efficiency is reduced.

In 2006 Haykin [7] proposed the concept of cognitive radar based on the echo-loca-
tion system of bats. The cognitive radar consists of three elements: (1) the radar learns 
from environments; (2) the radar transmitter is interacted with receiver; (3) the radar 
preserves echo information. The above-mentioned adaptive radar methods make adap-
tive adjustments to the receiver. In contrast to the adaptive radar, the cognitive radar can 
adjust the transmit waveform parameters jointly with the “transmitter-receiver” over a 
long period of time.

The underwater acoustic channel is a severe time-doppler dual spread channel that 
enlarge the demand for active sonar waveform design freedom. In 2011, L. Xiaohua 
combined environmental information and target prior knowledge proposed the cogni-
tive sonar, with reference to the cognitive radar. The cognitive sonar adjusts the trans-
mit waveform parameters according to the echo [8]. In 2015, Tim Claussen [9] used 
Doppler processing and real-time interpolation to adjust the cognitive sonar transmit 
beamformer. 2016, X. Qing combined bionics and dolphin research [10] increased the 
freedom of cognitive sonar waveform design and proposed the cognitive sonar waveform 
(CSW). CSW combines the ambiguity function (AF) and Q function to constrain the 
waveform parameters, such as pulse width, frequency and the number of pulse trains, in 
order to suppress reverberation. Conversely, cognitive sonar cannot get optimal wave-
form rapidly, takes a lot of time does not adapt to a rapid time-varying environment.

Recently, with increased computer arithmetic and reduced difficulty in acquiring 
training data, machine learning has shown amazing performance in many areas, such 
as target recognition, acoustic confrontation, interference suppression, etc. Moreo-
ver, the optimal solution to the above problems is the non-deterministic polynomial 
(NP) hard problem. The sub-optimal method like reinforcement learning (RL) can 
provide solutions to the NP problem. RL learns by interacting with the environment 
through rewards and punishments, then continuously adjusting action towards a 
higher reward. RL is widely used. In the field of Go [11], to acquire decision-making 
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capabilities by learning previous game actions and using them to subsequent actions. 
As in the field of the game [12], RL can optimize the Super Mario’s actions based on 
the environment to find the optimal path to the goal quickly. In 2018, Jason E. [13] 
proposed RL combined with cognitive sonar, which can reduce the time to acquire 
optimal waveform. In 2022, Jeff Tucker [14] combined RL with cognitive sonar for 
multi-target detection and tracking, by adjusting the sonar waveform to learn from 
the environment. The efficiency of target detection and tracking is greatly improved. 
Cognitive sonar based on RL has important implications and extensive research 
space.

RL is a Markov decision process (MDP) consisting of action, reward signal, transfer 
probability, model of environment, etc. The analogy of cognitive sonar based on RL is 
waveform, reward signal, transfer probability, echo information, etc.

The reward signal is defined by the goal of RL which represent the value of wave-
form selection. The underwater environment is complex, the fixed waveform cannot 
adapt to the time-varying environment, hence the waveforms and environment infor-
mation are trained in RL to obtain the optimal waveform. The choice of the reward 
function is important, and irrational choice may lead to algorithm failure. In this 
paper, a target resolution function is proposed, which can directly detect whether 
the reverberation Doppler spread clutter contains a target. Since a Doppler-sensitive 
waveform can suppress the reverberation [15]. If the target cannot be detected, the 
cognitive sonar will change the waveform parameters to suppress the reverberation 
and distinguish the target, as shown in Fig. 1.

The convergence episodes of RL directly influence the real-time update efficiency of 
the active sonar. Traditional RL algorithms include the Q-Learning algorithm and the 
state action reward state action (SRASA) algorithm. These are all temporal-difference 
(TD) single-step update algorithms, which have a slow convergence speed. In order 
to make full use of existing knowledge, Sutton introduced the planning process in RL 
and proposed the model-based Dyna RL algorithm [16]. This type of algorithm stores 
experience knowledge by building a model of the environment and generates simu-
lated experience to train the learning machine offline. Since the action selection of the 
model samples directly determines the efficiency of the algorithm. The introduction 
of the planning process gives RL the ’cognitive’ ability, getting rid of simple trial-and-
error learning and greatly improving the convergence efficiency of the algorithm.

Fig. 1 Reverberation suppression cognitive sonar flow chart



Page 4 of 20Fu et al. EURASIP Journal on Advances in Signal Processing        (2023) 2023:116 

In the Dyna framework, the action selection of the planning directly affects the conver-
gence episodes of the algorithm. Sutton initially adopts the random-sample method [16], 
many iterations of the value function in planning are ineffective for the algorithm. There-
fore, the maximum reward action selection strategy for Dyna-Q (Dyna-Q-Max-Action) is 
first proposed in this paper. The convergence episodes of the algorithm are shortened by 
reducing the probability of invalid random-sample action selection. Thus, this algorithm 
has fewer convergence episodes than the Dyna-Q algorithm convergence episodes. Cogni-
tive sonar based on RL combines the advantage of RL to solve complex problems with the 
advantage of cognitive sonar to interact with the environment in real-time. It can solve the 
problem of difficulty in obtaining optimal waveform for complex environments by active 
sonar theoretically.

