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Abstract 

In complex industrial environments such as the Internet of Things in coal mines, large 
mechanical and electrical equipment can generate powerful impulsive noise, which 
can cause sudden errors. Because it is difficult to establish an accurate channel model, 
the performance of current error control techniques is limited. To enhance the reli-
ability of information recovery in the Internet of Things in coal mines, the traditional 
method of shortening the communication distance between sensors is often utilized, 
but this can be costly. Therefore, this article proposes an intelligent signal processing 
method against impulsive noise interference that draws on the concept of the Artificial 
Intelligence of Things (AIoT) and incorporates deep learning technology. This method 
replaces the traditional sensor signal processing module with a Convolutional Neural 
Network (CNN), which learns the intricate mapping relationship between transmitted 
information and sensor signals in impulsive noise environments. Simulation results 
demonstrate that the proposed method outperforms the traditional sensor signal 
processing method in three impulsive noise environments by achieving a lower Bit 
Error Rate (BER). Moreover, this method adopts an improved lightweight neural net-
work, which is more conducive to the deployment of mobile terminals in the Internet 
of Things.
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1 Introduction
The communication scenario of the industrial Internet of Things is often accompanied 
by the start and stop of large mechanical and electrical equipment, and these instantane-
ous changes in the electromagnetic field will produce pulse noise. Pulse noise exists in 
the fields of power Internet of Things, smart manufacturing plants, and underground 
communications. Coal mine Internet of Things is a typical industrial Internet of Things 
[1]. In coal mines IoT, strong pulse noise will reduce the reliability of sensor signal 
recovery [2]. Traditional methods usually rely on shortening the communication dis-
tance between sensors or adopting channel coding techniques to combat noise, thereby 
improving the reliability of signal transmission. However, in the complex coal mine envi-
ronment, the complexity of channel models limits the performance of existing channel 
coding methods. Error control methods such as automatic retransmission are also dif-
ficult to meet the requirements of low-delay communication in coal mine Internet of 
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Things [3–5]. Therefore, this paper presents an intelligent signal-processing method to 
resist pulse noise interference. This method draws on some achievements of deep learn-
ing in the field of computer vision [6–8], such as channel estimation [9, 10], modulation 
recognition [11, 12], channel decoding [13, 14], and cognitive network [15]. These meth-
ods are expected to solve the problems in the traditional sensor signal recovery process, 
thus further improving the reliability of the coal mine Internet of Things.

Therefore, to effectively solve the problem of pulse noise in coal mine IoT environ-
ments and other industrial IoT environments, this paper proposes an intelligent signal 
processing method based on deep learning to effectively suppress pulse noise interfer-
ence in industrial IoT environments. This method can better reduce the interference of 
pulse noise to communication performance, to effectively improve the reliability of com-
munication signals. This method opens up a new way to solve the problem of pulse noise 
in a similar environment.

1.1  Related work

The traditional sensor signal processing for impulsive noise suppression is mainly car-
ried out from two aspects.

The first aspect is to use the assistance of prior knowledge to identify and get rid of 
the impulsive part of the channel noise. Ni et al. [16] proposed a method of setting peri-
odic impulsive noise beyond a certain threshold to zero. Zhidkov et al. [17] proposed a 
method to detect and eliminate impulsive noise in the Orthogonal Frequency Division 
Multiplexing (OFDM) communication system. The ideal impulsive detection threshold 
selection criteria are investigated in this method. However, it is difficult to obtain accu-
rately in the actual communication system, such as statistical noise parameters, average 
noise power, or the peak value of each OFDM transmission symbol. Therefore, the per-
formance of the proposed method is severely degraded when prior knowledge is lacking.

The second aspect is to eliminate impulsive noise without prior knowledge. Sparse 
Bayesian learning was proposed by Lin et al. [18] as a technique to estimate and mini-
mize the impact of asynchronous or periodic impulsive noise. ANDREADOU et  al. 
[19] proposed a method of cascading Luby Transform (LT) code and Low-density 
Parity-check (LDPC) code, which uses the rate-free coding feature of external LT code 
to discard the data packets seriously affected by impulsive noise components in the 
transmission process and complete the decoding. It needs to pay the cost of additional 
overhead, such as the need for the empty carrier and pilot information in the OFDM 
transmission system or a large amount of redundancy needed to recover the packets 
affected by the impulsive noise component.

