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Abstract 

The manuscript proposes a fault diagnosis method based on graph neural network 
(GNN) with one-shot learning to effectively diagnose rolling bearings under variable 
operating conditions. In this proposed method, the convolutional neural network is uti-
lized for feature extraction, reducing loss in the process. Subsequently, GNN applies 
an adjacency matrix to generate codes for one-shot learning. Experimental verification 
is conducted using open data from Case Western Reserve University Rolling Bearing 
Data Center, where four different working conditions with six types of typical faults are 
selected as input signals. The classification accuracy of the proposed method reaches 
98.02%. To further validate its effectiveness, traditional single-learning neural networks 
such as Siamese, Matching Net, Prototypical Net and (Stacked Auto Encoder) SAE are 
introduced as comparisons. Simulation results that the proposed method outperforms 
all chosen methods.

Keywords: Deep learning, Fault diagnosis, Graph neural network, One-shot learning, 
Rotating machinery

1 Introduction
Rolling bearings, as critical components of wind turbines and various motors, often 
experience structural damage due to prolonged operation and harsh working conditions. 
Failure of these bearings can lead to significant losses and severe casualties (Mushtaq 
et al. 2021). Therefore, it is imperative to detect faults stably and accurately. Due to the 
complex and harsh working environment, the small fault data of the rolling bearing is 
difficult to observe directly. Consequently, accurately diagnosing rolling bearing faults 
has become a prominent research area in equipment fault prediction and maintenance 
management [13].

Rolling bearing fault diagnosis technology can be broadly categorized into two 
approaches: signal processing-based diagnosis technology and artificial intelligence-
aided pattern recognition-based diagnosis technology. Signal processing-based 
methods rely on domain expertise to extract fault components from initial noise sig-
nals using techniques such as short-time Fourier transform (STFT), wavelet packet 
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transform (WPT) [31], empirical wavelet transform (EWT) [38], Hilbert–Huang 
transform (HHT) [35], etc.

Training a substantial deep learning network from scratch requires a huge amount 
of labeled samples and time. Large-scale data can be trained to develop a classifier 
that can predict the data distribution, which is also called the large sample learning 
method. However, in the real-world operation environment, rolling bearing usually 
works in the normal state. Consequently, obtaining a substantial amount of labeled 
fault data is challenging [28]. By employing a meta-learning based few-shot learn-
ing approach, relational clustering is generated and nearest neighbor classification. 
Subsequently, classification predictions are produced, enabling the construction of a 
model that captures class differences limited number of data samples. As such, this 
paper utilizes the aforementioned method to address the challenge of working with 
small datasets and achieve higher accuracy in classification.

There are various types of meta-learning, such as neural network initialization 
parameters, feature spaces suitable for measuring data distances, neural network 
structures and network parameters, hyperparameters of models, optimizers of neu-
ral networks, etc. Few-shot learning is an application of meta-learning in the field 
of supervised learning. Algorithms based on meta-learning can be classified as the 
following: metric-based learning methods, model-based methods and optimization-
based methods. Among them, metric-based learning methods perform small-sample 
classification tasks by directly comparing feature metrics through a certain feature 
space. The GNN model in this paper is based on the metric learning approach to per-
form the task of small sample classification.

This paper applies the GNN with a one-shot learning method to the fault diagnosis 
of rolling bearings of rotating machinery devices in an innovative way. CWRU bearing 
data set is used as the experimental data set, and Siamese network [10, 32], matching 
network [3], prototype network [2], SAE [20]  and other traditional one-shot learning 
neural network models are selected for comparison. It is verified that the method has 
higher accuracy of fault diagnosis and stronger generalization ability, making its clas-
sification accuracy as high as 98.02%.

Below is a summary of the essential contributions of our work:

1. Utilizing a meta-learning based few-shot learning method to address the limited data 
in real working conditions and achieve higher accuracy in classification.

2. Employing a GNN model based on a metric learning approach for few-shot classifi-
cation tasks.

3. Innovatively applying the G a one-shot to fault diagnosis of rotating machinery 
devices’ rolling bearings.

The remaining sections of this paper are structured as follows. Section 2 presents 
an overview of related literature. Section  3 introduces the theoretical basis and the 
whole process of the proposed method. Section  4 evaluates the proposed approach 
through mechanical equipment fault diagnosis experiments. Section  5 provides 
results with a discussion of the case. Conclusions and future works for the work are 
drawn in Sect. 6.



