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Abstract

Background: The surface electromyography (SEMG) signal presents significant chal-
lenges for the dynamic analysis and subsequent examination of muscle movements
due to its low signal energy, broad frequency distribution, and inherent noise inter-
ference. However, the conventional wavelet threshold filtering techniques for SEMG
signals are plagued by the Gibbs-like phenomenon and an overall decrease in signal
amplitude, leading to signal distortion.

Purpose: This article aims to establish an improved wavelet thresholding method

that can filter various types of signals, with a particular emphasis on sEMG sig-

nals, by adjusting two independent factors. Hence, it generates the filtered signal

with a higher signal-to-noise ratio (SNR), a lower mean square error (MSE), and better
signal quality.

Results: After denoising Doppler and Heavysine signals, the filtered signal exhib-

its a higher SNR and lower MSE than the signal generated from traditional filtering
algorithms. The filtered sEMG signal has a lower noise baseline while retaining the peak
SEMG signal strength.

Conclusion: The empirical evaluation results show that the quality of the signal
processed by the new noise reduction algorithm is better than the traditional hard
thresholding, soft thresholding, and Garrote thresholding methods. Moreover, the fil-
tering performance on the sEMG signal is improved significantly, which enhances
the accuracy and reliability of subsequent experimental analyses.

Keywords: Threshold function, Wavelet denoising, Surface electromyography (SEMG)
signals

1 Introduction

sEMG (surface electromyography) signal is a weak physiological electrical signal that
accompanies muscle contraction [1]. It has an amplitude range of 0—10 mv and a fre-
quency range of 10-200 Hz [2]. Non-invasive and non-invasive SEMG acquisition
technology is more convenient and safer while ensuring signal validity. As a result, it
is extensively employed in fields such as sports science, smart manufacturing, bioengi-
neering, and rehabilitation medicine [3]. Acquiring the signal requires attaching elec-
trodes to the muscle surface. This process often introduces additive white Gaussian
noise (AWGN) due to factors such as skin impedance and power supply interference.
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Directly processing these noise-containing signals can lead to inaccurate results. It
underscores the importance of filtering the AWGN and ensuring signal validity before
further analysis.

Existing SEMG signal filtering methods, such as the Kalman filter, Chebyshev filter,
and Butterworth filter, have yet to provide a flawless solution. While powerful, Kalman
and Chebyshev filters can be intricate and sometimes less efficient [4]. They used the
Butterworth filter demands specifying the signal frequency range to set up the filtering
parameters. This setup impedes distinguishing between the signal’s time and frequency
domains, making it challenging to assess the fidelity of the filtered signal [4]. To address
this, researchers applied window functions to the signals and introduced a mathematical
model of the short-time Fourier transform (STFT). While this approach has enhanced
the signal quality to a degree [5], a limitation is that the STFT’s window size is typically
fixed, offering limited flexibility for signals with a broad frequency distribution [6-8].

Alternative sSEMG signal filtering techniques have garnered significant attention, with
wavelet transform emerging as a promising solution. The wavelet transform is a time-
frequency analysis approach akin to the Fourier transform but focuses more on local
time characteristics [9]. It allows for adjusting the wavelet basis parameters in alignment
with the original signal’s time-frequency properties [10]. By conducting localized analy-
sis in the time-frequency domain and optimizing the wavelet basis function and thresh-
old function, the signal fidelity can be significantly enhanced [11]. Factors influencing
the wavelet denoising efficiency encompass the choice of wavelet basis, threshold magni-
tude, the number of decomposition levels, etc. [12].

