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Abstract 

Impulse noise (IN) widely exists in many communication systems, which seriously 
affects the performance of OFDM communication systems. A joint channel and IN esti-
mation method based on all subcarriers is designed. This method uses a sparse 
Bayesian learning (SBL) algorithm incorporating forward–backward Kalman filter 
(FB-Kalman) to tackle the problem of joint channel and IN estimation and data detec-
tion for OFDM systems. Firstly, the channel impulse response and IN are regarded 
as unknown sparse vectors, and a SBL framework using all subcarriers is proposed 
to estimate the unknown vector. The SBL theory is used based on the prior distribution 
of variables, and then the forward–backward joint system is established, which applies 
the data detection simultaneously. We also propose the FB-Kalman implementation 
algorithm by using the expectation maximization updates. Explicit expressions of mean 
and covariance matrix of the posterior distribution are derived in the E-step. Simulation 
results show that the proposed algorithm improves the normalized mean square error 
and bit error rate performance of OFDM system in the presence of IN communication 
environment.
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1 Introduction
IN always exists and is more harmful especially in OFDM system such as digital sub-
scriber lines [1], power line communication (PLC) [2], wireless communication [3], and 
underwater acoustic communication [4]. IN model such as Gaussian mixture (GM), 
Middleton Class A [5], and Bernoulli-Gaussian [6] can cover most scenarios where IN 
occurs in PLC systems, and α-stable distribution model can be used to describe the 
some short-term spikes existed in shallow water acoustic channel [7].

Although OFDM is inherently more resistant to IN than single carrier modulation, its 
influence extends to all subcarriers and if the power of IN exceeds a certain threshold, it 
will lead to a sharp decline in system performance [8]. It follows that in practical applica-
tions, the IN should be properly suppressed in the receiver side before detection.

Numerous algorithms have been proposed. One type of commonly used IN mitiga-
tion algorithms is nonlinear filtering in which the received signal samples contaminated 
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by IN is then adjusted by using nonlinear blanking or clipping method. The drawback 
of such algorithms is that it not only suppresses the interference, but also destroys the 
original signal. Moreover, such algorithms need to use the prior statistics of IN to derive 
the optimal threshold, which is very difficult to obtain in practice, and the suboptimal 
threshold is usually set by using an empirical value. Another kind of suppression algo-
rithms is based on compressed sensing (CS) theory. These algorithms are proposed 
base on the sparsity of IN and CIR [9–14], and their performances are superior to tra-
ditional blanking and clipping algorithms [15]. However, these algorithms have high 
computational complexity. In [16], the generalized approximate message passing (AMP) 
algorithm is used to solve the problems of joint channel coefficients, IN, and data sym-
bols estimation. However, the algorithms based on prior information about CIR and 
IN, which is difficult to obtain. In [17], the distribution of CIR and IN are modeled as 
Gaussian Mixture (GM) model, which is the prior information of AMP algorithm. Nev-
ertheless, this assumption does not apply to other channels. In [18], a SBL algorithm 
combined with Kalman filter is proposed to solve the joint channel and IN estimation 
problem in OFDM systems. Compared with SBL algorithm, it improves the estimation 
performance of the system. However, the estimation performance is limited by the num-
ber of pilots, increasing the number of pilots will reduce the spectral efficiency of OFDM 
system.

The problem of joint channel and IN estimation based on all subcarriers in the pres-
ence of IN for OFDM system is discussed. Initially, we regard the CIR and IN as an 
unknown sparse vector and use a SBL framework that employs all subcarriers to estimate 
unknown vector. The SBL theory is used based on the prior distribution of variables, and 
then the forward backward joint system is established, which apply the data detection 
simultaneously [19]. In addition, we develop an FB-Kalman implementation algorithm 
using EM updates to iteratively estimate the unknown parameters. In the E-step, explicit 
expressions of mean and covariance matrices of the posterior distribution are derived. In 
the M-step the unknown parameters are iteratively estimated. Simulation results show 
that the proposed algorithm improves the channel estimation performance and BER 
performance of OFDM system in the presence of IN communication environment.

2  System model
Consider a coded frame based OFDM system with N subcarriers, which contains Nd 
subcarriers for data transmission, Np pilot subcarriers, and Nn null subcarriers. At the 
transmitting side, an OFDM frame is composed of Nb OFDM symbols. At the receiver 
side, the mth OFDM symbol rmǫCN×1 of the received frame in the frequency domain 
can be written in a vector form as

where Dm = diag(dm) is a diagonal matrix with dmǫC
N×1 as the main diagonal element 

which represents the mth transmitted OFDM symbol. hmǫCN×1 denotes the frequency 
domain CIR. imǫCN×1 and wmǫC

N×1 are the frequency domain IN and background 
Gaussian noise, respectively. The subscript m(m = 1, 2, ...,Nb) represents the index of 
OFDM symbols in a frame.