Page 3 of 16Gao et al. EURASIP Journal on Advances in Signal Processing        (2023) 2023:101  

2  literature review
Compared to traditional fault diagnosis methods based on signal processing and anal-
ysis, an increasing number of researchers have applied deep learning to fault diagno-
sis, resulting in remarkable achievements. The utilization of deep learning partially 
reduces the reliance on prior knowledge, simplifies the signal processing procedure 
and enhances the accuracy of fault diagnosis.

Standard deep learning neural network models include deep belief networks 
(DBNs) [19], convolutional neural networks (CNNs) [1], SAE [14] and recurrent neu-
ral networks (RNNs) [27]. Shao et al. [25] used double-tree complex wavelet packet 
(DTCWPT) to extract the fault characteristics of the original vibration signal. They 
designed an adaptive depth confidence network for rolling bearing fault diagnosis. 
Good results have been achieved in this way. [17] introduced CNN into bearing fault 
diagnosis and carried out comparative tests, which proved that the proposed method 
is superior to the traditional support vector machine (SVM) that directly inputs sig-
nals into the classifier. This method has higher diagnostic accuracy. Ince et  al. [9] 
applied one-dimensional convolution neural network (1DCNN) to the early fault 
diagnosis of the motor. [33] proposed an end-to-end rolling bearing fault diagno-
sis model based on 1DCNN, which can achieve high-precision diagnosis in a noisy 
environment without using denoising pretreatment. [36] applied the combination of 
1DCNN and antagonism adaptive in the cross-domain fault diagnosis of rolling bear-
ings. [18] used the generic adversary network (GAN) to generate a small number of 
fault samples for unbalanced samples, input the synthesized samples into the fault 
diagnosis model of the stacked denoising auto encoder (SDAE), and achieve good 
results. Wang et al. [34] combined the denoising auto encoder (DAE) and GAN into 
gear fault diagnosis. The model has good anti-noise capability and good diagnostic 
performance. Shao et al. [23] used an automatic encoder to compress data and con-
structed a bearing fault diagnosis model based on a convolutional deep belief network 
(CDBN). [5] proposed a rolling bearing fault diagnosis method based on short-time 
Fourier transform and CNN. Experiments have verified that this method has high 
recognition accuracy for different types of faults. The above methods often need 
enough labeled samples to ensure the accuracy of fault diagnosis classification. Highly 
accurate diagnostic results are often not accurately obtained when faced with fault 
samples with small amounts of data.

In recent years, GNN [30] has been effective in processing data with rich relational 
structures but less data volume. GNN was first proposed by [22]. Its purpose is to estab-
lish a neural network based on graph theory for the data stored in the graph domain. 
GNN aggregates the characteristics of neighboring nodes through information trans-
mission between neighboring nodes, which can effectively represent the complex rela-
tionship between data. Therefore, the graph field can provide more information than the 
general data field. The application of GNN to few-shot learning meets the requirements 
of processing structural information between data in the process of one-shot learning.

Compared with the traditional CNN method, GNN has advantages in processing the 
identification feature extraction of signals in the discrete space domain. In recent years, 
GNN method has been successfully applied in many research fields, such as website rec-
ommendation system [21], protein molecular structure and performance design [11]. In 
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the field of fault diagnosis, [12] successfully applied graph neural networks to fault diag-
nosis of industrial process networks.

3  The proposed method
3.1  Using STFT for data preprocessing

In the research of rolling bearings, time–frequency imaging technology is employed as 
a foundation for data feature extraction. In this paper, STFT is used to preprocess the 
vibration signal due to its effectiveness in analyzing time-varying and non-stationary 
signals [24]. By applying a time-limited window function before the Fourier transform 
of the signal, it is assumed that the non-stationary signal is stable within each short-
time analysis interval. Through sliding the window function along the time, the signal is 
analyzed segment by segment to obtain a set of local ’spectra’ representing its spectrum 
at different moments in time. After obtaining the spectrum information of the signal in 
the time domain, filtering can be performed on the signal. The primary frequency com-
ponents can be directly spectral information, while secondary frequency components 
considered as noise are eliminated through inverse transformation.

