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Abstract 

In this paper, a method combining random demodulator (RD) and discrete fractional 
Fourier transform (DFRFT) dictionary is suggested to directly estimate the param-
eters of linear frequency modulation (LFM) signals from compressed sampling data. 
First, the RD system parameters are modified in accordance with the characteristics 
of the LFM signal to produce effective compressed sampling data. Next, a DFRFT 
dictionary is built using the fractional Fourier transform theory, and sparse represen-
tation coefficients are obtained by reconstructing the compressed sampling data 
using the recovery algorithm and DFRFT dictionary. The signal exhibits characteristics 
that make it pulse under the best fractional transform order, so the problem of signal 
parameter estimation can be reduced to searching for the location of the maximum 
value of sparse representation coefficients. The location is determined by a parameter 
optimization algorithm, and from there, the initial frequency and Chirp rate of the LFM 
signal can be estimated. Lastly, simulation and real data tests are performed to confirm 
that the suggested method can directly be utilized to estimate the parameter of LFM 
signals using compressed sampling data in addition to having high sparse representa-
tion ability for LFM signals.

Keywords: Compressed sampling, Random demodulator, Linear frequency 
modulation signal, Discrete fractional Fourier transform, Parameter estimation

1 Introduction
Due to their robust anti-interference ability, low likelihood of interception, huge band-
width, and other advantages, linear frequency modulated (LFM) signals are widely used 
in complicated electromagnetic environments [1–3]. By scrutinizing intercepted radar 
signals from hostile sources, crucial intelligence can be garnered for electronic recon-
naissance purposes. This intelligence can influence the adversary while safeguarding the 
security of our own information, playing a pivotal role in determining the outcome of 
a conflict [4, 5]. As a ubiquitous radar signal, the precise estimation of the initial fre-
quency and chirp rate of LFM signals constitutes a significant research topic in radar 
signal analysis. However, existing studies on the direct estimation of LFM signal 
parameters are generally based on the Nyquist sampling theorem. While these studies 
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achieve direct parameter estimation for LFM signals with lower bandwidths, research 
regarding parameter estimation for LFM signals with larger or even ultra-wide band-
widths remains insufficient. With the development of information technology and the 
complex and dynamic electromagnetic environment, the bandwidth of LFM signals is 
constantly increasing. Employing the conventional Nyquist theorem for sampling such 
a vast broadband signal would exert considerable strain on the A/D converter and gener-
ate an overwhelming volume of sampled data, posing challenges for subsequent signal 
handling and analysis [6–8].

With the development of compressed sensing theory, compressed sampling methods 
have become increasingly enriched, broadening the idea of solving the problem of large 
bandwidth signal acquisition [9, 10]. Among them, Non-Uniform Sampling (NUS) [11–
13], Random Demodulator (RD) [14–17], and Modulated Broadband Converter (MWC) 
[18–20] systems are more mature. These sampling systems, when compared to Nyquist 
sampling, can sample broadband signals with a lower sampling rate and fewer sampling 
points, reducing the pressure of signal transmission and storage.

In Ref [11], Luo proposed a novel non-uniform interrupted sampling repeater jam-
ming (NUISRJ) technique that effectively enhances the interference effect on phase-
coded radar signals. In Ref [12], Liu investigated the parameter estimation challenges 
associated with Hammerstein-Wiener nonlinear systems utilizing non-uniform sam-
pling. In Ref [13], Mirigaldi introduced the Non-Uniform Adaptive Angular Spectrum 
(NUADAS) method, specifically applicable to applications involving coherent beam 
combining and beam alignment. In Ref [14], Zhao presented a redesigned random 
demodulator (RD) capable of sampling generalized bandlimited signals. Furthermore, in 
Ref [18], Tropp proposed a parameter estimation method for frequency hopping (FH) 
signals based on multi-measurement vector sparse Bayesian learning (MSBL) within the 
context of modulation wideband converters (MWC).

However, the non-uniform triggering circuit design within the NUS structure requires 
a minimum sampling interval no less than the Nyquist frequency, thus not fundamen-
tally eliminating the influence of the Nyquist theorem. On the other hand, the MWC 
system is used as a compression sampling system specifically designed for multi fre-
quency narrowband signals and is not suitable for compression sampling of LFM signals.

Considering that the RD system employs a Fourier transform (FT) dictionary as the 
sparse representation dictionary, it is better suited for compressed sampling of fre-
quency-domain sparse signals, particularly multi-tone signals. Compared to the MWC 
system, the RD system features a simpler and more implementable structure while 
avoiding the impact of Nyquist sampling frequency inherent in the NUS system’s sam-
pling process. Therefore, in this study, the RD system is selected as the compressed sam-
pling system, achieving compressed sampling of LFM signals through the adjustment of 
RD system parameters and the construction of a novel sparse representation dictionary.

However, there is a dearth of research specifically devoted to the direct estimation 
of signal characteristics using compressed sample data, as the focus of compression 
sampling technology primarily lies in addressing the challenges of signal compression 
sampling and signal recovery [21–23]. It was not until 2010 that Davenport et  al. laid 
the theoretical foundation for studying parameter estimation based on compressed 
samples [24], demonstrating the feasibility of directly estimating signal parameters 
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from compressed sample data. In some instances, these techniques do not necessitate 
the reconstruction of the original signal; instead, they estimate the signal parameters 
by establishing a relationship between the parameter of interest and the coefficients of 
sparse representation derived from the compressed samples. Frequently, the construc-
tion of a sparse representation dictionary for signals becomes imperative in order to 
extract the coefficients that capture the sparsity properties of the signals.