This paper is structured as follows. Section 2 describes the statistical model of reverbera-
tion Doppler spread clutter, and proves the statistical model with the real data from the 
Qiandao Lake. Furthermore, analysis of the factors of waveform parameters affecting the 
reverberation Doppler spread clutter. The target resolution function in reverberation Dop-
pler spread clutter is proposed. The Dyna-Q-Max-Action algorithm is proposed by opti-
mizing the action selection strategy of the Dyna-Q algorithm. Moreover, the principle and 
algorithm flow of the Dyna-Q-Max-Action algorithm is described in detail. Section 3 dis-
cusses numerical simulation results of the Dyna-Q-Max-Action cognitive sonar combing 
with the reverberation target resolution function. Meanwhile, analysis of the influence of 
the model training episodes and action selection probability on the Dyna-Q-Max-Action 
algorithm. Then, conclude a reasonable action selection probability. Conclusions are given 
in Sect. 4.

2  Methods and experiments
2.1  Reverberation modeling

The establishment of reverberation statistical model is significant for reverberation analysis 
and simulation. Etter and other researchers mentioned two difficulties in reverberation sta-
tistical modeling: the lack of analytical tools for solving complex boundary problems, and 
the difficulty of measuring and distinguishing too many influencing factors of reverberation 
[17–19]. According to the relationship between the size of the scatterer and the wavelength 
of the acoustic wave, the reverberation modeling can be divided into the point scattering 
model and the unitary scattering model. In this paper, a more realistic point scattering 
model is used for modeling.

The point scattering model assumes that scatterers are randomly distributed in the ocean 
and the reverberation is the superposition of all scatterer backscattered echoes. The point 
scattering model has a clear physical meaning and can directly assume the statistical prop-
erties of the scattered echo amplitude, phase, and Doppler shift. Considering the small 
amplitude of the multiple scattering, the multiple scattering effect is ignored. Under the 
assumption of the narrow-band waveform, the reverberation can be described as

(1)R(t) =
N (t)

i=1

Ais(t − τi)e
j2πφit
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where N(t) is the number of scatterers contributing to the reverberation at time t. Ai,τi 
and φi , denote the amplitude, time delay, and Doppler shift of the i-th scatterer echo, 
respectively. s(t) denotes the waveform. In addition, the statistical distribution of the 
echo amplitude Ai determines the statistical distribution model of the reverberation 
envelope. Moreover, the Doppler shift φi of the echo determines the Doppler shift of the 
reverberation, representing the severity of the Doppler spread. Each scatterer Ai obeys 
Gaussian distribution, τi and φi are independent of each other. Therefore, satisfying the 
above conditions is the wide-sense stationary uncorrelated scattering (WSSUS) channel 
reverberation.

According to reference [20], a reverberation Doppler spread clutter model is estab-
lished. It is known that the mathematical model probability density function (PDF) of 
reverberation Doppler spread distribution conforms to the two-side exponential distri-
bution. The two-side exponential distribution is the distribution model with the highest 
matching according to the real sea test data. The two-side exponential distribution is 
symmetrically distributed about v = 0 , the parameters of the distribution can be used to 
characterize the severity of the Doppler spread.

where µ represents the slope ss of the Doppler spread. A large number of sea test data 
show that the ss is ranging between 6 and 20 dB/kn. The above equation is also known as 
the Doppler spreading function. µ can be solved by the definition of ss

then

C. Zhang proposed a pseudo-random number generation method for reverberation 
numerical simulation in combination with the two-side exponential distribution model 
[21], and verified the model with the Qiandao Lake experiment data. Set y to be a uni-
formly distributed random number in the interval (0, 1), this leads to

According to Eq. (5), a random number v obeying the statistical model with the specified 
Doppler spread can be generated. Using the point scattering model, a scattering model 
with 10,000 points is established. v is converted into a Doppler shift φi using the formula 
φi = f0

2v
c  calculated by substituting the reverberation formula Eq. (1), where the ampli-

tude obeys a Gaussian distribution with mean 0 and variance 1. The time delay obeys 
the uniform distribution, ss=20 dB/kn, 1 kn = 0.514 m/s. The Doppler shift obeys the 
two-side exponential distribution µ = 2.30 . The reverberation length is 3 s. Continuous 
wave (CW) pulse width is 0.58 s, and center frequency f0 = 4000 Hz. The reverbera-
tion is calculated 100 times using the Monte Carlo, and the time domain results of the 

(2)ρ(v) =
µ

2
e−µ|v|

(3)ss = 20 lg

[

ρ(0)

ρ(1)

]

(4)µ = ln
(

10
ss
20

)

(5)v =

{

− 1
µ
· ln y, v > 0

1
µ
· ln y, v < 0
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reverberation correlation function are superimposed. Thus, the reverberation Doppler 
distribution curve is obtained, and the modeling results are as follows:

Figure 2a is modeled with Eq. (2), it is seen that the Doppler spread distribution is more 
concentrated with the increase of ss, and the spreading is not apparent. Figure 2b theoreti-
cal curve is modeled with the two-side exponential distribution by Eq. (5), it is obvious to 
find that the theoretical curve is basically consistent with the experimental Qiandao Lake 
data, indicating that the two-side exponential distribution model can be used for Doppler 
spread clutter modeling.