To extend the application scenarios and enhance the performance of wavelet theory,
researchers have introduced the concept of fractal-wavelet analysis. This innovative
approach synergizes the principles of fractal geometry with wavelet theory to examine
intricate structures and signals across diverse disciplines. Notably, fractal-wavelet analy-
sis has proven potent in processing and analyzing data characterized by self-similarity
and multi-scale complexity [13]. The wavelet decomposition phase aims to obtain a mul-
tiresolution representation of the original signal, ascertaining the optimal wavelet basis
and the wavelet decomposition levels using a specific parameter selection technique.
Furthermore, its significant potential in signal processing, image analysis, and pattern
recognition is evident. In recent times, the fractal-wavelet analysis technique has been
employed to investigate deterministic and stochastic scaling of functions, the self-sim-
ilarity in fractal dimensions and images [13], and the positive definite distributions and
wavelets within the realm of engineering mathematics [14, 15]. Especially in remote
sensing and signal processing sectors, the utility of fractal-wavelet analysis is undeniable
given its prowess in capturing intricate details and efficiently handling vast datasets [16,
17]. Moreover, it has shown profound impacts in image analysis, especially when dealing
with complex geometric structures, expanding its application horizons [18, 19].

In conclusion, the threshold denoising method holds considerable sway over the filter-
ing performance of SEMG signals. Conventional threshold denoising techniques tend to
introduce AWGN into the original signal for validation and then attempt to denoise it,
substantiating the denoising theory [12]. The fidelity of such denoised signals is typically
gauged by how closely they resemble the original signal. However, this methodology is
not free from criticism. Some experts argue that by strictly adhering to resemblance as



Ouyang et al. EURASIP Journal on Advances in Signal Processing ~ (2023) 2023:108 Page 3 of 24

the gold standard, one might overlook the inherent noise present within the original
signal. Furthermore, achieving a denoised signal with an optimal signal-to-noise ratio
does not necessarily alleviate issues related to under-denoising and distortion, especially
when the noise signal’s energy level closely mirrors that of the effective signal. Conse-
quently, the adaptability of the threshold filtering approach remains constrained, prov-
ing effective only for a specific subset of SEMG signals [20].

In light of the above challenges, this paper introduces an advanced wavelet thresh-
old denoising approach tailored to cater to diverse signal types, with an emphasis on
sEMG signals. Unlike conventional methods that rely solely on a fixed threshold, our
approach dynamically adjusts the threshold based on the signal’s inherent characteris-
tics, ensuring optimal denoising with minimal signal distortion. This refined approach
encompasses wavelet decomposition, threshold denoising, and reconstruction stages.
The wavelet decomposition phase ascertains the optimal wavelet basis and the wavelet
decomposition levels using a specific parameter selection technique. Following this, an
enhanced threshold function is formulated based on the statistical properties of the sig-
nal and noise coefficients, drawing inspiration from the Garrote threshold function. This
approach proposes two distinct algorithmic schemes. Scheme I incorporates two adjust-
ment factors to tweak the threshold dynamically as per the signal type. Preliminary
tests using Doppler and Heavysine signals demonstrate that this method yields a recon-
structed signal with superior SNR and minimized MSE, a high-fidelity reconstruction of
the original signal. On the other hand, Scheme II leverages a threshold preference func-
tion tailored to the idiosyncrasies of the sSEMG signal, resulting in an optimal threshold
filtering function model. The reconstructed signal’s quality is ascertained using signal
peak level and baseline noise. Empirical evidence suggests that our enhanced thresh-
old filtering algorithm provides referential SEMG signal analysis results, highlighting its
promise in biomedical engineering and physiotherapy domains.

This article is structured as follows: Sect. 2 delves into the noise model of wave-
let denoising and provides an overview of the generic wavelet threshold denoising
approach, discussing the wavelet basis and decomposition layer selection technique.
Sections 3 and 4 elaborate on the traditional and new threshold functions, elucidating
the methodologies and algorithms in depth. Section 5 showcases the processing nuances
of simulated and real-world signals, including a comprehensive error evaluation, thereby
establishing the efficacy of the algorithm for sSEMG signals. Finally, Sect. 6 provides a

concise summary and conclusion of our findings.

2 Methodology
Wavelet threshold denoising approach, the noise model of wavelet denoising is [4]:

S =s®)+0o() (1)

In the equation, f{¢) represents the noisy signal, s(¢) is the ideal signal, and o(t) denotes
the AWGN signal, following an N(0,2) distribution. According to the relevant literature,
the wavelet coefficients of an ideal signal, after wavelet transformation, display strong
correlations at various scales and either increase or remain constant as the transforma-
tion scale increases. In contrast, the wavelet coefficients of noise signals exhibit weak
or no correlations at different scales and decrease with increasing scale during wavelet
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decomposition. This trend occurs at various levels of wavelet decomposition. For more
minor variation scales, the analyzed signal’s wavelet coefficients are predominantly influ-
enced by the noise signal, while for larger transformation scales, they are primarily con-
trolled by the ideal signal [9].