In the early stages, the design of sparse dictionaries based on orthogonal transforma-
tions was mainly based on orthogonal FT dictionaries [25]. Due to the fact that FT dic-
tionaries can only achieve sparse representation of one-dimensional signals, Shaik [26] 
proposed a combined FT dictionary for the analysis of dynamic nuclear magnetic reso-
nance images. In Ref [27], Yu proposed a wavelet transform (WT) dictionary that can 
be used for sparse representation of two-dimensional image signals, while Wu [28] pro-
posed a discrete cosine transform (DCT) dictionary that can be applied to studying the 
influence of fabric density on the representation of the fabric texture and detecting fabric 
flames. Due to their simplicity, these dictionaries have long been widely used. However, 
they are typically limited to representing low-dimensional signals, making it challenging 
to represent complex, high-dimensional signals. The limited representational capacity 
has restricted the development of these dictionaries. Broadband LFM signals, as com-
plex nonlinear signals, cannot achieve ideal sparse representation using the sparse repre-
sentation dictionary mentioned above. For broadband LFM signals, it comes as evidence 
that these dictionaries struggle to achieve desirable results [29, 30].

Therefore, it is necessary to explore new dictionaries or improve the structure of exist-
ing dictionaries to achieve sparse representation for LFM signals. Currently, sparse rep-
resentations based on redundant dictionaries have gained widespread usage due to their 
versatility. Among them, the waveform matching dictionary proposed by Mirigaldi [13] 
is one form of redundant dictionary that requires prior information for its construction. 
However, obtaining prior information for LFM signals in complex electronic reconnais-
sance environments is not easily attainable.

The fractional Fourier transform (FRFT) is a time–frequency analysis method that can 
achieve time–frequency analysis of high-dimensional signals, avoiding the problems in 
the dictionaries mentioned above. In Ref [31], FRFT was used to analyze hyperspectral 
image signals, and some researchers have directly employed the FRFT method to esti-
mate some narrowband LFM signal characteristics. These studies, however, continue to 
rely on the Nyquist sampling theory. When applied to the parameter estimation of LFM 
signals with hub broadband or even ultra-wideband bandwidth, the issue of creating 
mass volumes of data during the signal acquisition process cannot be avoided.

Inspired by the construction of sparse dictionaries, some researchers have combined 
the theory of FRFT with compressed sensing by constructing FRFT dictionaries. Against 
this backdrop, this paper introduces a method for parameter estimation of LFM signals 
based on the integration of Random Demodulator compressed sampling and a discrete 
fractional Fourier transform (DFRFT) dictionary.

The main work of the paper can be divided into two parts: firstly, the application of the 
RD compressive sampling system to compressively sample linear frequency modulation 
(LFM) signals; secondly, the parameter estimation of LFM signals under compressive 
sampling conditions using a DFRFT dictionary.
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The innovative work of this paper can be summarized as follows: Addressing the prob-
lem of parameter estimation for LFM signals under RD compressive sampling condi-
tions, this paper proposes a novel approach based on a DFRFT dictionary. This method 
demonstrates wide applicability and does not rely on prior information. Firstly, by lever-
aging the theory of fractional Fourier transform, the paper constructs the DFRFT dic-
tionaries at different transform orders, which can be used for the sparse representation 
of LFM signals. Secondly, based on the characteristic impulse response of LFM signals in 
the optimal transform order, the relationship between LFM signal parameters and frac-
tional order variables is derived, thereby transforming the parameter estimation problem 
into an optimization problem for the peak values of sparse representation coefficients. 
Then, the quantum particle swarm optimization (QPSO) algorithm is employed as the 
optimization tool to search for the peak values of the sparse coefficients. By utilizing 
the formulaic relationship between unknown parameters and peak values, the estimates 
for the initial frequency and frequency slope of the LFM signal are obtained. Finally, the 
effectiveness of the proposed method is validated through simulation experiments, and 
comparative analyses with other methods are conducted in Sect. 6.

This paper’s remaining sections are organized as follows: The methodologies employed 
in the suggested work are presented in Sect. 2. The algorithmic performance evaluation 
is conducted in Sect. 3. The parameter estimation of simulated signals is conducted in 
Sect. 4. The measured signal analysis is conducted in Sect. 5. The work is concluded in 
Sect. 6, which also gives the approach’s prospective future use.

2  Fundamental theory
2.1  FRFT

FRFT is the extension of FT. Assuming that the signal is x(t), the FRFT of x(t) can be 
expressed in the following linear integral form:

where Fp[·] is the FRFT operator, p indicates the transformation order; K (α,u, t) is a 
kernel function.