2.2  Waveform and reverberation Doppler distribution

Different waveform parameters influence the environment feedback reverberation. Corre-
lation is widely used in reverberation analysis, the Doppler distribution of the reverberation 
is obtained by superimposing the correlation on the time delay. The following paper mainly 
focuses on the relationship of waveform and reverberation Doppler distribution.

2.2.1  AF of waveform

The most important method to measure the detection capability of the waveform is the AF. 
The expression of the AF is obtained by doing time-Doppler domain matched filtering of 
the transmit waveform [22] as

The above equation is the AF of the transmit waveform s(t). τ is the time delay and φ is 
the Doppler shift. Through the AF of the waveform, the measurement accuracy, error 
ellipse, and intrinsic resolution constant of the waveform can be found. Within the 3 dB 
range, there is a time-Doppler resolvability range χ(0, 0) for the waveform. The Doppler 
resolution of the waveform can be calculated

(6)|χs(τ ,φ)|2 = |
∫

s(t)s∗(t + τ )ej2π tφdt|2

(7)χs(τ ,φ) =
√
2χs(0, 0)

2

Fig. 2 Reverberation modeling and Doppler clutter distribution
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In this paper, without any special explanation, the square wave envelope CW is 
s(t) = T−1/2rect(t/T)ej2π f0t . According to the equation 

∫ T/2
−T/2 e

j2π ftdt = Tsinc(π fT) . 
The AF of the CW is

The Doppler resolution of the CW can be calculated as φHz = ±0.44/T(Hz). According 
to the formula φwave = φHzc

2f0
 , the Doppler resolution φwave = 0.44c

2Tf0
(m/s) can be calculated. 

c is the speed of the acoustic. Based on φ wave , it can be seen that the CW AF is mainly 
affected by the joint influence of pulse width T and frequency f0 . In this paper, the CW 
center frequency f0 =4000 Hz is fixed, only the effect of pulse width on Doppler resolu-
tion is considered.

2.2.2  Reverberation Doppler distribution

In general, the echo X0(t) can be composed of target Tar(t), reverberation Rev(t), and 
noise Noi(t)

Noi(t) is the environment noise, the target echo is Tar(t) = s(t − τt)e
j2πφtt , τt and φt , are 

the target time delay and target Doppler shift, respectively. Each scatterer echo is a copy 
of the waveform with time delay and Doppler shift of different intensities, so the above 
echo X0(t) can be reduced to

At , Revj represent the target, reverberation amplitude. τt , τj represent the target, rever-
beration time delay. φt , φj represent the target, reverberation Doppler shift. N represents 
the number of reverberation scatterers. Correlating the echo with the time delay and 
Doppler shift copy, obtain

Since reverberation is the environment interference of active sonar. In the field of acous-
tic engineering, the normalized reverberation channel is a typical WSS channel [23]. 
Under the assumption that the scatterers are independent of each other, reverberation 
channel satisfy both US channel and WSS channel. Thus, the reverberation characteris-
tics can be expressed by the reverberation channel scattering function.

The time-varying impulse response of the reverberation channel is g
(

τ ′, t
)

 , τ ′ is the 
time delay at different times t, and the received reverberation is Rev(t), then the rever-
beration can be expressed as the convolution of the transmitted waveform and the 
impulse response

(8)|χs(τ ,φ)|2 =

{

(

1− |τ |
T

)2
sinc2

[

πφT
(

1− |τ |
T

)]

, |τ | ≤ T

0, |τ | > T

(9)X0(t) = Tar(t)+ Rev(t)+ Noi(t)

(10)X0(t) = Ats(t − τt)e
j2πφtt +

N
∑

j=1

Revjs
(

t − τj
)

ej2πφjt +Noi(t)

(11)RsX (τ ,φ) = Atχs(τt ,φ − φt)+
N
∑

j=1

Revjχs
(

τj ,φ − φj
)
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The Fourier transform g
(

τ ′, t
)

 of the time-varying impulse response Ps
(

τ ′,φ′) is called 
the spreading function.

Ignoring the constant term, substituting Eq. (13) into Eq. (12) yields

The above equation shows that the reverberation is related to the channel spreading 
function and the waveform in the time-Doppler domain. Thus, the reverberation can 
be composed by the channel spreading function Ps

(

τ ′,φ′) multiplied by the time delay, 
Doppler shift weighted waveform.