Unstable signals can be processed in the following ways. The center position of the 
window function is at t = I_0 , The signal is windowed:

t is the time period,x(t) is a small segment of the transformed signal. r(t − I0) is the 
sequence of fundamental window functions. The intercepted signal y(t) can be obtained 
by multiplying the window function and the original signal. The intercepted signal y(t) is 
the signal of execution time corresponding to t.

By the Fourier transform, Eq. (1) can be rewritten as [24]:

STFTf (t,ω) is the spectral distribution of the first segmented sequence. From the 
above formula, it can be seen that with the change of t , all segments will complete the 
transformation and be combined into a complete signal transformation.

For the convenience of expression, the function S(ω, I) is defined as:

The function S(ω, I) represents the spectral result STFTf (t,ω) after the transforma-
tion of the original function when the window function center is I_0.

The spectral energy relationship of time can be determined by [24]:

(1)y(t) = x(t) ∗ r(t − I0)

(2)STFTf (t,ω) = F(x(t)) =

+∞

∞

f (t) ∗ r(t − I0)e
−jwtdt

(3)S(ω, I) = F(x(t) ∗ r(t − �)) =

+∞∫

∞

x(t) ∗ r(t − I0)e
−jwtdt

(4)δSP(ω, I) = �S(ω, �)�2 =
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+∞

∫
∞

x(t)*r(t − �0)e
−jwtdt2

∥∥∥∥
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The one-dimensional data can be converted into the picture form of the two-dimensional 
data by the above method. All raw data were converted into image data as shown in Fig. 1. 
Image data were divided into two parts. Output data were formed by stacking information 
such as image, label, one-hot corresponding to the label and its class in the dataset.

3.2  Using CNN to extract feature vectors

Since its inception by [15], CNN has significant advancements in terms of network depth 
and the development of relevant theories and structures. The extraction process of CNN is 
mainly to convolve or pool the matrix as a grayscale, RGB image or one-dimensional time-
series vibration signal.

In CNN, nodes in the same layer are independent of each other, but neural nodes in dif-
ferent layers are connected in the form of weight sharing. The weights here are obtained 
through training, that is, W and b, which determine the mapping relationship. When the 
training data are input into CNN, the convolution layer first performs a convolution opera-
tion. The mathematical expression of the convolution process is [4]:

where zli depicts the lth feature diagram of the lth convolution layer. xl−1
j  depicts the jth 

feature diagram of layer l − 1 . Wl
(i,j)

 corresponds to the jth weight matrix of the ith fea-

ture diagram of the ith layer; bli denotes the bias vector. f () denotes the activation func-
tion. The conversion of the l − 1th layer feature diagram to the ith layer is achieved by 
the convolution process.

The primary activation function used in this paper is the ReLU function. Let the data to 
be activated be x. Then, its mathematical expression is as follows:

Standard pooling methods include maximum pooling and random pooling, which are 
used to reduce the data dimensions. This paper mainly uses the maximum pooling method, 
whose mathematical expression is as follows:

(5)zli = f




J�
j=1

Wl
(i,j)

⊗ xl−1
j + bli




(6)ReLU(x) =

{
0, if x < 0,
x, if x ≥ 0.

(7)Si = subsampling(Si−1)

Fig. 1 The typical structure of the GNN
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After the data are processed by multiple convolution layers and pooling layers, high-
dimensional feature data will be obtained, which needs to be input into the complete 
connection layer for flattening and processing into feature vectors.

The training and testing process of all samples in this paper is implemented on the 
Python platform based on Python language. Make the data format of the sample build 
into 32 × 32 × 3. It is used for the input layer of the neural network. Complete four con-
volutions, three layers of pooling, and finally output 1 × 1 × 64 feature vector. Then, 
combine the feature vector with the vector representing the label (one hot code) as the 
input node of GNN, and input it into GNN together.