(1)rm = Dmhm + im + wm
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By introducing hm =
√
NFLht,m and im = Fit,m , where FǫCN×N represents the nor-

malized discrete Fourier transform matrix, FLǫCN×L is the submatrix selected by 
the first L columns of matrix F,where L represents the channel length, ht,mǫCL×1 and 
it,mǫC

N×1 denote the time domain CIR and IN, respectively. Equation (1) can be rewrit-
ten as

3  Joint channel and impulsive noise estimation
In this section, based on SBL framework and Kalman filter, we propose the fol-
lowing new algorithm to jointly estimate impulse noise and channel. Let 
�m = [

√
NDmFL,F]ǫCN×(L+N ) and θm = (hTt,m, i

T
t,m)

T ǫCL+N , Eq. (2) can be expressed 
as

Because the CIR ht,m and IN it,m are regarded as unknown sparse vectors, θm formed by 
ht,m and it,m , can also be regarded as an sparse vector. Noting that the matrix �m is an 
underdetermined matrix, estimating the unknown vector by Eq. (3) translates into a CS 
problem.

We assume that θm is unchanged in one OFDM symbol, but changes between sym-
bol to symbol according to a state-space model. Then, taking Eq. (3) as the observation 
equation, the state equation can be expressed as

where A � diag(ρ1L, 0N ) , the 1L is a L-length vector with all elements as one, 
and 0N is a N-length vector with all elements as zero. θm ∼ CN (0,BŴm) , where 
Ŵm = diag(Ŵ(h),Ŵ(i)m) and B � diag((1− ρ2)IL, IN ) . Ŵ(h) = diag(γ0, γ1, ..., γL−1) , 
Ŵ(i) = diag(γL, γL+1, ..., γL+N−1) are the covariance matrices of the corresponding CIR 
and IN, respectively. The excitation noise vm and the observation noise wm are independ-
ent Gaussian white noise with zero mean i.e.,vm ∼ CN (0,BŴm) , wm ∼ CN (0,βmIN ) and 
IN is an N × N  identity matrix. ρ is the correlation coefficient of the state transition, and 
βm is a scalar corresponding to the background noise.

We assume the following forward and backward systems

where the subscripts f denote the variable in the forward systems and b denote the vari-
ables in the backward systems, respectively. In the process of forward Kalman filter, the 
filtering process is initialized as θ f0|0 = 0 , �f

0|0 = IL+N.
In the prediction step, we have

(2)rm =
√
NDmFLht,m + Fit,m + wm

(3)rm = �mθm + wm

(4)θm = Aθm−1 + vm

(5)r
f
m =�

f
mθm + w

f
m

(6)r
b
m =�b

mθm + w
b
m

(7)θ
f
m|m−1 =Aθ

f
m−1|m−1
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where θ fm|m−1 denotes the mth state prediction obtained by using the result of the 
m− 1th optimal state. θ fm−1|m−1 is the result of the m− 1th optimal state. efm denotes 
the difference between the mth measured and predicted value. �f

m|m−1 and �f
m−1|m−1 

are the mth prior and the m− 1th posterior covariance matrices of estimation errors, 
respectively.

In the update step, we can compute

where θ fm|m is the best estimate of the mth state, Kf
m is the Kalman gain,and efm is given 

by (9).
The process of backward Kalman filtering is similar to the forward Kalman filtering in 

(7)–(13), except that the former is from time m = Nb to m = 1.
For (5) and (6), we can apply the linear minimum mean-squared estimator (LMMSE) 

for each linear system to estimate θm in each linear system. For the forward system, the 
estimated value of θm is

where �f
m = (R−1

θm
+ (�

f
m)

H
R
−1

wf
m

�
f
m)

−1 is the mth estimation error matrix, Rθm and Rwf
m

 

are the covariance matrices of θm and wf
m , respectively. Similarly, the estimated value of 

θm from the backward system is

where �b
m = (R−1

θm
+ (�b

m)
H
R
−1

wb
m

�b
m)

−1 is the mth estimation error matrix, Rwb
m

 is the 

covariance matrix of wb
m.