Therefore, this article proposes an intelligent signal processing method against impul-
sive noise interference in AIoT. After learning the depth characteristics of sensor sig-
nals in an impulsive noise environment, this method uses the CNN model to replace the 
overall modular signal processing of sensors to achieve reliable recovery of the Internet 
of Things in coal mines.

1.2  Contributions and structure of the article

This article’s key contributions are as follows: 
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1. This article proposes an intelligent signal processing method against impulsive noise 
interference in AIoT. This method eliminates the need for prior knowledge, can 
adapt to various non-ideal environments, and directly learns relevant features from 
the received signals for information recovery, regardless of the theoretical assump-
tions of each signal processing module, which can improve the reliability of the Inter-
net of Things in coal mines communication.

2. This article designs a lightweight neural network structure that is designed to be low 
in complexity, high in performance, and requires low parameters, to serve as the 
implementation architecture for intelligent signal processing methods against impul-
sive noise interference. Our method has reduced complexity and computation, mak-
ing it easier to deploy on sensor terminals. The remainder of this article is structured 
as follows. Section II illustrates the three kinds of impulsive noise mathematical 
models, the Multiple-Input Multiple-Output (MIMO) receiver model, Reed-Solo-
mon (RS) code technology, and interleaving technology. The intelligent signal pro-
cessing method against impulsive noise interference in AIoT is presented in Section 
III. Simulations are conducted and analyzed in Section IV. Finally, Section V brings 
this article to a close.

2  Preliminaries
2.1  Mathematical model of impulsive noise

Impulse noise is a kind of signal with strong randomness, usually manifested as a short, 
high-amplitude burst signal, which may cause interference to electronic equipment and 
communication systems.

2.1.1  Bernoulli Gaussian model

Bernoulli Gaussian impulsive noise model [20, 21] is generally expressed as:

where rk and wk are independent Gaussian white noise sequences, q(k) is Bernoulli 0, 1 
sequence, and p represents the occurrence probability of burst noise.

Figure  1 shows an example of the Bernoulli Gaussian impulsive noise. The Bernoulli 
Gaussian model is used to simulate some pulse disturbances such as lightning strikes, burst 
interference, and radio frequency interference.

2.1.2  Middleton class‑A model

Middleton class-A model is a kind of non-Gaussian narrowband noise model. The super-
position of independent impulsive and Gaussian components results in Middleton class-
A noise [22–24]. The model can be considered the weighted sum of an unlimited number 
of Gaussian noises, and the weight assigned to each term increases as the variance of the 
Gaussian noise increases. The Probability Density Function (PDF) of the Middleton class-A 
model is:

(1)fk = q(k) ∗ rk + wk ,

(2)p(x) = e−A
∞

m=1

Am

m! 2πδ2m
e
− |x|2

2δ2m ,
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where A is the impulsive factor, representing the amount of impact of impulsive noise on 
the system in a specific time range, and Ŵ is the power ratio between impulsive noise and 
Gaussian noise, δ2G represents the variance of Additive White Gaussian Noise (AWGN), 
and δ2I  represents the variance of impulsive noise. The impulsivity of the model is 
improved when A < 1 ; otherwise, the white Gaussian noise of the model is enhanced. 
Middleton class-A model is used when the communication system has bias noise caused 
by nonlinear distortion.