3.3  One‑shot learning of GNN for fault diagnosis

The GNN model is built upon connection relationships, enabling the extraction of 
exceptional graph features from both graph nodes and their interconnections [26]. GNN 
uses vertex updating to reduce the differences between sample features of the same cat-
egory and increase the differences between sample features of different categories; edge 
update is used to calculate the similarity between vertices. That is, the attention weight 
of the features of neighbor vertices is aggregated when the vertices are updated. There-
fore, GNN is applied to one-shot learning to meet the requirements of structural pro-
cessing information between data in the one-shot learning process.

In this paper, each node represents an image. The weight of each edge represents the 
relationship between the two images (distance or similarity) [16, 29]. Specific weight cal-
culation process [6]:

where xk is received as input of a GNN layer for graph convolution, where ϕ = MLP 
denotes the similarity metric module implemented using a multilayer perceptron struc-
ture. In this paper, a multilayer perceptron stacked is considered after the absolute dif-
ference between two vector nodes.

After the adjacency matrix is obtained by the above method, the following layer net-
work can be calculated by GNN to complete the GNN transfer. The calculation process 
is as follows:

where x(k+1)
l  represents the characteristics of layer k + 1 vertex l ; Gc represents the 

graph convolution operation, which can be calculated according to the k layer vertex 
x(k) to calculate the k + 1 layer vertex x(k+1). A is the adjacency matrix; B is the relation 
matrix participating in vertex updating; ρ is a vertex update function with arguments 
θ
(k)
B,l  . The update rule for the node feature can be calculated using this formula.

(8)Ã
(k)
i,j = ϕ

θ̃

(
x
(k)
i , x

(k)
j

)
= MLP
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(
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(
x
(k)
i − x

(k)
j

))

(9)x
(k+1)
l = Gc

(
x(k)

)
= ρ

(∑
BεA

Bx(k)θ
(k)
B,l

)
, l = d1 . . . dk+1,

(10)� =
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θ
(k)
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(k)
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}
k
, θ

(k)
A ∈ R
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represents the set of training parameters. The accumulation symbol indicates that the 
adjacency matrix B can adopt a variety of calculation methods and add them together. 
According to this formula, the update rule of the node feature can be obtained.

As shown in Fig. 1, due to the denseness of the edges in the graph, depth is simply 
interpreted as giving the model more expressive power. Vertex update refers to sam-
ple feature update, which updates vertices according to similarity and category, so as to 
improve their category generalization ability and prediction accuracy [7]. The essence of 
edge updating is to calculate the similarity matrix between samples. This matrix is also 
an attention-weight matrix, which can be used for subsequent vertex aggregation pro-
cessing. It is updated by means of similarity measurement. In the training process, it is 
also necessary to change the weight of each network layer. The input v(k) and the output 
of the graph convolutional block are cascaded to generate the lower-level network input 
v(k+1).

The feature of the initial point is defined as:

 where φ(·) is a convolutional neural network, h(·) represents the translation of the tag 
into a one-hot vector.

The final loss function is [6]:

where �i is the i-th time of the task, the targets Yi are associated with image categories 
of designated images xi,…xj ∈ �i with no observed label. 

{
(�i,Yi)i

}
i≤L

 is a training set.

where �(�; θ) = P(Y |�) , the predicted label is obtained through maximum likelihood 
estimation.

(11)x
(0)
i = (φ(xi), h(li))

(12)min
1

L

∑
i≤L

ℓ(�(�i; θ),Yi)+R(θ)

(�(�; θ),Y ) = −
∑

yk log P(Y∗ = yk |�)

Fig. 2 The working flowchart of the proposed method
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The combination of GNN and one-shot learning in meta-learning can be applied to 
fault diagnosis of rotating machinery. The details are illustrated in Fig. 2 and summa-
rized below.

The methodology employed in this study is listed as follows: firstly, collect signals 
from the public dataset of CWRU under health and failure conditions, reflecting the 
actual situation from multiple dimensions. Secondly, the fault state signal of one-
dimensional rotating machinery is transformed into a two-dimensional picture by a 
STFT. Thirdly, feature vectors are extracted by using CNN. Fourthly, these feature 
vectors are fed into the graph neural network for learning with only a few samples 
available. Finally, fault diagnosis and classification are obtained.