By correlating Rev(t) with the waveform s(t), obtain

Do autocorrelation on Eq. (15).

where E
[

Ps(τ1,φ1)P
∗
s

(

τ ′,φ′)] = Rps(τ
′,φ′)δ(τ ′ − τ1)δ(φ

′ − φ1) . δ represents the Dirac 
delta function. Rps(τ ,φ) is the scattering function of the channel which is used to 
describe the time-Doppler distribution. When the autocorrelation is at τ ,φ , Eq. (16) can 
reduce to

The above equation shows that the autocorrelation of the Rev(t) matched filter is the 
two-dimensional convolution of waveform AF and reverberation channel scatter-
ing function. Under the assumption of WSSUS, the autocorrelation function of the 
reverberation echo 

∑N
j=1 Revjχs

(

τj ,φ − φj
)

 can be reduced to the two-dimensional 

(12)Rev(t) =
∫

g
(

τ ′, t
)

s
(

t − τ ′
)

dτ ′

(13)g
(

τ ′, t
)

=
1

2π

∫

Ps
(

τ ′,φ′) exp
(

j2πφ′t
)

dφ′

(14)Rev(t) =
∫∫

Ps
(

τ ′,φ′)s
(

t − τ ′
)

exp
(

j2πφ′t
)

dτ ′dφ′

(15)

RRs(τ ,φ) =
∫

Rev∗(t + τ )s(t) exp(j2πφt)dt

=
∫∫∫

P∗
s

(

τ ′,φ′)s∗
(

t − τ ′ + τ
)

exp
(

−j2πφ′(t + τ )
)

s(t) exp
(

j2πφt
)

dtdφ′dτ ′

=
∫∫∫

P∗
s

(

τ ′,φ′) exp
(

−j2πφ′(t + τ )+ j2πφt
)

s∗
(

t + τ − τ ′
)

s(t)dtdφ′dτ ′

=
∫∫∫

P∗
s

(

τ ′,φ′) exp
(

j2π t
(

φ − φ′)− j2πφ′τ
)

s∗
(

t +
(

τ − τ ′
))

s(t)dtdφ′dτ ′

=
∫∫

P∗
s

(

τ ′,φ′)χs
(

τ − τ ′,φ − φ′) exp
(

−j2πφ′τ
)

dφ′dτ ′

(16)

�RRs(τ ,φ)R
∗
Rs(τ ,φ)� =

∫∫∫∫

Rps

(

τ ′,φ′)δ(τ ′ − τ1)δ(φ
′ − φ1)

χs
(

τ − τ ′,φ − φ′) exp
(

−j2πφ′τ
)

χ∗
s (τ − τ1,φ − φ1) exp

(

j2πφ1τ
)

dφ′dτ ′dφ1dτ1

=
∫∫

Rps

(

τ ′,φ′)|χs
(

τ − τ ′,φ − φ′)|2dφ′dτ ′

(17)�RRs(τ ,φ)R
∗
Rs(τ ,φ)�τ ,φ = Rps(τ ,φ) ∗ |χs(τ ,φ)|2
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convolution of the channel scattering function and the waveform AF. Doing autocorrela-
tion on Eq. (11) obtain

Ac represents the amplitude of the reverberation. RrsX (τ ,φ) is superimposed on the time 
delay to obtain the Doppler distribution curve ϕ(φ) of the reverberation

The scattering effect of the channel is a fuzzy effect. According to the approximate deri-
vation of the reverberation point scattering model [23], the reverberation channel scat-
tering function can be reduced to

where K is a constant. ρ(τ ,φ) is the joint distribution of the scatterer with the time and 
Doppler shift. The equation indicates that the reverberation scattering function is deter-
mined by the joint PDF of the τ and φ of the scatterer. Similarly, if the spatial distribu-
tion of the scatterer and the Doppler distribution are independent of each other, then we 
have

If the scatterers are uniformly distributed by distance, this equation can be further 
reduced to

where T is the pulse width of the waveform. K ′ is a constant. The result of the reverbera-
tion correlation function can be reduced to

The reverberation Doppler distribution curve can be reduced to

In summary, it can be seen that the reverberation Doppler distribution is influenced by 
the waveform pulse width T, the PDF ρ(φ) of the scatterer and the waveform Doppler 
resolution. Moreover, the target Doppler resolution interval and reverberation correla-
tion function Doppler 3 dB width determine the Doppler distribution; when the target 
Doppler resolution interval has more overlapping areas with 3 dB reverberation correla-
tion function, it means the target is not easy to distinguish; when the waveform Dop-
pler resolution interval has less overlapping areas with 3 dB reverberation correlation 

(18)RrsX (τ ,φ) = A2
t |χs(τt ,φ − φt)|2 + A2

c

(

Rps(τ ,φ) ∗ |χs(τ ,φ)|2
)

(19)