2.1.3  α‑stable distribution model

The α-stable distribution is a very flexible model [25, 26], mainly attributed to its char-
acteristic exponent α . α can be used to control the thickness of the tail of the PDF. When 
the value of α is smaller, the spike impulsive in the corresponding signal noise is stronger, 
the closer α is to 2, the closer it is to the Gaussian characteristic. Except for a few excep-
tional cases, the probability density function of the α-stable distribution has no specific 
expression and is usually characterized by its characteristic function. The typical func-
tion of random variable u related to an α-stable distribution is defined as follows:

(3)δ2m =
δ2
(

m
A + Ŵ

)

1+ Ŵ
,

(4)Ŵ =
δ2G

δ2I
,

(5)δ2 = δ2G + δ2I ,

(6)φ(u) = exp
{

jδu− |γu|a[1+ jβsgn(u)ω(u, a)]
}

,

Fig. 1 Bernoulli Gaussian model impulsive noise
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where 0 < α ≤ 2 , γ ≥ 0 , −1 ≤ β ≤ 1.
Four basic parameters describe the main characteristics of the α-stable distribution. 

The characteristic index α determines the trailing thickness of the PDF. The deflection 
parameter β is a measure of the degree of distribution symmetry. When β = 0 , the dis-
tribution is symmetric. When β < 0 , the distribution is right-skewed. If β > 0 , the dis-
tribution is left-skewed. The scale parameter γ indicates how discrete the distribution is 
from the mean, like the variance of a Gaussian distribution. The location parameter δ is 
similar to the mean in a Gaussian distribution and represents the location of the distri-
bution [27].

According to the findings illustrated in Fig. 2, when α is 2, the more similar the noise 
type is to the Gaussian white noise model, when the value of α is smaller, impulsive char-
acteristics are more obvious. The α-stable distribution model mainly used in the need to 
consider the impact of extreme events and heavy tail distribution of noise.

2.2  Coding and interleaving technology

2.2.1  RS code

The RS code is a high-performance linear error-correcting code [28] that can cor-
rect random and burst errors. The basic idea of the RS coding algorithm is to choose 

(7)sgn(u) =







1,u > 0
0,u = 0
−1,u < 0

,

(8)ω(u,α) =

{

tan(πα/2),α �= 1
(2/π) log |u|,α = 1

,

Fig. 2 α-steady distribution with different characteristic exponents
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a suitable generating polynomial g(x) such that the codeword polynomial computed 
for each information domain is a multiple of g(x). RS coding technology and interleav-
ing technology can reduce the impact of burst errors on communication performance. 
Therefore, this article uses RS encoding in traditional sensor signal processing modules 
to reduce the impact of impulsive noise on sensor signal recovery.

2.2.2  Interleaving technology

The interleaving technology can solve long burst errors without adding additional redun-
dancy. The interleaving technology mainly focuses on increasing concentrated mistakes’ 
dispersion during channel transmission without altering the information’s content. The 
interleaved permutates symbols according to the map, and the corresponding deinter-
leaving technology uses the inverse map to recover the original symbol sequence. The 
commonly used interleaving methods include grouping interleaving, convolution inter-
leaving, and random interleaving. In this article, grouping interleaving is adopted. Inter-
leaving technology combined with RS coding in this article can better deal with sudden 
errors and enhance the performance of sensor signal recovery.

2.3  MIMO technology

In a MIMO system, multiple antennas simultaneously send and receive signals. The 
signals between these antennas interfere with each other and superimpose each other, 
resulting in more stable and efficient sensor communication. Assuming that the trans-
mitting antenna is Nt and the receiving antenna is Nr , then the channel matrix is 
Nr × Nt , and the MIMO communication model is:

In Equation (9), y represents the one-dimensional vector expression of the received sig-
nal of Nr × 1 , H represents the channel propagation matrix of Nr × Nt , and x represents 
the one-dimensional vector expression of the transmitted signal of Nt × 1 , and n repre-
sents the noise vector. The three noise models studied in this article are additive noise 
[29].

MIMO technology uses an orthogonal space time block coding module. This article 
selects the number of transmitting and receiving antennas as 2× 2 , 3× 3 , and 4 × 4 , 
respectively. The corresponding coding rates are 1, 1/2, and 1/2.

The coding matrix of two transmitting antennas is

and the coding rate is 1.
The coding matrix of three transmitting antennas is

and the coding rate is 1/2.