From the conclusions drawn, the general flow of wavelet threshold filtering is estab-
lished. Figure 1 illustrates that how thresholds are set at different scales to adjust the
wavelet coefficients, leading to their subsequent reconstruction [20, 21]. The design
of wavelet filters hinges on several criteria, including frequency and time localization,
orthogonality or compact support, symmetry, smoothness, and high-order vanishing
moments [22]. To tailor the design effectively, researchers and practitioners rigorously
evaluate the program requirements, understand the trade-offs between time and fre-
quency localization, and ensure computational efficiency. This comprehensive assess-
ment assists in choosing the apt wavelet basis and designing the optimal wavelet filter
for the specific application.

2.1 Wavelet basis selection
This study explores commonly used wavelet bases, including Haar wavelets, Daubechies
(dbN) wavelets, Mexican Hat (mexh) wavelets, Morlet wavelets, Symlet wavelets, Coi-
flets wavelets, and Meyer wavelets. Due to its simplicity and widespread application,
the Haar wavelet exhibits orthogonality, making it suitable for capturing abrupt signal
changes. However, compared to other wavelets, its time and frequency resolution might
be lower. In contrast, Daubechies wavelets and Symlets wavelets provide better smooth-
ing for high-frequency components, while Coiflets wavelets excel in frequency resolu-
tion. The Morlet wavelet is especially favored for continuous wavelet transformation in
time-frequency analysis.

Furthermore, wavelets of different orders exhibit varying degrees of smoothness and
resolution in the time and frequency domains. With an increase in wavelet order, there

is an enhancement in smoothness and a corresponding decrease in frequency resolution.

wavelet
noisy signal > decomposition
(DWT)

y

Noise Estimation

A

choosing threshold

A

[ Threshold filter function (soft threshold/hard threshold etc.)
A
wavelat reconstruction denoise
(IDWT) " signal

Fig. 1 Basic process of SEMG wavelet denoising
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This trade-off is inherent due to the time-frequency uncertainty principle. Higher-order
wavelets are especially adept at processing smooth signals. In contrast, opting for lower-
order wavelets might be beneficial for capturing detailed variations in non-smooth sig-
nals. Recognizing that exceptionally high wavelet orders can result in an extended filter
length, amplifying computational complexity, and potentially introducing boundary
effects are crucial.

Given the broad frequency distribution and the inherent random non-smoothness
of the original signal, we have zeroed in on Daubechies wavelets, Symlets wavelets,
and Coiflets wavelets as potential wavelet bases [23]. We proceeded to model the filter
design employing the aforementioned wavelet bases across different orders. By institut-
ing multiple threshold filtering models, we aimed to pinpoint the optimal wavelet basis
for the filtered signal via a detailed error analysis [24]. After juxtaposing the errors, the
sym4 wavelet from the Symlet wavelet family emerged as the preeminent choice for our
research.

2.2 Determination of wavelet decomposition level

The wavelet decomposition level denotes the scale at which the signal undergoes wavelet
decomposition, systematically breaking the signal down into its constituent parts across
varying scales. The maximum permissible number of decomposition levels is often
constrained by the length of the signal and computational considerations. This can be
quantitatively expressed as j = log, (M), where j represents the number of decomposi-
tion levels, and M corresponds to the overall length of the signal [25]. It is imperative to
acknowledge that excessively increasing the decomposition levels can degrade the fidel-
ity of the original (or ideal) signal upon reconstruction and amplify computational com-
plexities [26].