ϕ(φ) =
∫

RrsX (τ ,φ)dτ =
∫

A2
t |χs(τt ,φ − φt)|2 + A2

c

(

Rps(τ ,φ) ∗ |χs(τ ,φ)|2
)

dτ

(20)Rps(τ ,φ) = Kρ(τ ,φ)

(21)Rps(τ ,φ) = Kρ(τ)ρ(φ)

(22)Rps(τ ,φ) =
K ′

T
ρ(φ)

(23)RrsX (τ ,φ) = A2
t |χs(τt ,φ − φt)|2 + A2

c

K ′

T

(

ρ(φ) ∗ |χs(τ ,φ)|2
)

(24)ϕ(φ) =
∫

A2
t |χs(τt ,φ − φt)|2 + A2

c

K ′

T

(

ρ(φ) ∗ |χs(τ ,φ)|2
)

dτ
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function, it means the reverberation Doppler clutter suppression is better and the target 
is easy to distinguish.

2.2.3  Effect of scatterer Doppler PDF ρ(φ) on reverberation Doppler distribution

According to Eq. (24), the reverberation Doppler distribution is jointly influenced by 
the waveform AF and the Doppler PDF of the scatterer. In this section, assuming that 
the waveform parameters are consistent, and the influence of the waveform AF on the 
reverberation Doppler distribution is eliminated, the relationship between different 
Doppler distribution ρ(φ) of the scatterer and the reverberation Doppler distribution 
is discussed. The scatterer Doppler distribution ρ(φ) is modeled according to the two-
side exponential distribution, and two extreme cases of scatterer Doppler distribution 
are considered, which are discussed as ss=6 dB/kn, µ=0.69 and ss=20 dB/kn, µ=2.30. 
The waveform CW pulse width is T=0.23 s, the target is 1.29 m/s, and the signal-to-
reverberation ratio (SRR) is SRR=4 dB.

Moreover, it is assumed that the target time information is known, and the tar-
get time region is extracted with twice the pulse width before subsequent signal 
processing.

Figure  3a is modeled with Eq.  (5) and shows the relationship between different 
scatterer Doppler distributions and the reverberation Doppler distribution. It is easy 
to find that the 6 dB/kn curve is easier to distinguish the target than the 20 dB/kn 
curve, which indicates that the wider the scatterer Doppler distribution function is, 
the easier it is to distinguish the target. Figure 3b is modeled with Eq. (2) and shows 
the relationship between the target Doppler resolution and the scatterer Doppler dis-
tribution. The shaded area is the overlapping area between the waveform Doppler 
resolution and the scatterer Doppler distribution, which can be considered a good 
matching area for high-energy clutter. Outside the shaded area, the reverberation 
Doppler clutter is suppressed due to the waveform Doppler filtering effect. For the 
same waveform, if the scatterer Doppler distribution is wider, the better the clutter 
suppression effect is [15].

Fig. 3 Reverberation suppression of different scatterer Doppler distribution
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2.2.4  The effect of AF on the reverberation Doppler distribution

In this section, the Doppler scatterer distribution ρ(φ) is assumed to be constant, and 
the two-side exponential distribution model is set ss=10 dB/kn, µ = 1.15 . The effect of 
different waveform parameters on the reverberation Doppler distribution is discussed.

Figure 4a set the target Doppler 1.29 m/s, SRR = 4 dB, Monte Carlo experiment 100 
times to compare the reverberation Doppler distribution curve in the case of T = 0.1 s 
and T = 0.3 s. When the CW pulse width T =0.1 s, the target is not easy to distinguish. 
When the CW pulse width T = 0.3 s, the reverberation Doppler distribution becomes 
narrower and the waveform Doppler resolution increases, it is obvious that the 0.707 (3 
dB) position target is easy to distinguish. Therefore, without considering noise interfer-
ence, the 0.707 (3 dB) Doppler distribution width of the reverberation can be used to 
determine whether the target is distinguishable. Thus, the reverberation target resolu-
tion function is proposed:

φ data is the reverberation Doppler 0.707 (3 dB) width, and φwave(T ) is waveform Doppler 
resolution half of the 0.707 (3 dB) width. When the 0.707 (3 dB) reverberation width 
is equal to two times the waveform Doppler resolution, it represents that the target is 
distinguishable.

With the change of waveform pulse width, the reverberation Doppler distribution is 
also changing. For the single-peak target, 3 dB position can be directly judged as Fig. 4a, 
if the 3 dB position consists of a double-peak as Fig. 4b, one of the peaks near 0 m/s, 
another peak with 3 dB width can be judged, if the secondary peak width meets Eq. 25, 
on behalf of the target can be distinguished.

From the above analysis, it can be seen that increasing the waveform pulse width can 
reduce the reverberation Doppler spread clutter width to distinguish the target. For 
high-speed moving targets, the Doppler clutter will basically not exist. As the ocean 
environment changes, the reverberation scatterer Doppler distribution changes in real 
time, and different waveforms need to be used according to different environments to 
help target discrimination. The more waveforms retained in the active sonar, the higher 
the flexibility of active sonar waveform selection.