(9)y = Hx + n,

(10)H =

[

s1 s2
−s∗2 s∗1

]

,

(11)H =







s1 s2 0
−s∗2 s∗1 0
0 0 s1
0 0 − s∗2






,
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The coding matrix of four transmitting antennas is

and the coding rate is 1/2.

3  Proposed intelligent signal processing method
3.1  Intelligent signal processing methods against impulsive noise interference

Traditional sensor signal processing methods usually include the following modules, 
channel estimation, equalization, demodulation, and channel decoding [30, 31]. How-
ever, the interference of impulsive noise seriously affects the communication quality of 
the coal mine Internet of Things. Therefore, this part designs an intelligent signal pro-
cessing method against impulsive noise interference, as demonstrated in Fig. 3. In this 
article, the CNN model is used to replace all modules of sensor signal processing. The 
CNN module trains the complex mapping relationship between the transmitted infor-
mation sequence and the distorted signal received in the impulsive noise environment 
so that the original information can be reliably recovered under various non-ideal sensor 
communication conditions such as impulsive noise.

The input data of the intelligent signal processing method for sensors are the received 
distorted complex data S (IQ signal), and the input is defined as follows:

The output is the bit stream recovered by the intelligent signal processing method. In 
Equation (14), Ŝ is the output bit stream, and M represents the number of output bits.

3.2  The designed lightweight network model

Due to environmental restrictions, the battery in the Internet of Things in coal mines 
is consumed very fast and does not support complex network model calculation. Some 
excellent CNN models have more complicated network model structures and deeper 

(12)H =







s1 s2 0 0
−s∗2 s∗1 0 0
0 0 s1 s2
0 0 − s∗2 − s1






,

(13)Input =

[

Re(S)
Im(S)

]

.

(14)Ŝ =
[

Ŝ1, Ŝ2, . . . , ŜM

]T
.

Fig. 3 Intelligent signal processing method against impulsive noise interference system
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network model structures, which are unsuitable for sensor terminal deployment. Based 
on the actual situation, the neural network is optimized in this paper. Therefore, to make 
the designed intelligent signal processing method more applicable to the actual situa-
tion, this paper designs a lightweight network model and uses the core module of the 
MobileNetV2 model [32].

Based on the module structure diagram in Fig. 4, it is clear that the input data will first 
map the low dimension to the high dimension through the 1× 1 “Expansion” layer, then 
use the 3× 3 “Depthwise Convolution”. The output is mapped from a high dimension to 
a low dimension through a 1× 1 “Projection” layer. This is the classical reverse residual 
structure in MobileNetV2. In this architecture, the “Expansion” layer expands dimen-
sions, the “Depthwise Convolution” layer extracts data features, and the “Projection” is 
to compress the input to make the network have a smaller model structure [33, 34].

To enhance the extraction of features from the dataset of communication signal trans-
mitters discussed in this article, we have made improvements to the MobileNetV2 neu-
ral network.

As shown in Fig. 5, a shallow-level feature extraction layer is designed based on the 
core modules of MobileNetV2. The shallow-level extraction module effectively captures 
relevant features of the distorted sensor signals. It consists of three one-dimensional 
convolution modules, and the activation function within each one-dimensional convolu-
tion module is Clipped ReLU. Using this function helps confine the output range of the 
activation function, preventing gradient explosion issues. Additionally, it can lower the 
output of certain neurons in certain situations to avoid overfitting the model.

After passing through the shallow-level feature extraction stage, the data from the first 
stage are concatenated with the core MobileNetV2 model. After undergoing rigorous 
testing and validation, it has been established that the optimal performance of the net-
work is achieved when the core Backbone module consists of 13 Bneck blocks. The final 

Fig. 4 Residual block
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stage encompasses convolutional layers, global average pooling layers, fully connected 
layers, and a softmax layer. The convolutional layers are utilized to generate feature 
maps, while the global average pooling layer is employed to reduce the dimensions of 
these feature maps. The fully connected layer introduces higher-level abstract features 
after feature extraction, enabling finer-grained classification. The softmax layer trans-
forms the neural network’s outputs into a probability distribution. The softmax function 
ensures that the probabilities of all classes sum up to 1, facilitating the selection of the 
highest probability class as the ultimate prediction.