Combining (5) and (6), we have

The LMMSE estimation of θ from (16) is given by

(8)�
f
m|m−1 =A�

f
m−1|m−1A

T + BŴ
f
m

(9)e
f
m =r

f
m − r

f
m|m−1

(10)r
f
m|m−1 =�

f
mθ

f
m|m−1

(11)K
f
m =�

f
m|m−1(�

f
m)

H (β
f
m)IN +�

f
m�

f
m|m−1(�

f
m)

H
−1

(12)θ
f
m|m =θ

f
m|m−1 + K

f
me

f
m

(13)�
f
m|m =(I− K

f
m�

f
m)�

f
m|m−1

(14)θ̂
f

m = �
f
m(�

f
m)

H
R
−1

wf
m

r
f
m

(15)θ̂
b

m = �b
m(�

b
m)

H
R
−1

wb
m

r
b
m

(16)
(

r
f
m

rbm

)

=
(

�
f
m

�b
m

)

θm +
(

w
f
m

wb
m

)
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The estimation error matrix is

According to equation (14) and (15), (17) and (18) can be simplified, respectively, as

As Kalman filtering is an extension of sequential LMMSE estimation, the forward and 
backward estimations can be combined following (19) and (20), respectively, as

where θ fm|m and �f
m|m are given by (12) and (13), respectively, θbm|m and �b

m|m obtained 
in a similar way. Since there is no prior auto-correlation information about θ , we set 
R
−1

θ = 0 in (19) and (20).
In (7)–(13), we see that in addition to the unknown parameters Ŵm and β , there are 

some unknown matrix elements of the matrix � which just based on unknown data 
symbol D.

Let ξ �
{

{Ŵm},β ,Dm

}

 as the set of unknown parameters, the steps of EM algorithm 
are as follows:

In the E-step, the expected value of joint probability density p
(

{rm}, {θm}, {Ŵm},β
)

 
under posterior probability distribution p(θ |r) is obtained from

where k represents the number of iterations.

(17)

θ̂
fb

m =
(

[

(�
f
m)

H (�b
m)

H
]

[

R
−1

wf
m

0

0 R
−1

wb
m

][

�
f
m

�b
m

]

+ R
−1

θm

)−1

×
[

(�
f
m)

H (�b
m)

H
]

[

R
−1

wf
m

0

0 R
−1

wb
m

][

r
f
m

r
b
m

]

=((�
f
m)

H
R
−1

wf
m

�
f
m + (�b

m)
H
R
−1

wb
m

�b
m + R

−1

θm
)−1

× ((�
f
m)

H
R
−1

wf
m

r
f
m + (�b

m)
H
R
−1

wb
m

r
b
m)

(18)
�

θ̂ fb
m =

(

[

(�
f
m)

H (�b
m)

H
]

[

R
−1

wf
m

0

0 R
−1

wb
m

][

�
f
m

�b
m

]

+ R
−1

θm

)−1

=((�
f
m)

H
R
−1

wf
m

�
f
m + (�b

m)
H
R
−1

wb
m

�b
m + R

−1

θm
)−1

(19)
θ̂
fb

m =((�
f
m)

−1 + (�b
m)

−1 − (Rθm )
−1)−1

((�
f
m)

−1θ̂
f

m + (�b
m)

−1θ̂
b

m)

(20)�
θ̂
fb

m

=((�
f
m)

−1 + (�b
m)

−1 − (Rθm )
−1)−1

(21)
θm|m =

(

(�
f
m|m)

−1 + (�b
m|m)

−1
)−1

(

(�
f
m|m)

−1θ
f
m|m + ((�b

m|m)
−1θbm|m

)

(22)�m|m =
(

(�
f
m|m)

−1 + (�b
m|m)

−1
)−1

(23)Q
(

ξ |ξ (k)
)

= E{θ}|{r}
{

log p
(

{r}, {θ}, {Ŵ(k)
m },β(k)

)

}
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In the M-step, first fix one parameter, solve another parameter, and then solve the opti-
mal parameter alternately as

The likelihood function of (2) can be written

Form (24), we obtain the log-likelihood function as

By analyzing the expression (26), the optimal Ŵm can be obtained as

where Mm|m = �m|m + θ̂m|mθ̂
H

m|m.
Similarly, β can be optimized

By setting the derivative of (28) with respect to β as zero, we obtain

(24)ξ (k+1) = arg max
ξ

Q
(

ξ |ξ (k)
)

(25)p
(

{r}, {θ}, {Ŵm},β
)

=p(θ1;Ŵ1)