The kernel functional equation varies with rotation angle, as seen below:

where n ∈ Z , Z denotes the integer field; δ is a Kronecker function; α denotes the rota-
tion angle of FT, t is the integration variable, and u denotes the parameter variable of 
the fractional domain. The link between α and transformation order p can be written 
as: α = pπ/2 , implying that the period of transformation order p is 4. According to the 
FRFT characteristics, when just examining the amplitude of the signal FRFT in the frac-
tional order domain, the range of p can be further restricted to [0, 2), because the ampli-
tude of the signal FRFT is the same whether p is taken in the interval [0, 2) or [2, 4). The 
time frequency plane rotation diagram of FRFT is shown in Fig. 1.
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The plane created by (t, ω) in Fig. 1 is the time–frequency plane, where t is the time 
variable and ω is the frequency. The fractional-domain plane (u, v) is generated by rotat-
ing the original plane around the origin by an arbitrary angle of α , where u is a frac-
tional-domain variable and v is a fractional-domain frequency. When α and p are both 
zero, and the FRFT of the signal x(t) remains x(t); when α = π/2 and p = 0 , the FRFT of 
the signal becomes the FT of the signal. When rotation angle α is varied, the transforma-
tion is fractional, which is also a generalized version of Fourier transform.

2.2  FRFT of LFM signal

The interdependent correlation between the initial frequency and chirp rate of the LFM 
signal and the fractional variable u and transform order p can be deduced when using 
the FRFT to analyze the LFM signal. Define the multi-component LFM signal as x(t), 
which can be expressed as follows:

where K is the number of LFM signal components, Ai, fi , ki are amplitude, initial fre-
quency, and Chirp rate of the ith component of the LFM signal, respectively.

The FRFT of the single component LFM signal is written as below:

When α = arccot(−k) , Eq. (4) can be simplified as:

The integral term of Eq. (5) can then be simplified using the pulse function, yielding 
the following results:
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Fig. 1 Schematic diagram of time–frequency plane rotation
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Equation (6) can be viewed as a pulse function of u because δ is a Kronecker function. 
When α = arccot(−k) , the single component LFM signal appears as a pulse in the frac-
tional order domain.

Because the parameter information for the intercepted LFM signal is unknown in 
the real electronic reconnaissance process, the best transformation order popt corre-
sponding to the rotation angle cannot be established directly. However, according to 
α = arccot(−k) = pπ/2 and the FRFT of the LFM signal Eq. (4), the relationship between 
the chirp rate and the initial frequency of the LFM signal, as well as the best transformation 
order and the FRFT variable, is as follows:

Therefore, the parameter estimation problem of LFM signal’s chirp rate and initial fre-
quency can be converted into the estimation of optimal order popt and FRFT variable uopt.

However, in real-world scenarios, it is also required to take the pulse of the signal length 
and sampling frequency into account in order to determine the best order and the esti-
mated value (p̂opt, ûopt) of the FRFT variable. The following equation must be used to deter-
mine the real parameter estimates [13]:

where N is the signal length and fs are the sampling frequency.
Upon completion of the correlation analysis for parameter estimation of a single-compo-

nent LFM signal, the application of FRFT can be extended to multi-component LFM sig-
nals. In fact, the FRFT analysis of multi-component LFM signals can be regarded as the 
superposition of multiple single-component LFM signals. Thus, Eq. (6) can be generalized 
to describe the FRFT of multi-component LFM signals.

where X(v) is the FRFT of K-component LFM signal.
Similarly, the estimation of frequency slope and initial frequency for multi-component 

LFM signals can be considered an extension of the parameter estimation process for single-
component LFM signals. By generalizing Eq. (8), the estimation results for the initial fre-
quency and frequency slope of the i-th component of the LFM signal can be obtained.
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where popt,i,uopt,i and αopt,i correspond to the optimal transform order, fractional order 
variable and rotation angle of the i-th component signal, respectively.

2.3  DFRFT

The closed-form discrete fractional Fourier transform (CF-DFRFT) approach sug-
gested in Ref [32] is used to create the DFRFT dictionary. The theoretical analysis of this 
straightforward, reversible procedure is as follows.

Firstly, the input x(t) and output Xp(u) in Eq. (1) are discretized with sampling inter-
vals of �t and �u , respectively. The discretized Eq. (1) can be expressed as follows:

where m and n are integers, and m ∈ [−M,M],n ∈ [−N ,N ].
For DFRFT, the reversibility must satisfy both of the following conditions:

When the above conditions are met, the discrete fractional Fourier reversible transfor-
mation is:

where KH
p
(m, k) is conjugate transpose of Kp(m, k).

When sin α  = 0 , substitute Eq. (12) into Kp(m, k):

Since Kp(m, n) is reversible, set M = N  , the DFRFT dictionary is:
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2.4  LFM signal parameter estimation based on compressed sampling

The following theoretical understanding is required, in accordance with compressed 
sensing theory, in order to estimate LFM signal parameters utilizing compressed sam-
pling data that is output by the RD system.

(1) Sparse representation. The sparse representation of signals is a necessary condition 
of the compression sensing theory, so a sparse dictionary is constructed to achieve 
the sparse representation of LFM signals. The sparse expression formula for signal x 
is as follows:

where � is a sparse dictionary and r is the coefficient vector of sparse representation.
(2) Compression observation. The compressed sampling data is obtained by measuring 

the signal with the observation matrix, and the equation is:

where y is measured value of compression observation and � is the measurement 
matrix.