Conversely, the lower limit for the number of decomposition levels is governed by
the characteristics of the signal and the specific application’s requirements. Typically,
a minimum of two levels of decomposition is required to capture both the approxima-
tion (coarse features) and detailed (fine features) information of the signal. The lower the
decomposition levels, the more limited the denoising effect and reduced signal fidelity.
For EMG signal processing, the decomposition level can be set between 3 and 10 lev-
els, contingent upon varying requirements for wavelet bases, thresholding criteria, and
waveform intricacies [27]. In this study, we ascertain the optimal number of decomposi-
tion levels through quantitative error analysis of signals wavelet-decomposed across dif-
ferent levels, employing the method of control variables for level selection. Specifically,
for Doppler and Heavysine signals, we opted for five levels, whereas for sSEMQG signals,
we designated 10 levels. By meticulously considering these parameters, we aim to hone
in on the most precise wavelet decomposition for our signal processing approach.

2.3 Selection of thresholding filtering function and wavelet reconstruction

The wavelet threshold is pivotal in determining which wavelet coefficients should con-
sider as noise. The threshold magnitude directly influences the quality of the recon-
structed signal. A disproportionately large threshold might inadvertently filter out
both noise and the desired signals, while an undersized threshold could allow the noise
to persist, resulting in suboptimal denoising [28]. In the MATLAB toolbox (2020b,
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2020.09.17), there are four integrated threshold estimation methods: the unbiased likeli-
hood estimation (rigrsure) threshold, the fixed value (sqtwolog) threshold, the heuris-
tic (heursure) threshold, and the minimum-maximum variance (minimaxi) threshold
[29]. We will rigorously investigate the filtering efficacy of these threshold estimation
techniques. The thresholding operations primarily encompass hard thresholding, soft
thresholding, and Garrote thresholding functions [30]. Our subsequent analysis will
detail the nuances of these thresholding methods and their implications for the filtering
process.

3 Selection of thresholding function

1. Hard threshold

X, |x| > 4

fi(x):{(),|x| S/{ (2)

2. Soft threshold
_fx—Jsgn(x), x| >4

fiw) = { 0, |xl= 3)

3. Garrote threshold
2
o — X — x? |x| > i
fiw = {# = @

fi(x) in the above three equations represents the estimated wavelet coefficients for the
i-th level after threshold denoising processing, where x represents the input original
wavelet coefficient, and 4 is the determined threshold. The graphs of the three types of
functions are shown in Fig. 2.

Three types of threshold function images

= hard threshold
100 Ff----- soft threshold
—— Garrote threshold

Wavelet coefficients
after threshold filtering
(=}

T

-100 |

-100 -50 0 50 100
Original wavelet coefficients

Fig. 2 Comparison of three types of threshold function images
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Among them, the soft and hard threshold functions are widely used in threshold
denoising. From the graph of the functions, the hard threshold function is discontinu-
ous, exhibiting a sharp increase at the point x = A. While the soft threshold function
displays good continuity, the segment with an absolute value greater than the threshold
has a constant bias of 1 compared to the original coefficients. As a result, when using the
hard threshold to process signals, the estimated wavelet coefficients of the smaller coef-
ficients around / after filtering will exhibit significant differences. This leads to the com-
plete removal of signals with lower frequencies while retaining the larger ones, even if
their energies are comparable. Even though this method can preserve spike signals well,
it is prone to the Gibbs-like phenomenon [31]—oscillations at the transition points of
the reconstructed signal in the time-frequency plot. The signal reconstructed using the
soft threshold function exhibits high smoothness. However, when reconstructing signals
with widely distributed coefficients after wavelet decomposition, the fixed coefficient
bias might introduce notable deviations between the original and reconstructed signals.
This results in over-fitting, leading to signal distortion [32]. To address this challenge,
Donoho introduced a threshold filtering approach [33]. Observing Fig. 2:

(1) The function lies between the soft and hard thresholds.
(2) For larger original wavelet coefficients, the function approaches the hard threshold
function.

The Garrote function synergizes the properties of both soft and hard thresholds, effec-
tively mitigating their drawbacks. The smoother reconstructed signal can diminish the
Gibbs-like phenomenon at pronounced peaks. Moreover, it provides efficient filtering
for signals with dispersed wavelet coefficients. Nonetheless, the Garrote function’s dis-
tinct expression might result in suboptimal restoration of the ideal signal when wavelet
coefficients cluster around the threshold. Conversely, when the wavelet coefficients are
spread out, there might be a need to strengthen the function’s approximation toward the
hard threshold profile. This makes the Garrote function somewhat limited in its algo-
rithmic flexibility and application versatility for processing varying input signals [34].