(25)φ data = 2φwave(T )

Fig. 4 Relationship between different pulse width waveforms and reverberation Doppler distribution
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Although the target resolution function is proposed, the optimal waveform cannot 
be quickly achieved. Then combining the RL with cognitive sonar, the active sonar can 
adjust the waveform parameters according to the reverberation Doppler width to distin-
guish the target from the Doppler spread clutter quickly.

2.3  The Dyna‑Q‑Max‑Action reverberation suppression cognitive sonar

The underwater environment is complex, Doppler spread is serious and time-varying. 
Thus, active sonar requires freedom for waveform design, so combining active sonar 
with the Dyna-Q algorithm can use different parameters waveforms for different rever-
beration Doppler spread clutter. However, the random action selection strategy of the 
Dyna-Q algorithm influences the convergence episodes. Therefore, in this section, the 
action selection strategy of the Dyna-Q algorithm is improved and the Dyna-Q-Max-
Action algorithm is proposed.

2.3.1  The Dyna‑Q‑Max‑Action five tuples

Five tuples are the basic component of RL. For better integration with cognitive sonar, 
the Dyna-Q-Max-Action can be equated to five tuples of MDP, which consists of a 
model of environment S revb , action A wave , transfer probability P, reward signal R reward , 
discount factor γ . 

1. Model of environment S revb : Model of environment S revb is the reverberation Dop-
pler clutter width set. 

Srm represents the Doppler clutter width of the m-state reverberation.
2. Action A wave : A wave is a collection of waveforms, which consists of waveforms with 

different parameters. 

 When active sonar selects waveform Awm , then automatically jumps to the corre-
sponding state Srm . In practice, in order to improve the efficiency of target detection, 
without considering the blind area, all waveforms can be sent out at once, and the 
optimal waveform is achieved by RL calculating.

3. Transfer probability P: The P transfer probability is the probability of choosing wave-
form Awm causing the state transfer from Srm to Srn . In the absence of prior knowl-
edge and the transfer probability is unknown, the initial transfer probability P is equal 
probability.

4. Reward signal R reward:

The reward signal is the reward value of different waveforms Awm . The reward signal set-
ting is significant, unreasonable setting cause the waveform transmit strategy to fall into 
the local optimal solution. According to the Doppler spread clutter width and the previ-
ous target resolution function Eq. 25 to define the reward signal

(26)S revb = [Sr1, Sr2, . . . , Srm, . . .]
T

(27)A wave = [Aw1,Aw2, . . . ,Awm, . . .]
T
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When Rreward(T) ∈ [0, 0.01 ∗ 2φwave(T)] , the reverberation Doppler clutter target is dis-
tinguishable and the reward signal is set to 10. When Rreward(T) /∈ [0, 0.01 ∗ 2φwave(T)] , 
the reward factor C=-1, the waveform reward signal is obtained through Eq. 28. q is the 
magnification factor, which is used to enlarge the difference in reward signals between 
different waveforms. R reward can be used to evaluate the difference between different 
waveforms, and the closer to the optimal waveform is, the higher R reward tends to guide 
the RL to converge to the optimal waveform.

5) Discount factor γ:
The discount factor γ ∈ [0, 1] , which determines the decay of future reward signal, 

when γ tends to 0, the active sonar tends to obtain immediate rewards; when γ tends to 
1, the active sonar tends to obtain long-term gains, indicating that almost all reward sig-
nals are influencing the Q-value.

2.3.2  The Dyna‑Q‑Max‑Action algorithm flow

The traditional Dyna-Q algorithm treats planning as an improvement of the action, but 
the action selection within the model of the Dyna-Q algorithm is random [24]. In this 
paper, the action selection strategy of the Dyna-Q algorithm is improved, then the Dyna-
Q-Max-Action algorithm is proposed. The algorithm flow is as follows:

α is the step size, α ∈ (0, 1) , which determines the effect of estimation error on Q(Srm
,Awm ). Srm and Awm are the state and the action at this step. Srn and Awn are the state 
and the action at the next step. Rreward is the reward signal. ε is the greediness of action 
selection, ε ∈ [0, 1] , representing the probability of selecting the maximum reward signal 
action. Greedy action selection uses current knowledge to maximize immediate reward 
and does not sample worse actions. The state-action value function is abbreviated as 
Q-value. The Q table consists of ( Srm , Awm ) corresponding position to the Q-value.