In this paper, LFM signals are compressed and sampled using the RD system. Figure 2 
depicts the RD system’s organizational structure. In the RD system, the observation 
matrix � is actually created by multiplying the discrete matrix of the low-pass filter pulse 
response function h(t) and the random sequence p(t), which may be written as the fol-
lowing equation:

where P is the diagonal matrix of size W × W obtained by discretization of random 
sequence p(t), W is Nyquist sampling frequency, the elements on the diagonal are εn(±1 ), 
the remaining elements are zeros. The size of H matrix is R × W, and the i-th row of 
H is the reverse order of i × C elements before filter impulse response h(n). When the 
number of elements of h(n) is less than i × C, zero is added to the end of h(n) before 
the reverse order, and then the reverse order, and C = W

/
R . After the input signal x(t) 

is compressed and sampled by the RD system, the compressed sampling data y[m] is 
obtained.

(16)
x = �r

(17)y = �x = ��r

(18)
� = HP

Fig. 2 RD
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(3) Parameter estimation. Using the recovery algorithm to reconstruct the measured 
value y , the sparse coefficient r of the signal can be obtained. When the DFRFT dic-
tionary Ψ p is selected as the sparse dictionary, the corresponding sparse represen-
tation coefficient rp is obtained. The 

∣∣rp
∣∣ physical meaning is the amplitude corre-

sponding to the p-order fraction of the LFM signal. Therefore, the value interval of 
the transformation order p can be set as [0, 2). According to Eq. (15), the construc-
tion of dictionary Ψ p is related to the value of transformation order p. Therefore, 
the transformation order p is traversed in the interval [0, 2), and Ψ p under different 
orders is constructed to obtain the DFRFT dictionary library Ψ FR . Combined with 
the recovery algorithm, y is reconstructed, and rFR is calculated, |rFR(p,u)| are two-
dimensional distributions about (p,u) . According to Eq. (8), LFM signals only have 
the best sparsity in the dictionary constructed by the optimal order p, that is, the ∣∣rFR(popt,uopt)

∣∣ shows obvious pulse characteristics. Therefore, the estimation of the 
optimal transformation order popt and fractional order variable uopt is converted into 
the search for the location of |rFR(p,u)| peak value. The mathematical model is as fol-
lows:

The ( ̂popt , ûopt ) can be obtained by solving the above model, then the estimated Chirp 
rate and initial frequency can be calculated combined with Eq. (8).

The above process of parameter estimation based on compressed sampling can be sum-
marized as follows:

Step 1 The RD system is used to compress and sample the signals, and output is y[m].
Step 2 To calculate the coefficient vector rFR , the reconstruction algorithm and DFRFT 
dictionary are used to reconstruct the compressed sampling data.
Step 3 Search for the peak position of |rFR(p,u)| using the parameter optimization algo-
rithm, and the ( ̂popt,ûopt ) is obtained.
Step 4 Determine the LFM signal parameters ( f̂c , k̂  ) using(p̂opt,ûopt ) and Eq. (8).

2.5  QPSO

For the peak search problem of two-dimensional distribution, the commonly used algo-
rithms include direct search, two-dimensional search algorithms, etc., but these algorithms 
are computationally heavy and time-consuming. The particle swarm optimization (PSO) 
algorithm can improve the search efficiency based on the above methods, but it is easy to 
fall into local optimization. Therefore, based on the theory of quantum mechanics, Xu et al. 
[33] reduced the complexity of the algorithm, improved the global search ability of the algo-
rithm, and solved the problem of local optimization by quantifying the particle iterative 
update process in the PSO algorithm. Therefore, the QPSO algorithm is used to search for 
the peak value of |rFR(p,u)| to ensure the accuracy and timeliness of parameter estimation. 
Based on the QPSO algorithm, the peak search process of |rFR(p,u)| using QPSO can be 
concluded as follows:

(19)






�
�popt, �uopt

�
= arg max

p,u
|rFR(p,u)|

p ∈ [0, 2)
u ∈ ∀
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Step 1 Initialize the particle position of the population and configure parameters such as 
particle swarm size, iteration step size, and termination conditions;
Step 2 Initialize the current position of each particle, calculate the fitness of each particle 
with equation (19) as the fitness function, and initialize the position of the particle with 
the largest fitness;
Step 3 Update the particle position based on QPSO theory;
Step 4 Calculate the fitness of each particle and update the individual optimal position, 
group optimal position, and group optimal based on the best fitness value;
Step 5 Whether the termination condition is valid. If it is, stop the calculation and out-
put the results; otherwise, return to step (3).

The above parameter optimization process can be summarized as shown in Fig. 3.

3  Algorithmic performance evaluation
3.1  Simulation signal

The simulation experiment environment of this manuscript is a Windows 10 64-bit 
operating system and Matlab R2018b software platform. The computer processor 
used in the simulation is an Intel Core i7-10875H, whose main frequency is 2.30 GHz, 
and the memory is 16.0 GB. Single-component and multi-component LFM signals are 

Fig. 3 Parameter optimization process based on QPSO
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generated by Eq. (3). The signal parameter settings are shown in Table 1, the param-
eter meanings are shown in Eq. (3), and the signal time domain diagram is shown in 
Fig. 4.