J.=0o+/2In(N) (5)

o= medlan(dij) ©)
0.6745

The formula indicates that o stands for the standard deviation of the noise, N represents
the length of the original signal, and dj; signifies the median of the wavelet coefficients.
From this formula, it is evident that the wavelet coefficient’s threshold value remains
consistent across various decomposition levels. However, utilizing the same threshold
across these levels often overlooks the variability in the ideal threshold across different
wavelet scales. Such oversight can result in pronounced errors, especially when reducing
the magnitude of high-frequency detail coefficients [35].

In our study, we refine the threshold selection method rooted in the Garrote function,

allowing the wavelet coefficients to adjust according to the decomposition level. This,
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in turn, augments the algorithm’s filtration precision for noise signals. We introduce an
enhanced threshold function that relies on two adjustment factors. The first, represented
by i, dictates the proximity of the threshold function to the actual threshold. The sec-
ond, denoted by §, controls its general behavior toward the hard threshold. Such a con-
figuration facilitates flexible tweaks in sync with the wavelet coefficient distribution for
diverse signals, amplifying the restoration quality of the filtered signal to its ideal state.

4 Advancements in threshold denoising techniques

4.1 Strategy for adaptive layered threshold selection

Post-wavelet transformation, the wavelet coefficients of both the ideal and noise signals
display unique statistical traits across different scales. Specifically, the coefficients of the
ideal signal manifest a potent correlation across scales, either amplifying or maintain-
ing their magnitude with scale increments. In contrast, noise signal coefficients por-
tray weak or negligible correlations, dwindling as the scale heightens. Grounded on this
observation, our paper leverages the thresholding algorithm detailed in reference [36].

i o/2InN -
In(j + 1)

In the equation above, j denotes the decomposition level, while other parameters align
with those in Eq. (4). The threshold, 4, as detailed in Eq. (7), is influenced not only by the
overall length of the wavelet coefficients and the noise magnitude but also diminishes
with the rise in decomposition level. Such a trend resonates with the earlier discussed
dynamics of noise variation with decomposition level, theoretically fostering superior
denoising outcomes.

4.2 Conception of the threshold filtering function

As highlighted in Sect. 3, the trio of threshold functions dissected earlier exhibits inher-
ent limitations upon being applied to unprocessed signals from diverse origins, attrib-
uted to their immutable function structures. Hence, the novel threshold function should
draw inspiration from conventional threshold functions while imbibing the ensuing
traits:

(1) For the segments of the original wavelet coefficients with an absolute value falling
below the threshold, they should be equated to zero.

(2) For original wavelet coefficients with absolute values exceeding the threshold, their
function graph should lean toward the hard threshold.

However, contingent on the intrinsic properties of the original signal, the ensuing
parameters mandate meticulous regulation:

(1) A rapid approximation can proficiently rectify the persistent bias dilemma in soft
threshold functions. Nevertheless, it might simultaneously elevate the alteration
rate of post-filtered wavelet coefficients, mirroring the pronounced oscillation
peaks predicament inherent in hard threshold functions.
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(2) A gradual approximation might inflict a pronounced input—output discrepancy,
especially for wavelet coefficients hovering near the threshold. This might culmi-
nate in an overly smooth reconstruction function, culminating in the inadvertent

omission of pivotal signals.

In light of the above attributes and the merits of the Garrote function’s design, we
advocate an improved threshold function, delineated in Eq. (8) that follows.

B DT . S _ U 2
r e \/m} +[1- V] e x>
fix) =40 x<=1 (8)
SOUAx) . A2 | 8040, )
x + € ’x2+2xe/*‘ (e/'v+x1):| [1 € ] ,x.efd(x+/l) X <A

In this equation, /4 represents the selected threshold, and § and u are the overall adjust-
ment coefficient and the adjustment coefficient near the threshold, respectively. When
3 is preselected, and p is increased, the function rapidly approaches the hard threshold
function at a smaller distance from the threshold, as illustrated in Fig. 3. Conversely,
when p takes a larger value, the function rises over a smaller range and gradually slows
down before approaching the hard threshold function.