Nb
∏

m=2

p(θm|θm−1;Ŵm)×
Nb
∏

m=1

p(rm|θm;β)

(26)

log p
(

{r}, {θ}
)

∝ −
Nb
∑

m=1

�rm −�mθm�22
β

− NNb log β −
Nb
∑

m=1

log |Ŵm|

−
Nb
∑

m=2

(θm − Aθm−1)
H (BŴm)

−1(θm − Aθm−1)− θH1 Ŵ
−1
1 θ1

(27)

{

Ŵ(k+1)
m

}

= arg min
{Ŵm}

E{r}|{θ}

{ Nb
∑

m=1

log |Ŵm| + θH1 Ŵ
−1
1 θ1

+
Nb
∑

m=2

(θm − Aθm−1)
H (BŴm)

−1(θm − Aθm−1)

}

= arg min
{Ŵm}

{ Nb
∑

m=1

log |Ŵm| + Tr(Ŵ−1
1 M1|1)+

Nb
∑

m=2

Tr(Ŵ−1
m B

−1
Mm|m)

}

(28)β(k+1) = arg min
β

E{θ}|{r}

{ Nb
∑

m=1

�rm −�mθm|m�22
β

+ NNb log β

}

(29)β(k+1) = 1

NNb
Tr

[ Nb
∑

m=1

(rm −�mθm|m)(rm −�mθm|m)
H +�m�m|m�

H
m

]
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After obtaining the estimated values of Ŵ(k+1)
m  and β(k+1) , respectively, the estimated val-

ues of data symbol Dm is derived as follows.

where c is a constant independent of D , and Tr() denotes the matrix trace. We have

It is reasonable to assume that the CIR vector and IN vector are independent of each 
other, so that the covariance submatrices �2,1 and �1,2 in Eq. (31) can be set to zero 
matrix.

Denotes Id as the indices of subcarriers with data symbols. By substituting (31) into 
(30), the iterative update formula of each data symbol dm[i] , i.e., the ith diagonal element 
of dm , i ∈ Id , can be obtained by solving the following problem

where

and F[i, :] is the ith row of F , θm|m and �m|m can be obtained, respectively, by (21) and 
(22).

The entire algorithm of FB-Kalman is summarized in Algorithm 1.

(30)

D
(k+1)
m =arg max

D

Q
(

D
(k+1);�(k),

{

Ŵ(k+1)
m

}

,β(k+1)
)

=arg max
D

{

c − E{r}|{θ}

{�rm −�mθm�22
β

}}

=arg max
D

{

c − β−1
[

�rm −�mθm�22 + Tr(�H
m�m�m)

]

}

= arg min
D

�rm −�mθm�22 + Tr(�H
m�m�m)

(31)

�rm −�mθm�22 + Tr(�H
m�m�m)

= �rm −�mθm�22 + Tr(NDmFL�1,1F
H
L Dm

H

+
√
NF�2,1F

H
L D

H
m +

√
NDmFL�1,2F

H + F�2,2F
H )

(32)

(

dm[i]
)(k+1) = arg min

dm[i]

∣

∣rm[i] −
√
Ndm[i]FL[i, :]θm|m,1

− F[i, :]θm|m,2

∣

∣

2 + Cm,1[i, i]
∣

∣dm[i]
∣

∣

2

(33)Cm,1[i, i] =NF�m|m,1,1F
H

(34)�m|m =
(

�m|m,1,1 0
0 �m|m,2,2

)

(35)θm|m =
[

θTm|m,1, θ
T
m|m,2

]T
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4  Complexity analysis
The FB-Kalman algorithm includes three major steps: forward filtering, backward filter-
ing, and EM parameters estimation. In the forward filtering step, most of the calcula-
tions are used to calculate the Kalman gain Km , which has a complexity of O(N 3) for 
each OFDM symbol. The backward filtering step has a computational complexity of 
O(N 3) for each OFDM symbol. Moreover, the complexity of the EM step is O(I1N

3) , 
where I1 is the average number of iterations of the EM process till convergence. Thus, for 
each OFDM symbol, the computational complexity order of the FB-Kalman algorithm is 
O((I1 + 2)N 3).

The JCI-Kalman algorithm uses pilot subcarriers, the complexity of the filtering step 
is O(N 3

p ) for each OFDM symbol, and the complexity of the EM step is O(I2N
3
p ) for 

each OFDM symbol, where I2 is the average number of iterations of the EM process till 
convergence. So, the computational complexity of this algorithm is O((I2 + 1)N 3

p ) per 
OFDM symbol.