Steps 1–7 of Dyna-Q-Max-Action algorithm are identical to the traditional Dyna-Q 
algorithm, differing only in steps 8–12. Steps 8–12 can be summarized as n updates 
of the Q-value using the model already learned. Inspired by the action selection 
strategy of the Q-learning algorithm, introducing the ε action selection strategy to 

(28)Rreward(T) =
{

10, 0 ≤ |2φwave(T )− φdata|q ≤ 0.01 ∗ 2φwave(T )

C|2φ wave (T)− φdata|q, else
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the Dyna-Q-Max-Action algorithm. The Dyna-Q-Max-Action algorithm superim-
poses the reward signals of each action in all environments, and compares the sum 
of reward signals of different actions. ε probability selects the next action with the 
maximum sum of the reward signals, 1-ε probability selects the next action randomly

The Dyna-Q-Max-Action algorithm can select an optimal waveform by integrating the 
waveform into all environments through Eq.  29, which shortens the convergence epi-
sodes of the Q-value. The Dyna-Q-Max-Action algorithm architecture is shown in Fig. 5 
below.

Figure  5 ‘Real Experience’ to ‘Value Functions (Q-value)’ represents direct learn-
ing based on real experience to improve Q-values and actions. ‘Real Experience’ to 
‘Model’ to ‘Simulated Experience’ to ‘Value Functions (Q-value)’ is a model-based 
learning process. The model learns from real experience and generates simulated 
experience. Finally, the simulated experience is used to update the Q-value.

The core idea of the Dyna-Q-Max-Action algorithm is the Q-value learning from 
real experience and planning from simulated experience. Learning and planning are 
deeply integrated in the sense that they share almost all the same machinery, differ-
ing only in the source of their experience. The ε model action selection strategy can 
shorten the convergence episodes of the active sonar.

3  Results and discussion
In this section, the relationship between the reverberation Doppler clutter width 
and CW waveform pulse width is simulated by the Dyna-Q-Max-Action algorithm. 
According to the Dyna-Q-Max-Action algorithm iteration, the optimal waveform is 
achieved. Set SRR = 4 dB. The following table shows the reverberation Doppler clut-
ter widths obtained by numerical simulation in different environments, and calculates 
the reward signals for the corresponding waveform pulse widths according to Eq. 28.

(29)Awm = εMax
(

∑

(R reward )

)

Fig. 5 The Dyna-Q-Max-Action algorithm architecture
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The reward signals show that only the 300ms CW signal is the optimal waveform in 
this environment. The rest of the waveforms are given different R reward , guiding the 
active sonar to converge to optimal waveform 4.

In this paper, there are two kinds of convergence: step convergence and Q-value con-
vergence. When the sum of the reward per episode, and the converged steps per episode 
are converged, means the Dyna-Q-Max-Action algorithm step is convergence. While, 
when the loss function is converged, means the Dyna-Q-Max-Action algorithm Q-value 
is convergence.

The loss function is the error between predicted Q-value and real Q-value.

Qpredict is the predicted value of Q-value, Q is the real value of Q-value, and Steps is the 
number of steps to reach the optimal in this episode.

Define the average reward signal per episode Raverage

The next subsection will discuss the different training times and different ε greediness of 
the Dyna-Q-Max-Action algorithm.

3.1  Different training times of the Dyna‑Q‑Max‑Action algorithm with ε=1

Set ε =1 for the Dyna-Q-Max-Action algorithm, means each action is selected from the 
model with the maximum reward signal. Then compare the number of the Dyna-Q-
Max-Action algorithm convergence episodes for different model training times.

In Fig. 6a–d Env=0 refers to the Q-learning algorithm, Env=5 represents the Dyna-
Q-Max-Action algorithm with 5 times of model training, and the x-axis represents the 
number of training episodes. According to the results of the number of convergence 
steps, the sum of rewards and the average reward, the step convergence efficiency 
increases as the number of model training times increases.

In Fig. 6a, b, the step of the Q-learning algorithm needs about 30 episodes to converge, 
while after 5 times of model training the step of the Dyna-Q-Max-Action algorithm only 
needs about 20 episodes to converge. Even after 90 times of model training, the step of 
the Dyna-Q-Max-Action algorithm just needs several episodes to converge.

According to the average loss curve in Fig. 6d, the Q-learning algorithm Q-value needs 
about 400 episodes to converge. While after 5 times of model training, the Dyna-Q-
Max-Action algorithm Q-value needs about 150 episodes to converge, and only about 30 
episodes to converge after 90 times of training.

Therefore, as the number of training times increases, the Dyna-Q-Max-Action algo-
rithm with ε =1 shortens the number of training episodes and increases the efficiency.

Figure 6e, f the histograms are plotted based on the Q table and the table of model 
reward signals after 90 times of model training. Figure 6e indicates the Q-value of differ-
ent actions in different environments. Figure 6f indicates the model reward of different 
actions in different model environments. S1, S2, S3, S4, and S5 represent five different 
reverberation Doppler clutter widths, and t01, t015, t02, t03, and t035 represent five 
waveforms, which corresponding to pulse widths of 100 ms, 150 ms, 200 ms, 300 ms, 
and 350 ms, respectively in Table 1.