3.2  Sparse representation analysis

The sparse representation of signals is the precondition for compressed sampling, 
which needs to be implemented by constructing a sparse dictionary. In order to high-
light the sparse representation effect and noise resistance of the DFRFT dictionary, 
comparative experiments with different methods are designed, including:

Method (1): Fourier Transform (FT) dictionary.
Method (2): Wavelet Transform (WT) dictionary.
Method (3): Waveform Matching (WM) dictionary.
Method (4): DFRFT dictionary.

Method (1) was constructed with reference to [26], method (2) was constructed 
with reference to [27], and in method (3), the intervals [0  MHz, 500  MHz] and 
[− 500 MHz/us, 0 MHz/us] to which parameters f and k belong are divided into 50 
parts, respectively, to obtain a waveform matching dictionary library with the size of 
50× 50 . Method (4) constructs the sparse representation dictionary with the opti-
mal transformation order. The sparse representation results and the descending coef-
ficient arrangement of simulation signal 1 under different dictionaries are shown in 
Fig. 5, and the results of simulation signal 2 are shown in Fig. 6.

In Figs. 5 and 6, the results obtained by method (1) show poor sparsity, the attenua-
tion speed of coefficients sorted by amplitude is slow, and the compressibility effect of 
the signal under this dictionary is poor; The fuzzy phenomenon occurs in the results 
obtained by using method (2) because the resolution ability of the WT dictionary is 
poor in the low-frequency part. Compared with method (1), the attenuation speed of 

Table 1 Parameters of simulation signal

Signal K Ai fi (MHz) k  (MHz/us) T  
(us)

Signal 1 1 1 250 − 300 1

Signal 2 4 1 [100 200 300 400] − 300 1

Fig. 4 Simulation signal. a Signal 1; b Signal 2
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coefficients in descending order of amplitude is improved, but the compressibility is still 
limited. The sparse representation effect of method (3) is significantly improved, and the 
attenuation speed of the coefficient amplitude is obviously accelerated but still inferior 
to method (4). In summary, the sparse representation effect of signals under different 
dictionaries can be ranked as follows: Method (4) > Method (3) > Method (2) > Method 
(1); From the perspective of coefficient decay speed, the rapid decline of the sparse rep-
resentation coefficient of the DFRFT dictionary is obviously faster than that of other dic-
tionary methods, and the sparse representation effect and compressibility of the signal 
are better when the DFRFT dictionary is used.

3.3  Anti‑noise analysis

Gaussian white noise is added to the simulation signal to replicate the complex battle-
field environment and test the DFRFT dictionary’s anti-noise performance. Because 
methods (1) and (2) have poor sparse representation effects, only methods (3) and (4) 

Fig. 5 Sparse representation of signal 1. a Sparse representation, FT; b sparse representation, WT; c sparse 
representation, WM; d sparse representation, DFRFT; e sparsity coefficient, FT; f sparsity coefficient, WT; g 
sparsity coefficient, WM; h sparsity coefficient, DFRFT

Fig. 6 Sparse representation of signal 2. a Sparse representation, FT; b sparse representation, WT; c sparse 
representation, WM; d sparse representation, DFRFT; e sparsity coefficient, FT; f sparsity coefficient, WT; g 
sparsity coefficient, WM; h sparsity coefficient, DFRFT
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are compared for their anti-noise performances. Because the proposed method (4) is 
noise immune, only the case of a − 10 dB condition is examined. Method (3) analyzes 
the cases of − 5 dB and 0 dB, respectively, and the results are shown in Fig. 7.

Figure 7a and b shows that, despite having the signal-to-noise ratio (SNR) of − 10 dB, 
the DFRFT dictionary still has good sparse representation results, indicating its strong 
anti-noise ability. The MW dictionary results in Fig.  7c–f. When SNR is −  5  dB, the 
sparse representation coefficients of signals in Fig. 7c and d are severely interfered with 
by noise and cannot be used to estimate signal parameters. When SNR is 0  dB, the 

Fig. 7 Anti-noise performance analysis. a DFRFT with − 10 dB, K = 1; b DFRFT with − 10 dB, K = 4; c MW with 
− 5 dB, K = 1; d MW with − 5 dB, K = 4; e MW with 0 dB, K = 1; f MW with 0 dB, K = 1
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atomic sequence corresponding to the signal sparse representation coefficient can still 
be seen. In general, the anti-noise performance of the DFRFT dictionary is obviously 
better than that of the WM dictionary.

3.4  Restricted isometry property (RIP) analysis

According to the literature [34], the compressed observation performance of the 
observation matrix or perception matrix may be assessed using the RIP characteris-
tics, and the better the compressed observation performance, the higher the recon-
struction accuracy of the recovered signal. For any signal x with sparsity k, if there 
is a minimum constant δk ∈ (0, 1) such that the matrix D satisfies Eq. (20). Then, the 
matrix D is satisfied with RIP.

where δk denotes the Restricted Isometry Constraints (RIC).
The RIP of the measurement matrix � in this paper has been proven in Ref [18], and 

for the perceptual matrix A, the smaller the correlation between the measurement 
matrix and the sparse dictionary, the better the compressed observation performance. 
The compressive observation performance of the perceptual matrix is assessed using the 
correlation coefficients between its column vectors. The maximum correlation coeffi-
cient is calculated as:

The average correlation coefficient is calculated as:

where ai is the column vector of A, n is the number of columns of A.
For the four different sparse dictionaries used in this paper, the results of the repre-

sentation of the correlation coefficients of their corresponding perceptual matrices are 
shown in Table 2. The results in Table 2 show that the proposed method has the small-
est correlation coefficient compared to other methods. A1, A2, A3, A4 are the percep-
tual matrices obtained by multiplying four different dictionaries with the measurement 
matrix, respectively.