4  Experiments
4.1  Datasets

The data set from the Case Western Reserve University (CWRU) Rolling Bearing Data 
Center was used for the bearing fault data with the experimental platform as shown 
in Fig. 3. The CWRU dataset was obtained using accelerometers to collect vibration 
data from test-rig consisting of a torque transducer, electronic control equipment, 
2-HP motor and dynamometer. The test platform tests the bearings that support the 
motor. The bearing fault status is measured by EDM technology. (1) Normal Baseline 
Data; (2) 12 k Fan End Bearing Fault Data;12 k Drive End Bearing Fault Data; (3) 48 k 
Drive End Bearing Fault Data; (4) 12  k Drive End Bearing Fault Data. In addition, 
since ORF is a stationary fault, different fault placements located at 3 o’clock (ORF-3), 
6 o’clock (ORF-6) and 12 o’clock (ORF-12) were also considered. Four fault diameters 
(i.e., 0.007 inches, 0.014 inches, 0.021 inches and 0.028 inches) were pre-planted for 
IRF, RBF, ORF-3, ORF-6 and ORF-12, separately. The data file (mat format) provided 
by CWRU is limited in length, so overlapping sampling is adopted to generate more 
time-domain signal samples. We randomly selected 40 classes to form the training 
dataset. The remaining classes were randomly divided into a validation dataset (10 
classes) and a test dataset (10 classes). Each type of motor bearing data collected 300 
images for a total of 300*60 pictures.

Fig. 3 The experimental setup of bearing (CWRU)
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Table 1 shows the specific types of rolling bearing failures used in the experiment, 
such as IR007_0, IR indicates that the damage position of the fault is the inner race, 
and 007 indicates that the damage degree of this type of fault is 7 mils, _0 means its 
workload is 0 hp.

4.2  Experimental environment

The hardware and software settings of this experimental environment are shown in 
Table 2.

4.3  Model design

During the entire training process, the optimizer selects the Adam optimizer, and the 
loss function selects the cross-entropy loss function. The batch size is 100. Batch nor-
malization is used in all hidden layers to accelerate training [8], with a fixed learning rate 
of 0.001. The retention probability settings for Dropout are 0.4 and 0.5, respectively. The 
graph neural networks in this article use LeakyReLU.

In this paper, the CNN model uses a 5-layer convolutional neural network, includ-
ing 4 layers of convolution (Conv2d) and 1 layer of linearity. Among them, except for 
the second layer of convolution without padding, the other three layers are all Conv2d 

Table 1 Specific types of rolling bearing faults used in the experiment

Damage location Workload

0hp/1797 rpm 1hp/1772 rpm 2hp/1750 rpm 3hp/1730 rpm

Nothing Nor_0 Nor_1 Nor_2 Nor_3

Inner Race IR007_0 IR007_1 IR007_2 IR007_3

IR014_0 IR014_1 IR014_2 IR014_3

IR021_0 IR021_1 IR021_2 IR021_3

Ball B007_0 B007_1 B007_2 B007_3

B014_0 B014_1 B014_2 B014_3

B021_0 B021_1 B021_2 B021_3

Outer Race Centered@6:00 OR-6-007_0 OR-6-007_1 OR-6-007_2 OR-6-007_3

OR-6-014_0 OR-6-014_1 OR-6-014_2 OR-6-014_3

OR-6-021_0 OR-6-021_1 OR-6-021_2 OR-6-021_3

Outer Race Orthogonal @3:00 OR-3-007_0 OR-3-007_1 OR-3-007_2 OR-3-007_3

OR-3-014_0 OR-3-014_1 OR-3-014_2 OR-3-014_3

OR-3-021_0 OR-3-021_1 OR-3-021_2 OR-3-021_3

Outer Race Opposite @12:00 OR-3-007_0 OR-3-007_1 OR-3-007_2 OR-3-007_3

OR-3-021_0 OR-3-021_1 OR-3-021_2 OR-3-021_3

Table 2 Development environment

Hardware Configuration or installation information

Processor Intel(R) Core(TM) i7-6700 CPU @3.40GHZ 3.40 GHz

RAM 64.0 GB

Operating system Windows 7 Professional 64-bit

Compilation environment MATLAB R2018a
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convolutions with a convolutional kernel size of 3 × 3, a stride of 1 and a padding of 1. 
The input of this network is a (3 × 84 × 84) image, and the output is a feature vector of 
length 128.