In this structural design, Conv represents the convolutional layer, BN represents a 
batch normalization layer, Fc represents a fully connected layer, and n is the number of 
repetitions of the Bneck block.

3.3  Training algorithms

The optimization algorithm we adopted is Stochastic Gradient Descent with Momentum 
(SGDM) [35]. Its iterative updating process follows:

where m represents the momentum factor, ε represents the learning rate, and W repre-
sents the updated parameter.

In this article, the cross-entropy loss function is:

(15)VdW = mVdW + (1−m)dW ,

(16)W = W − εVdW ,

(17)loss = −
1

NB

NB
∑

n=1

K
∑

i=1

Tni log (Yni),

Fig. 5 The structure of the designed lightweight network
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where NB denotes the number of samples in a mini-batch, K is the numbers of classes, 
Tni denotes the real label on the ith class of the nth sample. Lni is the output probability 
of the ith class of the nth sample.

Algorithm 1 details the training algorithm of the intelligent signal processing method 
against impulsive noise interference in AIoT.

4  Simulation settings and performance analysis
4.1  Parameter setting

4.1.1  Simulation settings for datasets

In the whole process of modeling the intelligent signal processing method for the sensor, 
MATLAB simulation software is used. Under different impulsive noise environments, 
the sensor signal adopts MIMO technology, the modulation technology adopts Binary 
Phase Shift Keying (BPSK) and Quaternary Phase Shift Keying (QPSK), the channel cod-
ing is RS code, and the interleaved technology is adopted. Table 1 displays the simulation 
parameter settings.

4.1.2  Simulation settings for CNN

The network adopts SGDM with a momentum factor of 0.9. During the network model 
training, the mini-batch is 256 and the number of epochs is 20. After each two epochs, 
the learning rate is reduced to 0.1 of the previous learning rate. The training dataset is 
40,000, the verification dataset is 20000, and the test dataset is 20000. The dataset of 
the training model is shuffled in every loop to prevent overfitting. The following Table 2 
shows the parameter Settings of the neural network.

Table 1 Simulation parameter setting

Parameter Setting

Number of transmit antennas 2, 3, 4

Number of received antennas 2, 3, 4

Channel coding RS code

Modulation BPSK, QPSK

Channel noise model Three impulsive noises

Input information bits 12 bits

SNR (0-8) dB
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4.2  Performance analysis

4.2.1  Performance analysis under three impulsive noise models

We consider the effect of three noise models on the dependability of the intelligent 
signal processing method against impulsive noise interference. We discuss the BER 
performance of the intelligent signal processing method in the ideal channel and fad-
ing channel. BPSK and QPSK are the modulation modes employed at the transmitter, 
and the channel coding is (7,4) RS code. Space-time block coding with two transmit-
ting antennas and two receiving antennas is applied. The traditional signal processing 
method adopts interleaving technology to reduce the impact of impulsive noise on com-
munication performance. For the convenience of illustration, ISPM represents the intel-
ligent signal processing method and TSPM represents the traditional signal processing 
method.

First, under the Bernoulli Gaussian noise model, we investigate the influence of vari-
ous channel conditions on the dependability of intelligent signal processing methods for 
sensors.

As illustrated in Fig. 6, the performance of the traditional signal processing method for 
sensors is inferior to that of the intelligent signal processing method under the Bernoulli 
Gaussian impulsive noise model in both the ideal channel and the fading channel. The 
BER of the intelligent signal processing method in the ideal channel with BPSK modula-
tion has reached 2.084 × 10−5 when Eb/N0 is 6 dB, and it reaches 0 when Eb/N0 is 7 dB. 
When Eb/N0 is 7 dB with the same modulation, the BER of an intelligent signal process-
ing method in a fading channel has reached 1.642× 10−5 . Among them, the intelligent 
signal processing method in BPSK modulation has more obvious advantages than the 
intelligent signal processing method in QPSK modulation. Although the BER perfor-
mance of the fading channel is not as good as that of the ideal channel, the intelligent 
signal processing method performs better in terms of BER than the traditional signal 
processing method.