(20)(1− δk)�x�
2
2 ≤ �Dx� ≤ (1+ δk)�x�

2
2

(21)µmax(A) = max
1�i,j�n,i �=j

(
aTi aj

)

(22)µav =
1

n(n− 1)

n∑

1�i,j�k ,i �=j

(aTi aj)

Table 2 Correlation coefficients of different methods

Bold values indicate the best performance among the different methods

Perception matrix μmax μav

A1 (Method 1) 0.2620 0.1720

A2 (Method 2) 0.2471 0.0622

A3 (Method 3) 0.2456 0.0319

A4 (Method 4) 0.2351 0.0231
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3.5  Algorithm complexity

Assuming N samples of the LFM signal, the total number of complex multiplications of 
the method (1) is approximately O(N2), and the computational complexity of the method 
(2) is approximately O(Nlog(N)). The computational complexity of our proposed method 
is O(2N2), according to Eq.  (14). When considering the WM dictionary construction 
process, the complexity of method (3) is irrelevant to the signal dimension but related 
to the division accuracy of the signal interval. Assuming that the signal frequency inter-
val is divided into L parts and the computational complexity of the method (3) is O(L2), 
Table 3 displays the algorithm complexity.

According to Table 3, the complexity of the proposed method is on par with that of 
other methods, but it performs significantly better than other methods in terms of the 
sparse representation effect, noise immunity, and compressed observation performance.

Figure 8 presents a comparison of the construction time for different dictionaries 
under various signal dimensions. From the graph, it can be observed that the con-
struction time of the FT dictionary and DFRFT dictionary increases linearly with 
the signal dimension. Additionally, the construction time of the DFRFT dictionary is 
approximately twice that of the FT dictionary. On the other hand, the WT dictionary 
exhibits a gradually stabilizing construction time as the signal dimension increases, 
highlighting its advantage for high-dimensional signals. However, it is evident that 
the WT dictionary is not the optimal strategy for low-dimensional signals obtained 
through compressed sampling. In contrast, the construction time of the WM dic-
tionary is unrelated to the signal dimension, as it is determined by the construction 
method of the WM dictionary. The more intervals used in the dictionary construc-
tion process, the longer the construction time. Nevertheless, in most cases, the num-
ber of intervals in the WM dictionary is less than the signal dimension. Therefore, in 

Table 3 Algorithm complexity

Algorithm Complexity

Method (1) O(N2)

Method (2) O(N log(N))

Method (3) O(L2)

Method (4) O(2N2)

Fig. 8 Comparison of time consumption
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terms of construction time, the waveform matching dictionary demonstrates higher 
construction efficiency. Consequently, when facing the parameter estimation problem 
of linear frequency modulation signals under known prior information, the waveform 
matching dictionary proves to be more time-efficient than the DFRFT dictionary.

4  Parameter estimation based on RD system
It is required to first ascertain the value of R for various LFM signals and then use 
the reconstruction error as the criterion to assess the validity of compressed sam-
pling data because varied sampling rates (R) will have an impact on the compression 
sampling effect of RD systems. Signal reconstruction is deemed successful and the R 
value is valid when E ≤ 0.1 . The following is the definition of the reconstruction error 
equation:

where x̂(t) is reconstructed signal, �·�2 is L2 norm.
The recovery algorithm is used to recover the compressed sampling data with different 

R values, and the relationship between R and signal reconstruction success probability is 
shown in Fig. 8.

Figure 9 shows that for R = 40, the signal reconstruction effect is guaranteed, showing 
that the compressed sampling data is effective. The simulation signal is sampled using 
the RD compression sampling technique, and the compression sampling is presented in 
Table  4. Table  4 shows that the RD system can perform signal compression sampling 
with a lower sample frequency and sampling locations.

After obtaining the compressed sampling data, create DFRFT dictionaries of differ-
ent orders by dividing the order p equally in the interval [0, 2) in steps of 0.01, creat-
ing 200 DFRFT dictionaries corresponding to different orders p, and then recovering 
the compressed sampling data in conjunction with the reconstruction algorithm to 
obtain the sparse representation coefficients corresponding to different DFRFT dic-
tionaries. Figure 10 depicts the two-dimensional distribution.

(23)E =

∥∥x̂(t)− x(t)
∥∥
2

�x(t)�2

Fig. 9 Reconstruction probability



Page 17 of 24Meng et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:93  

Search the peak position of |rFR(p,u)| in the graph to get ( ̂popt , ûopt).We compare 
the QPSO algorithm with the GA-PSO algorithm, the PSO algorithm, the 2-DS algo-
rithm, and the swarm optimization (PSO) algorithm. In the experiment, the starting 
population size of PSO, GA-PSO, and QPSO is set to 50, the maximum number of 
iterations is 30, and the particle swarm position is initialized at random on the (p, u) 
plane. The step size of the two-dimensional search technique is also set to 0.01. Equa-
tion  (19) represents the fitness function, and Fig. 11 depicts the algorithm’s conver-
gence phase. Tables 5 and 6 respectively display the parameter estimation results for 
single-component and multi-component signals.