Alternatively, when p is present and § is increased, the function globally approaches
the hard threshold function, as demonstrated in Fig. 4. The improved threshold func-
tion maintains continuity. By tweaking the values of © and 8, a more adaptive and
effective modulation of the threshold function is possible, aiming to improve the
reconstruction of the original signal. For noisy signals with a broad frequency domain
distribution, opting for a higher § value can diminish the constant disparity between
the wavelet coefficients post-threshold filtering and the original wavelet coeffi-
cients, thus enhancing the signal’s reconstruction capability. Conversely, for noisy
signals characterized by extensive variations, selecting a lower p value can help in

Four types of threshold function images

- Jew threshold function (pu=6. &=0.1)
100 k[~ ew threshold function (pu=1. &=0.1) P
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Wavelet coefficients
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-100 |

1 1 1 1 1
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Fig. 3 Changing u value for four types of function image comparison
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Four types of threshold function images

— - - -New threshold function (p=1. &=0.01)
100 + -~ New threshold function (p=1. &=0.1)
- ----- Hard threshold

— — Soft threshold

Garrote threshold

50

Wavelet coefficients
after threshold filtering

50 F

-100

-100 -50 0 50 100

Original wavelet coefficients

Fig. 4 Changing o value for four types of function image comparison

smoothening the wavelet coefficients, thereby reducing the Gibbs-like phenomenon
observed in the filtered signal.

4.3 Simulation experiment design and analysis

To validate the robustness of the improved threshold algorithm, the author will con-
duct experiments using standard test signals: Doppler, which exhibits broad frequency
domain distributions, and Heavysine, characterized by strong discontinuities. Gaussian
white noise will be added to these signals to simulate noisy conditions, after which they
will be subjected to denoising using the proposed thresholding technique with a self-
selected adjustment factor.

In the evaluation process, two prominent metrics, signal-to-noise ratio (SNR) and
mean square error (MSE), will be employed to gauge the denoising efficacy. Within this
context, SNR denotes the ratio of the power of the ideal signal to that of the noise. A
superior SNR value indicates enhanced filtering performance, reflecting a higher fidelity
in the restoration of the original signal [37]. On the other hand, MSE serves as a measure
of the average squared differences between the filtered and original signals. A dimin-
ished MSE implies that the denoised signal is in close alignment with the ideal signal,
showcasing minimal deviation and, thus, lower distortion.

SN L (s(i)?
SNR = 101
8 [Z?il(s(i) — x(i))? 9)
1 N
MSE = - > _10logls() — x()I* 10)

i=1
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For comparison, this paper applied hard thresholding, soft thresholding, Garrote thresh-
olding, and the improved thresholding approach to denoise the noisy signals. The wave-
let basis used was sym4, the decomposition level was 5, and the threshold was selected
as sqtwolog (fixed threshold), with the threshold size estimated and adjusted based on
the wavelet coefficients at each level. The simulation results for the Doppler signal are

shown in Fig. 5.
From the comparison of denoising effects in Fig. 5 with the original signal, the follow-

ing observations can be made:

1)

Amplitude

Hard thresholding performs well in data restoration for the first 0-50 samples.
However, it exhibits spike artifacts in the waveform corresponding to data points of
100-200 samples, with noticeable fluctuations around 250 data points, resulting in
poor restoration of the original signal.

Soft thresholding results in a relatively smooth denoised signal, with better restora-
tion of the signal in the low-frequency band. However, there is a noticeable fixed
deviation between the amplitudes of data points in the range of 0-100 samples and
the original signal, leading to signal distortion.

Both Garrote and improved thresholding methods combine advantages from pre-
vious methods. Compared to Garrote thresholding, the improved thresholding
approach exhibits better processing for waveform details and closely approximates
the original signal waveform around 300-400 data points, resulting in a better
denoising effect. In addition, the quantitative indicators of each model’s denoising

effect on the Doppler noisy signal are shown in Table 1.