(30)Loss = Sum(Qpredict −Q)/Steps

(31)Raverage = Sum(R reward )/Steps
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According to the histogram, it can be seen that the optimal waveform t03 in differ-
ent environments of the Q table of the Dyna-Q-Max-Action algorithm has the largest 
Q-value and can provide the absolute maximum action selection to the environment. 
The histogram of the model reward shows that only the optimal action and its corre-
sponding optimal environment reward is the largest. Therefore, it makes each model 
action selection directly select the t03 optimal waveform and speed up the step conver-
gence speed and shorten the Q-value convergence episodes.

3.2  Different training times of the Dyna‑Q‑Max‑Action algorithm with ε=0.6

Set ε = 0.6 and compare the results of different model training times.
According to Fig. 7a–d, it can be seen that the Dyna-Q-Max-Action algorithm con-

verges with fewer episodes as the number of training times increases, and the model 
training times 90 is optimal.

In Fig. 7a, b, the step of the Q-learning algorithm needs about 30 episodes to converge, 
the step of the Env=5 Dyna-Q-Max-Action algorithm need about 20 episodes to con-
verge. It is almost the same as Fig. 6a, b.

In addition, according to Figs. 6d and 7d, it can be seen that after 90 times model train-
ing, the ε=0.6 curve is flatter compared to the ε =1 curve after convergence.

Table 1 The Dyna-Q-Max-Action algorithm numerical simulation parameters

Num. T(ms) Doppler resolution (m/s) Doppler clutter width 
(m/s)

R reward

1 100 0.825 4.2 −(2.55)q

2 150 0.55 2.7 −(1.6)q

3 200 0.4125 2.2 −(1.375)q

4 300 0.275 0.553 10

5 350 0.236 2 −(1.528)q

(a) Steps per episode for dif-
ferent training times

(b) Sum of rewards for differ-
ent training times

(c) Average reward for differ-
ent training times

(d) Average loss for different
training times

(e) 3D histogram of Q-value (f) 3D histogram of model re-
ward

Fig. 6 The Dyna-Q-Max-Action algorithm with ε=1
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The histogram results in Fig.  7e show that the Q table of ε=0.6 the Dyna-Q-Max-
Action algorithm shows a stepwise growth in different environments, and the Q-value 
tend to the optimal waveform t03. Comparing with Fig. 6e, it can be seen that ε=0.6 Q 
table is smoother than ε =1 Q table. In addition, the maximum model reward in Fig. 7f 
is the optimal environment corresponding to the optimal waveform, which is consistent 
with ε =1 in Fig. 6f.

3.3  The Dyna‑Q‑Max‑Action algorithm with different greediness ε

The model was set to training 10 times to compare the results for different ε action selec-
tion probabilities [0, 0.3, 0.6, 1], where ε =0 represents the Dyna-Q algorithm.

In Fig. 8, comparing with ε=0.3, ε=0.6, ε =1 and the Dyna-Q algorithm curves show 
that the Q-value of the Dyna-Q-Max-Action algorithm converge with fewer episodes 

(a) Steps per episode for dif-
ferent training times

(b) Sum of rewards for differ-
ent training times

(c) Average reward for differ-
ent training times

(d) Average loss for different
training times

(e) 3D histogram of Q-value (f) 3D histogram of model re-
ward

Fig. 7 The Dyna-Q-Max-Action algorithm with ε=0.6

Fig. 8 Average loss curve for different action selection probabilities ε
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than the Dyna-Q algorithm Q-value convergence episodes, and ε =1 converges with the 
fewest episodes. However, ε =1 is too large leading to overfitting, which makes the aver-
age loss curve fluctuate. Therefore, finding a suitable action selection probability ε , can 
reduce the fluctuation and shorten the convergence episodes. According to the results in 
Fig. 8, ε=0.6 is more appropriate.

4  Conclusion
The discrimination of low-speed weak targets in reverberation Doppler spread clut-
ter is a difficult problem in active sonar signal processing. This paper combines the 
point scattering model and two-side exponential distribution to model the reverbera-
tion Doppler spread clutter, and verifies the effectiveness of the model through the 
real data of the Qiandao Lake. In this paper, a target resolution function is proposed 
for the reverberation Doppler clutter target resolution problem, which can quickly 
identify the target in the Doppler spread clutter, and the target resolution function is 
combined with the Dyna-Q-Max-Action algorithm, which enables the active sonar to 
adjust the waveform parameters according to different reverberation. Meanwhile, the 
relationship between the Dyna-Q-Max-Action algorithm and the greediness of action 
selection and the number of model training times are discussed. Based on the numer-
ical simulation results, it is found that the step convergence efficiency of the Dyna-Q-
Max-Action algorithm combined with the action selection greediness converges more 
rapidly than the step of the Q-learning algorithm. According to the results, the Dyna-
Q-Max-Action algorithm converges with fewer episodes than the Dyna-Q algorithm 
converges episodes. Providing a theoretical basis for future engineering applications 
of RL based reverberation suppression cognitive sonar.
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