The GNN model in this paper uses three graph convolution layers, with each graph 
convolution layer having five convolutions. Among them, each convolutional layer has 
a convolutional kernel size of 1 × 1, a convolutional stride of 1 and no padding. The net-
work has an input of 133 × 6 × 6 and an output of a feature vector of length 5. The red-
dest goes through a LogSoftMax classifier to obtain the individual class probabilities.

5  Results and discussion
In practice, the load of rotating machinery often changes. Therefore, it is necessary to 
verify the classification accuracy of the proposed fault diagnosis model under different 
load conditions. A total of 12,000 samples of CWRU datasets were collected from the 
experiment. The image preprocessed by STFT is shown in Fig. 4.

As shown in Fig. 5,  the loss function initially exhibits a relatively large value, reach-
ing 1.78 as observed in the above figure, while achieving an accuracy of only 3% for the 
graph neural network model. However, after undergoing 350 iterations, there is in fault 
classification accuracy and a particularly prominent reduction in the loss function. It 
is noteworthy that both fault classification accuracy and loss function values stabilize 

Fig. 4 Signals acquired from bearings of CWRU: a Fan end bearing fault data of inner race and b Fan end 
bearing fault data of ball; c Drive end bearing fault data of ball(The paper uses 60 types of failure, due to 
space limitations, only three are shown here)
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around 1480 iterations. By the time we reach 2000 iterations, the accuracy reaches an 
impressive 98.02%, with the loss value mere 0.005 effectiveness of the GNN-based fault 
diagnosis model employed in this experiment.

In the experiment, N-way K-shot was used as the evaluation index. The model was 
evaluated by performing 1-shot, 5-way experiments on the dataset.

5-way 1-shot, 2-shot, 3-shot, 4-shot and 5-shot were performed on CWRU datasets in 
Fig. 6. The accuracy of 5-way 5-shot (Accuracy of 99.25%) is higher than that of 5-way 
1-shot (Accuracy of 98.02%).

Fig. 5 Classification accuracy of few-shot learning on CWRU 

Fig. 6 Classification accuracy of few-shot learning on CWRU 
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For few-shot fault diagnosis problems, the number of shots (i.e., the value of K) dia-
metrically reflects the intricacy of the problem structure. The smaller the value of K, the 
more challenging the learning task becomes in terms of accuracy [37]. The accuracy of 
1-shot and 5-shot classification tasks has been significantly improved. Since the model 
can learn more representative features from more labeled samples for classification. 
This also proves that optimizing correlation between graph nodes and samples enhances 
measurement label prediction of unknown sample tags, excellent classification accuracy 
can be achieved.

Among the various few-shot learning methods, the metric learning method in meta-
learning stands out as a significant direction. It is characterized by its simplicity and 
effectiveness, eliminating the need for complex recursive networks and reducing mem-
ory requirements. For the new small sample data, the model solves the target prob-
lem in a completely feedforward manner without updating the model, which is more 
convenient for low-latency or low-power application scenarios. The similarity metric-
based embedding learning method uses data from embedding layers such as CNN, and 
the acquired data features can be used as the basis for similarity metric calculation to 
achieve the classification task. Since metrics such as Euclidean distance and cosine simi-
larity can be used for similarity metrics, the training and learning of this method focuses 
on feature extraction based on embedding, and can also be extended to the field of met-
ric learning. Siamese Net, Matching Net and Prototypical Net in few-shot learning are 
the embodiment of this idea. This paper analyzes and compares with representative met-
ric-based few-shot learning models (matching networks, relational networks, and Sia-
mese networks), showing the advantages of graph neural networks in metric-based and 
meta-learning methods, and also solving the problem of not being able to model data in 
non-Euclidean spaces, leading to new research directions in the field of few-shot learn-
ing classification.