Noisy signal [}
E
=
Hard threshold (sqtwolog) 5
1 1
Soft threshold  (sqtwolog) 280 350 420
Sample Point

T Hard threshold (rigrsure)
Soft threshold  (rigrsure)
Hard threshold (heursure)
Soft threshold (heursure)
Hard threshold (minimaxi)

AN I \/ N\ \ d i "~ Soft threshold (minimaxi)

Garrote threshold

v
|
v
Amplitude

~ Improved threshold

T T T T T T T T T T T T

0 200 400 600 800 1000 280 350 420
Sample Point Sample Point

Fig.5 Denoising effect of Doppler signal
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From Table 1, it can be observed that the Garrote thresholding approach improves the
signal fidelity to some extent compared to the hard and soft thresholding methods, but
the improvement effect is limited. As indicated in the table in bold, the improved thresh-
old approach exhibits highest SNR (24.4057), lowest MSE (0.00031102), this indicates
a higher fidelity of the reconstructed signal to the original signal, and a more obvious
denoising effect compared to the other three threshold processing methods. The sim-
ulation data demonstrate that the improved threshold filtering approach enhances the
original signal’s restoration. Next, the four threshold filtering methods are applied to the
noisy Heavysine signal. The sym4 wavelet is also used for five-level decomposition, and
the threshold is selected as sqtwolog (fixed threshold), with the threshold size estimated
and adjusted based on the wavelet coefficients at each level. The Heavysine signal con-
tains two discontinuities, the adjustment factor w is set to 1, and § is chosen as 0.01. The
simulation results and quantitative indicators are shown below.

Similarly, the filtered signals from various filtering methods are compared with the
original signals.

(1) The filtering methods based on the hard thresholding approach perform better in
restoring the signal at the discontinuities. However, an increased Gibbs-like phe-
nomenon appears, distorting the signal. On the other hand, the filtered signal based
on the soft thresholding approach provides a smoother overall appearance. Still, it
fails to accurately capture the two signal waveforms at the discontinuities, leading
to a loss of critical information.

(2) The Garrote thresholding approach combines the strengths of the first two meth-
ods, but artifacts remain in the overall signal waveform. In contrast, the improved
threshold filtering approach does not introduce unwanted spikes or oscillations
across the entire waveform and offers the best restoration effect at the discontinui-
ties.

The quantitative indicators of the denoising effect of each model on the Heavysine noise
signal are presented in Table 2.

From Table 2, it can be seen that for the Heavysine signal containing two discontinui-
ties, the denoising effect of the Garrote thresholding approach is better than various hard
and soft thresholding methods, but the improvement is not significant. As indicated in
the table in bold, the improved threshold denoising approach exhibits the highest SNR
(25.4245) and the lowest MSE (0.0273), demonstrating its superior enhancement effect
on signal quality. By plotting the reconstructed signal graphs based on various denois-
ing methods, as shown in Fig. 6. it can be observed that the reconstructed signal of the
improved thresholding denoising method effectively mitigates spurious signals within
the 0-20 sample points, while providing superior restoration around the abrupt changes
near the 300th and 700th signal points. On the general chart, the improved thresholding
denoising method yields a reconstructed signal with the highest fidelity to the original
signal and minimal error.

The optimization algorithm design process involves using MATLAB simulation
software to build upon the basic wavelet threshold denoising algorithm by continu-
ously updating the tuning factors within a loop sequence and extracting a quantitative



Ouyang et al. EURASIP Journal on Advances in Signal Processing ~ (2023) 2023:108

/\ f\/ Raw signal

L ,
et WWMWNM MW MWMWW Noisy signal

w Hard threshold (sqtwolog)
M Soft threshold (sqtwolog)

WW Hard threshold (rigrsure)

TN —~ Soft threshold (rigrsure)

Hard threshold (heursure)

/\/w\\_/ Soft threshold - Cheursure)

WW Hard threshold (minimaxi)
w Soft threshold  (minimaxi)
w Garrote threshold
w Improved threshold