Second, the reliability of the intelligent signal processing method under the Middle-
ton class-A noise model is considered. Figure 7 shows the BER performance comparison 
between the intelligent signal processing method and the traditional signal processing 
method under the Middleton class-A noise model in the ideal channel and the fading 
channel.

Table 2 Neural network parameter setting

Parameter Setting

Training dataset 40000

Validation dataset 20000

Test dataset 20000

Network model Designed model

Optimizer SGDM

Momentum factor 0.9

Initial learning rate 0.01

Learning rate 0.1

Mini-batch 256

Epoch 20
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In Fig. 7, the BER of the intelligent signal processing method adopting BPSK modu-
lation in the ideal channel has reached 2.085× 10−5 when Eb/N0 is 6 dB, and it has 
reached 0 when Eb/N0 is 7 dB. Using the same modulation, the BER of the intelligent 
signal processing method in the fading channel has reached 8.412× 10−5 when Eb/N0 
is 7 dB.

Fig. 6 BER for 2× 2 MIMO systems (Bernoulli Gaussian model)

Fig. 7 BER for 2× 2 MIMO systems (Middleton class-A model)
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Third, the reliability of the method for the intelligent signal processing method for 
sensors under the α-stable distribution noise model is then discussed. Figure 8 shows 
the BER performance comparison between the intelligent signal processing method 
and the traditional signal processing method under the α-stable distribution noise 
model with an ideal channel and fading channel.

As shown in Fig. 8, the intelligent signal processing methods perform better than 
traditional signal processing methods in both ideal and fading channels. The intel-
ligent signal processing method’s BER with BPSK modulation in the ideal channel has 
reached 5.417× 10−5 when Eb/N0 is 6 dB, and it reaches 0 at 7 dB. The intelligent 
signal processing method’s BER in the fading channel has reached 2.524 × 10−4 when 
Eb/N0 is 6 dB, which shows the benefits of an intelligent signal processing method in 
improving the reliability of sensor signal processing.

In summary, the simulation results of the Bernoulli–Gaussian noise model, Mid-
dleton class-A model, and α-steady distributed noise model show that the proposed 
method can suppress impulsive noise well. In three different types of impulsive noise 
environments, the proposed intelligent signal processing method outperforms the 
traditional signal processing method in terms of BER performance.

4.2.2  Performance analysis under the network model

In this part, we analyze the influence of the designed lightweight network and the 
MobileNetV2 network on the reliability of the intelligent signal processing method. 
Figure 9 shows the BER performance of the MobileNetV2 model, the designed light-
weight model, and the traditional signal processing method. The 2× 2 MIMO sys-
tem and Middleton class-A model impulsive noise model were used for simulation 
experiments.

Fig. 8 BER for 2× 2 MIMO systems ( α-stable distribution model)
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Figure 9 shows the BER performance comparison of two lightweight network mod-
els under the ideal channel and the fading channel. It can be seen that all the intelli-
gent signal processing methods perform better than the traditional signal processing 
method, and the designed lightweight model in this article shows better reliability 
than the MobileNetV2 model. Therefore, the reliability of the designed lightweight 
model in this article is verified.

As shown in Fig. 9, in BPSK modulation under the fading channel, when Eb/N0 is 6 
dB, the BER of the designed lightweight model reaches 8.416× 10−5 , while the BER 
of the MobileNetV2 model reaches 1.245× 10−4 . In QPSK modulation under the fad-
ing channel, when Eb/N0 is 8 dB, the BER of the designed lightweight model reaches 
3.042× 10−4 , while the BER of the MobileNetV2 model reaches 4.117× 10−4 . Both 
BPSK modulation and QPSK modulation, the designed lightweight model have better 
performance than the MobileNetV2 model.