At present, the above comparison models have been widely used in the fields of pattern 
recognition such as human image recognition, fingerprint recognition and target track-
ing. Siamese network extracts features through two networks with the same structure. 
Classification of the described input images is performed based on similarity. Then, the 
neural network is learned using various types of number of samples and loss functions. 
After learning the model, the model can make predictions for new samples. Siamese 
neural network is applied in a simple way for few-shot learning, which is not suitable for 
unsupervised learning environments. However, the network inspires subsequent-related 
metric-based models. Matching network introduces an attention mechanism and exter-
nal memory and uses the nearest neighbor method with end-to-end vectors to classify 
the samples to be identified and obtain the corresponding classification results. Match-
ing network can complete fast learning and improve the generalization ability of the 
trained samples and enhance few-shot learning performance. Matching networks can-
not solve the problem of memory being over-occupied. For this problem, a new mod-
eling method, prototype network, is proposed. Prototype network uses convolutional 
neural networks to fuse different types of data into a data fusion approach. The mem-
ory consumption is greatly reduced and the accuracy of classification is improved. The 
straightforward and efficient design of the prototype network model has been widely 
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used in many small sample task fields. Encoders are prone to overfitting, and the restric-
tion of sparse expressions is introduced in the self-coding machine to constitute a sparse 
autoencoder with strong generalization performance. SAE can obtain more abstract and 
typical compression characteristics from raw data, which improves the performance of 
traditional self-encoders and shows more practical application value. Therefore, Siamese 
Net, Matching Net, Prototypical Net and SAE were used for comparison.

Table 3 shows the comparison of the different models. Obviously, GNN had the high-
est classification rate each time (98.02% on average). The accuracy of SAE is 87.70%. 
The accuracy of Siamese Net is 87.42%. The accuracy of Matching Net is 85.29%. The 
accuracy of Prototypical Net is 84.52%. It indicates that GNN is the best classification 
method for rolling bearing fault diagnosis.

For better validation, a line chart is applied for comparisons. It is a statistical chart that 
can directly reflect the difference in accuracy. Different models are selected for model 
diagnosis performance comparison experiments, and the accuracy of fault diagnosis is 
shown in Fig.  7. GNN algorithm has the highest fault diagnosis accuracy, followed by 
SAE distribution. GNN is better than that of Matching Net, prototypical Net, Siamese 
Net and SAE in the density or fault accuracy of the four.

Table 3 Results of several methods’ categorization using the CWRU dataset

Model Accuracy of each test (%) Mean (%)

1 2 3 4 5

Siamese Net 85.82 87.79 88.97 87.20 87.33 87.42

Matching Net 84.57 84.59 83.79 87.12 86.40 85.29

Prototypical Net 86.53 82.54 84.59 87.25 81.67 84.52

SAE 87.32 90.23 86.37 85.46 89.12 87.70

GNN 96.73 97.82 99.63 98.12 97.79 98.02

Fig. 7 Classification accuracy of few-shot learning on CWRU 
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The box-plot can also express the diagnostic performance and stability of the model 
under different comparison models more intuitively, as shown in Fig.  8, the box plot 
position of the method in this paper is the highest, and the box plot is the flattest. It 
shows that this method has the best classification effect and stability compared with 
other models.

6  Conclusions and future works
To solve the problem of shortage of training sets for rotating machinery faults in 
practical applications, a one-shot learning for rotating machinery diagnosis method 
based on graph neural network (GNN) is proposed in this paper. The local frequency 
spectrum in a small period near time t is obtained by acquiring the rolling bearing 
signals and performing the STFT on them. The feature extraction is achieved by the 
CNN. Subsequently, the GNN aggregates under the guidance of node features and 
edge features, updates edge features through similarity calculation, and finally pro-
duces classification results from edge features. Experiments were carried out to verify 
the efficiency of the proposed method. Siamese Net, Matching Net, prototypical Net 
and SAE are chosen as the comparisons. The results indicate the proposed method 
outperforms all the selected methods. The overall accuracy of the proposed method 
can reach 98.02%.

The proposed method is only chosen to verify the rotating machinery in this paper. 
Further exploration is still needed to determine the fault diagnosis efficiency of this 
method for other mechanical devices with small data samples. Therefore, transfer 
learning will be applied to the proposed method in our future research, allowing the 
direct application of the GNN fault diagnosis model for rotating machinery to other 
mechanical devices.

Fig. 8 Box-plot of fault diagnosis results by different algorithms of CWRU dataset
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