From the convergence process in Fig. 11, it is obvious that the QPSO algorithm is 
superior to other algorithms in terms of convergence speed and convergence accu-
racy. After the PSO algorithm converges to a certain extent, the convergence accuracy 
cannot be improved, and it is trapped in a local optimal solution and cannot further 
converge. Compared with PSO algorithm, GA-PSO algorithm has improved in con-
vergence speed and convergence precision, but its complexity is higher than QPSO 
algorithm, which affects the convergence speed.

In Tables 5 and 6, although the direct search algorithm ensures the search accuracy 
within the step size range, its operation time is much longer than that of other algo-
rithms. The calculation efficiency of the PSO algorithm has been greatly improved, 
but the existence of local optimization problems has affected the accuracy of param-
eter estimation. The GA-PSO algorithm has been improved, but the increase in algo-
rithm complexity leads to its operation taking longer than the QPSO algorithm.

To validate the effectiveness of the proposed method in this paper, a comparative 
experimental analysis was conducted using the simulated signals generated in this sec-
tion. Three different comparative methods were employed during the experimental 
process:

Table 4 Compressed sampling of RD system

Bold values indicate the best performance among the different methods

Signal Sampling method Sampling frequency 
(MHz)

Sampling points Compression 
ratio

Signal 1 Nyquist 1000 1000 –

RD 40 40 15: 1
Signal 2 Nyquist 1000 1000 –

RD 40 40 15: 1

Fig. 10 The |rFR(p, u)| of simulation signal. a Signal 1; b Signal 2
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Fig. 11 Iterative process

Table 5 Estimated parameters of signal

Bold values indicate the best performance among the different methods

Methods ( p̂opt , ûopt) ( k̂ ,f̂c) Error ( ̂k ) Error ( ̂fc) Operation time/s

QPSO (0.81, 595) (307.8, 255.3) 0.026 0.021 10.23
GA-PSO (0.81, 595) (307.8, 255.3) 0.026 0.021 20.33

PSO (0.79, 590) (323.9, 264.7) 0.080 0.059 50.76

2-DS (0.81, 595) (307.8, 255.3) 0.026 0.021 264

Table 6 Estimated parameters of signal 2

Bold values indicate the best performance among the different methods

Methods ( p̂opt , ûopt) ( k̂  , f̂c) Error ( ̂k ) Error ( ̂fc) Operation time/s

QPSO (0.81, 454) (− 307.8, 102.9) 0.026 0.029 12.23
(0.81, 549) (− 307.8, 204.5) 0.025
(0.81, 645) (− 307.8, 305.1) 0.017
(0.81, 738) (− 307.8, 407.7) 0.019

GA-PSO (0.81, 454) (− 307.8, 102.9) 0.026 0.029 24.33

(0.81, 549) (− 307.8, 204.5) 0.025

(0.81, 645) (− 307.8, 305.1) 0.017

(0.81, 738) (− 307.8, 407.7) 0.019

PSO (0.79, 443) (− 323.9,109.3) 0.080 0.093 74.33

(0.79, 545) (− 323.9, 217.5) 0.088

(0.79, 641) (− 323.9, 329.2) 0.097

(0.79, 729) (− 323.9, 438.5) 0.096

2-DS (0.81, 454) (− 307.8, 102.9) 0.026 0.029 684

(0.81, 549) (− 307.8, 204.5) 0.025

(0.81, 645) (− 307.8, 305.1) 0.017

(0.81, 738) (− 307.8, 407.7) 0.019
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(1) The method proposed in this paper: DFRFT.
(2) Waveform matching dictionary: MW [35].
(3) Sparse discrete fractional Fourier transform: SDFrFT [36].
(4) Optimized sparse fractional Fourier transform: OSFrFT [37].

The latter three methods were derived from the latest research achievements as docu-
mented in Refs [35–38]. They are considered cutting-edge in the field. The relative aver-
age error was adopted as the evaluation metric, and the parameter estimation errors 
of the four methods under different SNR conditions are depicted in Fig. 12. As shown 
in Fig. 12, as the SNR increases, the error in parameter estimation gradually decreases 
and reaches a plateau. However, in terms of the final parameter estimation results, the 
method proposed in this paper exhibits higher accuracy. However, in terms of efficiency 
in the actual operation process, SDFrFT and OSFrFT greatly simplify the complexity of 
dictionary construction, thus having higher computational efficiency.

5  Measured signal analysis
As seen in Fig.  13, the experiment uses the M9381A vector signal generator and the 
M9391A vector signal analyzer to create and gather LFM signals. The gathered data is 
then examined using Matlab R2018b.

Two single-component LFM signals were generated and collected in the experiment. 
Table 7 shows the signal parameter settings, and Fig. 14 shows the measured signal time 
domain waveform. First, the value of the RD system’s sampling rate R is discussed, and 
Fig. 15 depicts the relationship between the reconstruction error and R. Using the results 
of Fig.  15, the compression sampling parameters are set as shown in Table 8, and the 
RD compression sampling system is used to compress and sample the measured signal. 
The compressed sampling data is then recovered using the DFRFT dictionary and OMP 
algorithm to obtain the sparse representation coefficients r(p,u) of the measured signal. 
And Fig. 16 displays the |r(p,u)| distribution of signals 3 and 4.