The SBL-LS algorithm uses SBL method to remove IN by using null subcarriers, and 
the CIR is estimated by least square method. The EM step has a computational complex-
ity of O(I3N

3
n ) for each OFDM symbol, where I3 is the average number of iterations of the 

EM process till convergence. And the complexity of the LS step is O(N 3
p ) for each OFDM 

symbol. Thus the SBL-LS algorithm has a computational complexity of O(I3N
3
n + N 3

p ).
From the above analysis, we see that the FB-Kalman algorithm using all subcarriers 

has higher complexity than the JCI-Kalman algorithm using only pilot subcarriers and 
the SBL-LS algorithm using pilot subcarriers and null subcarriers. However, the simula-
tion results show that the proposed FB-Kalman algorithm provides best performance 
in NMSE and BER. Similarly, compared with the original SBL based algorithm [10], 
the proposed FB-Kalman algorithm has higher computational complexity and better 
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performance by using filtering and smoothing operations to track time-varying chan-
nels and IN. These trade-offs of performance and complexity are meaningful for practi-
cal OFDM systems.

5  Results and discussion
In this section, we demonstrate the performance of the proposed joint channel and 
IN estimation algorithms. An OFDM system with N = 256 , Np = 44 , Nd = 162 , and 
Nn = 50 is simulated. The Rayleigh-fading uncorrelated-scattering model with sparse 
impulse response [20] is adopted. Each OFDM frame is composed of Nb = 7 OFDM 
symbols.

The noise including IN and background noise is realized by the publicly available soft-
ware [21], which uses a Gaussian mixture model to simulate the IN distribution, where 
the probability of each noise component is 0.9, 0.07, 0.03, and the corresponding power 
of each noise component is 1, 100, 1000. In the noise generated in the simulation, 7% of 
the IN components exceed the background noise power by 20 dB, and about 3% of the 
IN components exceed the background noise power by 30 dB.

In addition, we also consider IN environment with α-stable distribution. To verify the 
performance of channel and IN estimation, α-stable IN model with characteristic expo-
nent α = 1 , skewness parameter β = 0 , scale parameter γ = 0.05 , and location param-
eter δ = 0 is used in the simulation.

The performance of the FB-Kalman algorithm is compared with the other two algo-
rithms in this section:

• SBL-LS: assume that the IN is mitigated by using the SBL method with null subcarri-
ers [13], the tap-aware LS method is used to estimate the CIR.

• JCI-Kalman: assume that the IN and CIR are jointly estimated by using the JCI-
Kalman method with pilot subcarriers [18].

Figure 1 compares the channel estimation performance of all the above mitigation algo-
rithms for convolutional coded systems with 1/2 rate using 4-QAM. The figure shows 
that the NMSE of the three algorithms gradually decreases with the increase in signal-
to-noise ratio (SNR). The proposed algorithm performs better than SBL-LS and JCI-
Kalman. Compared with SBL-LS, the SNR improvement of the proposed algorithm is 
more than 10 dB, compared with JCI-Kalman algorithm, the SNR improvement is about 
7 dB. Compared with SBL-LS, JCI-Kalman has a gain of about 4 dB in SNR. It can be 
seen that the joint channel and IN estimation algorithm has better performance than the 
single estimation. The reason why the proposed algorithm has better performance is that 
the forward message and the backward message can provide more useful information.

Figure  2 provides the BER performance for convolutional coded systems using 
4-QAM. As shown in the figure, the BER of the three algorithms gradually decreases 
with the increase in SNR. The proposed algorithm is always better than the other two 
algorithms, and until the SNR approaches 10 dB, the BER of JCI-Kalman and FB-Kalman 
gradually approaches and then to zero. When BER = 10−3 , the proposed algorithm 
achieves about 2 dB gain in SNR over JCI-Kalman and about 7 dB gain in SNR over 
SBL-LS.
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Figure  3 compares the channel estimation performance of three mitigation algo-
rithms for uncoded systems using 4-QAM. Similar to the coded system, the NMSE 
of three algorithms decreases with the increase in SNR. The proposed algorithm 
performs better than the other two algorithms. Compared with SBL-LS, the SNR 
improvement of the proposed algorithm is more than 8 dB, compared with JCI-
Kalman, the SNR improvement is more than 5 dB. Compared with SBL-LS algorithm, 
JCI-Kalman algorithm has a gain of about 3 dB in SNR. Compared with the coded 
system, the uncoded system has higher NMSE. It shows that channel coding can 
effectively improve the signal channel estimation performance.