Next, we conducted a comparative analysis of the learnable parameters of two light-
weight network models. As shown in Table 3, the lightweight neural network designed 
in this article has 1.2 Mb of learnable parameters, which is 0.3 Mb less than that of the 
MobileNetV2 network. This further demonstrates the advantage of the lightweight 
network model proposed in this article.

Fig. 9 BER for different lightweight network models

Table 3 Model parameter comparison

Model Learnable 
parameters

Designed lightweight network 1.2 Mb

MobilenetV2 1.5 Mb
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In summary, we compare the designed lightweight network model with the Mobile-
NetV2 model and evaluate the influence of the designed model on the system reliability 
of the intelligent signal processing method. The results show that the designed model 
has a low BER and a lower number of parameters. It can be found that there is a certain 
gap in the performance of intelligent signal processing methods in different neural net-
work models. Therefore, to ensure the reliability of intelligent signal processing meth-
ods, it is very important to select a suitable network model and carry out a reasonable 
optimization design.

4.2.3  Performance analysis under different antenna numbers

We consider the result comparing the different numbers of transmitting and receiving 
antennas under the α-stable distribution noise model. Figures 10 and 11 show the result 
comparison of different numbers of transmitting and receiving antennas under BPSK 
modulation and QPSK modulation, respectively.

Regardless of whether BPSK or QPSK modulation is used, Figs.  10 and 11 demon-
strate that as the number of antennas increases, the performance of the MIMO sys-
tem will improve. In the intelligent signal processing method under BPSK modulation, 
when Eb/N0 is 4 dB, the BER of the 2× 2 MIMO system is 1.256× 10−5 , and the BER 
of the 3× 3 MIMO system is 1.375× 10−4 , and the BER of the 4 × 4 MIMO system is 
1.335× 10−5 . In the intelligent signal processing method under QPSK modulation, 
when Eb/N0 is 7 dB, the BER of the 2× 2 MIMO system is 1.842× 10−3 , and the BER 
of the 3× 3 MIMO system is 1.958× 10−4 , and the BER of the 4 × 4 MIMO system is 
2.235× 10−5 . According to the comparison of Figs. 10 and 11, under the α-stable dis-
tributed noise model, no matter BPSK modulation or QPSK modulation, the more 
antennas in the MIMO system, the more obvious the BER performance of the intelligent 

Fig. 10 BER of different antenna numbers under BPSK modulation ( α-stable distribution model)
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signal processing method. Experimental results demonstrate that, under the same chan-
nel conditions, increasing the number of MIMO antennas leads to lower bit error rates 
in the intelligent receiver system. One possible reason for this is that the gains brought 
about by MIMO multi-antenna technology enhance the performance of the intelligent 
receiver model.

As can be seen from Figs. 10 and 11, the BER performance of the intelligent signal pro-
cessing method is higher than that of the traditional signal processing method, regard-
less of the number of antennas. In addition, the BER performance of both intelligent 
signal processing methods and traditional signal processing methods will be improved 
with the gain of increasing the number of antennas in the MIMO system.

5  Conclusion
This article aims to solve the serious interference problem caused by pulse noise to the 
communication system in the industrial Internet of Things environment and takes the 
complex coal mine IoT communication scenario as an example, the research results can 
be extended to other industrial Internet of Things scenarios. By simulating the pulse 
noise model in the industrial Internet of Things, an intelligent signal processing method 
is proposed, which uses a deep learning module to extract the characteristics of distorted 
signals caused by pulse noise for information recovery, avoiding the dependence on tra-
ditional noise reduction methods on prior knowledge. In addition, a lightweight neu-
ral network model is designed to facilitate the deployment of sensor terminals. Finally, 
the effectiveness of the proposed method is verified by a large number of simulation 
experiments. In the future, how to deeply integrate the communication signal processing 
method of AIoT edge with cloud computing is a problem worthy of further study.

Fig. 11 BER of different antenna numbers under QPSK modulation ( α-stable distribution model)
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