In Table 8, compared with traditional Nyquist sampling, the RD system can complete 
the compression sampling of the measured signal with a higher compression rate, a 
lower sampling frequency, and fewer sampling points. It can be seen from Fig. 15 that 
the method proposed in this manuscript has a good sparse representation effect for the 
measured signal, and the parameter estimation result with a low error can be obtained 
by combining the QPSO algorithm.

Fig. 12 Parameter estimation errors of the four methods under different SNR. a Parameter estimation error of 
frequency slope. b Parameter estimation error of initial frequency
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By employing different parameter estimation methods from Sect.  4 to analyze the 
measured signals, the parameter estimation errors of each method are presented in 
Table 9.

Fig. 13 M9381A vector signal generator and M9391A vector signal analyzer

Table 7 Parameters of measured signal

Signal K Ai  (10–3) fi (GHz) B (MHz) T  (us)

Signal 3 1 2 1.3 100 20.41

Signal 4 2 1 [0.8 1.2] 120 17.08

Fig. 14 Measured signal. a Signal 3; b Signal 4

Fig. 15 The recovery error of measured signals with different R 
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According to the results presented in Table  9, it can be observed that the param-
eter estimation accuracies of the DFRFT, SDFrFT, and OSFrFT methods are remark-
ably close. However, the proposed method in this paper still exhibits the highest level 
of parameter estimation accuracy. Additionally, both the SDFrFT and OSFrFT methods 
demonstrate shorter dictionary construction time, with the OSFrFT dictionary con-
struction being the fastest. This might be attributed to the fact that while the SDFrFT 
and OSFrFT methods reduce the complexity of dictionary construction, they slightly 
compromise the accuracy of parameter estimation.

To further elucidate the efficacy of LFM signals parameter estimation, this study incor-
porates a comparative analysis of recovery errors. By employing the estimated param-
eter information and Eq. (3), which governs LFM signals, the restoration of LFM signals 
is accomplished. The reconstructed LFM signals are subsequently juxtaposed with the 

Table 8 Comparison for sampling and analysis

Bold values indicate the best performance among the different methods

Signal Sampling method Sampling 
frequency (MHz)

Sampling points Compression ratio

Signal 3 Nyquist 150 3061 –

RD 8 163 18.75:1
Signal 4 Nyquist 150 2562 –

RD 10 171 15: 1

Fig. 16 The |r(p, u)| of measured signal. a Signal 3; b Signal 4

Table 9 Analysis of measured signals using various parameter estimation algorithms

Bold values indicate the best performance among the different methods

Signal Algorithm
Error: ke =

K∑

i=1

ki,e Error: fe =
K∑

i=1

fi,e
Time/s

Signal 3 RD + DFRFT 0.029 0.024 10.51

RD + SDFrFT 0.031 0.033 8.33

RD + OSFrFT 0.034 0.027 6.97
RD + WM 0.045 0.051 9.39

Signal 4 RD + DFRFT 0.059 0.053 12.65

RD + SDFrFT 0.059 0.057 10.44

RD + OSFrFT 0.063 0.054 9.31
RD + WM 0.087 0.099 12.22
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original ones, as depicted in Fig. 17, showcasing the outcomes of the proposed method. 
Observing the results shown in Fig.  17, it can be seen that the proposed method has 
basically achieved signal reconstruction.

Conducted comparative experiments with different methods. The reconstruction 
errors for Signal 3 and Signal 4, obtained using the four aforementioned methods, are 
depicted in Fig. 18. It can be observed from the figure that the proposed method in this 
paper exhibits the highest level of reconstruction accuracy. The reconstruction accuracy 
of the MW dictionary method is the poorest, while the reconstruction accuracy of the 
SDFrFT and OSFrFT dictionary methods is comparable to that of the proposed method.

6  Conclusion
To solve the parameter estimation problem of the LFM signal without reconstructing the 
original LFM signal, a method combining RD compression sampling and DFRFT diction-
ary is proposed in this manuscript. The validity of the compressed sampling data is ensured 
during the compression sampling stage by determining the value of the sampling rate R. 
The compressed sampled data are then analyzed by constructing the DFRFT dictionary 
and combining it with the recovery algorithm and the parameter optimization algorithm, 
and the parameters of the original signal are estimated directly using the compressed sam-
pled data. The correlation between compressed sampling data and signal parameters can 
be established based on the construction principle of the DFRFT dictionary, which pro-
vides a theoretical basis for directly estimating LFM signal parameters using compressed 
sampling data. The experimental results show that the proposed method has good sparse 

Fig. 17 Recovery error analysis

Fig. 18 The recovery errors of different methods
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representation and anti-noise performance and can ensure good accuracy in parameter 
estimation of LFM signals.

However, compared to some improved SDFrFT and OSFrFT sparse dictionary construc-
tion methods, although the proposed method has high parameter estimation accuracy, 
there is still room for improvement in reducing dictionary complexity and improving oper-
ational efficiency.
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