Fig. 1 Channel estimation performance comparison for various mitigation methods in coded 4-QAM system

Fig. 2 BER performance comparison for various mitigation methods in coded 4-QAM system
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Figure 4 provides the BER performance for uncoded systems using 4-QAM. Similar to 
the coded system, the figure also shows that the BER of three algorithms decreases with 
the increase in SNR. It can be seen that the proposed algorithm performs better than the 
other two algorithms. The uncoded system exhibits higher BER compared to the coded 
system. It shows that channel coding can effectively improve system performance.

In the IN environment with α-stable distribution, the results of NMSE and BER per-
formance for coded system are shown in Figs.  5 and 6, respectively, while the results 
for uncoded system are shown in Figs.  7 and 8, respectively. For coded system, Fig.  5 

Fig. 3 Channel estimation performance comparison for various mitigation methods in uncoded 4-QAM 
system

Fig. 4 Channel estimation performance comparison for various mitigation methods in uncoded 4-QAM 
system
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compares the channel estimation performance of three algorithms. It is obviously seen 
that the proposed algorithm performs better than SBL-LS and JCI-Kalman. Compared 
with SBL-LS algorithm, the SNR improvement of the proposed algorithm is more than 
10 dB, compared with JCI-Kalman algorithm, the SNR improvement is more than 8 
dB. Figure 6 provides the BER performance of three algorithms. The figure shows that 
the proposed algorithm outperforms the other two algorithms. When BER = 10−3 , the 
proposed algorithm achieves about 5 dB gain in SNR over JCI-Kalman and about 6 dB 
gain in SNR over SBL-LS. For uncoded system, Fig. 7 compares the channel estimation 

Fig. 5 Channel estimation performance comparison of various mitigation methods for coded 4-QAM system 
with α-stable distribution model

Fig. 6 BER performance comparison of various mitigation methods for coded 4-QAM system with α-stable 
distribution model
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performance of three algorithms. Similar to the coded system, the proposed algorithm 
performs better than the other algorithms. Compared with SBL-LS algorithm, the SNR 
improvement of the proposed algorithm is more than 12 dB, compared with JCI-Kalman 
algorithm, the SNR improvement is about 10 dB. Figure 8 provides the BER performance 
of three algorithms. Similar to the coded system, the proposed algorithm outperforms 
the other two algorithms. When BER = 10−3 , the proposed algorithm achieves about 5 
dB gain in SNR over JCI-Kalman and about 9 dB gain in SNR over SBL-LS.

Fig. 7 Channel estimation performance comparison of various mitigation methods for uncoded 4-QAM 
system with α-stable distribution model

Fig. 8 BER performance comparison of various mitigation methods for uncoded 4-QAM system with α
-stable distribution model
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Figures 9 and 10 show the NMSE of three algorithms versus the number of itera-
tions in uncoded system with SNRs of 5 dB and 20 dB, respectively. The figures show 
that both the FB-Kalman and JCI-Kalman algorithms exhibit a rapid convergence 
rate during the first 15 iterations, with a significant decrease in NMSE, and then the 
convergence rate gradually slows down and NMSE approaches a stable value. After 
40 iterations, both algorithms have reached an almost stable state. While the SBL-LS 
algorithm converges fast, but the NMSE is the largest among three algorithms.

Fig. 9 Channel estimation performance variation of three algorithms with respect to the number of 
iterations when SNR at 5 dB

Fig. 10 Channel estimation performance variation of three algorithms with respect to the number of 
iterations when SNR at 20 dB
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The FB-Kalman achieves better and more reliable performance than the JCI-Kalman and 
SBL-LS because it can jointly estimate the channel, IN, and symbols using all subcarriers in 
the received OFDM symbol. Moreover, the FB-Kalman filter algorithm captures the time 
correlation of sparse time-varying channels, so it has better BER performance.

6  Conclusion
In this paper, we discuss the problems of joint sparse channel estimation, IN mitigation, and 
data detection in the presence of IN for OFDM systems. A joint channel estimation and IN 
suppression algorithm by using all subcarriers based on SBL and FB-Kalman is proposed. 
An efficient implementation algorithm based on EM is utilized to estimate the unknown 
parameters. Simulation results verify the efficiency of the proposed algorithm.

Although the proposed algorithm improves the estimation performance of OFDM sys-
tems in IN background, it comes at the cost of sacrificing algorithm complexity. Our future 
work includes fast implementation algorithms with robust performance.
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