I T I T
0 200 400 600 800 1000

Amplitude

Sample Point
Fig. 6 Denoising effect of Heavysine signal

Table 1 Denoising effect of thresholding algorithms on Doppler signals

Denoising function Quantitative metrics

SNR MSE
Hard threshold(sgtwolog) 22.7494 0.00045542
Soft threshold(sgtwolog) 19.4498 0.00097359
Hard threshold(rigrsure) 20.8401 0.00070689
Soft threshold(rigrsure) 23.6366 0.00037128
Hard threshold(heursure) 21.9295 0.00055005
Soft threshold(heursure) 234166 0.00039057
Hard threshold(minimaxi) 21.6546 0.000586
Soft threshold(minimanxi) 229841 0.00043146
Garrote threshold 22.9841 0.00043147
Improved threshold 244057 0.00031102

“w_n

indicator of the error represented by “s” By comparing the sizes of “s,” the optimal
values for u and § can be determined, and the corresponding filtered signal can be
outputted. The algorithm flowchart is shown in Fig. 7.

In this simulation experiment, the upper and lower limits of the adjustment fac-
tor u are selected as [a, b), the range of § is selected as [c, d), and Am and An are the

respective step increments. For this study, a and c are set to 0.01, b is set to 8, and d is



Ouyang et al. EURASIP Journal on Advances in Signal Processing

(2023) 2023:108 Page 14 of 24

Table 2 Denoising effect of thresholding algorithms on Heavysine signals

Denoising function

Quantitative metrics

SNR MSE
Hard threshold(sgtwolog) 24.1347 0.0368
Soft threshold(sqtwolog) 239735 0.0381
Hard threshold(rigrsure) 18.3669 0.1368
Soft threshold(rigrsure) 23.2683 0.0449
Hard threshold(heursure) 23.0693 0.047
Soft threshold(heursure) 245043 0.0338
Hard threshold(minimaxi) 19.3135 0.1115
Soft threshold(minimanxi) 244135 0.0344
Garrote threshold 24.6503 0.0326
Improved threshold 254245 0.0273

Noisy SEMG

extract signal

feature

construct analog

signal

signals

v

Extracting wavelet coefficients of each order |

.

| Determining the threshold size with setting variables m&[a,b), n €[c,d) |
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Fig. 7 Flowchart of improved wavelet thresholding method

set to 10. The values of Am and A#u are chosen as 0.01, and the quantization error s is
represented by the SNR and MSE.
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5 Generation of simulated signals

5.1 Instance verification and analysis

In the previous section, the effectiveness of the filtering algorithm was verified using
simulated signals. To further validate the improved threshold algorithm for denoising
sEMG signals, this study employs original SEMG signals simulated from the Python
physiological signal database Neurokit2. Gaussian white noise is subsequently added to

these signals to produce the noisy signals.

5.2 Error quantification
The noisy signal is input into the filtering algorithm, as previously described. The quan-
titative indicators for each model based on different threshold filtering algorithms are
established and visualized in Fig. 8. Here, u and § represent the adjustment factors, and
the z-axis corresponds to the magnitude of the quantitative indicators. The extreme
value points © = 0.91 and § = 0.01 are selected, corresponding to the highest qual-
ity filtered signal with the highest SNR and lowest MSE. The post-filter graphs of other
threshold filtering algorithms are also plotted in Fig. 9. The corresponding quantitative
indicators are then calculated and listed in Table 3. Consistent with the preceding text,
as indicated in the table in bold, the improved threshold denoising approach exhibits the
highest SNR (13.9215) and the lowest MSE (0.0029), the reconstructed signal remains
highly faithful.

From Table 3, the quantification indicators reveal the performance of various denois-
ing functions. When using the sqtwolog threshold, the Garrote thresholding method

SNR peak point(13.9215)
SE =0.0029
m=0.01 n=0.91

Fig. 8 Comparison between the example signal and the signal after improved threshold filtering



Ouyang et al. EURASIP Journal on Advances in Signal Processing

(2023) 2023:108

£

$31%3
$§232

|

Amplitude

143

$33
£33

|

£3
33

£:

|

T
0

T
500

T T
1000 1500

Sample Point

T 1
2000 2500

Page 16 of 24

Raw signal
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Garrote threshold

Improved threshold

Fig.9 Comparison between the example signal and the signal after improved threshold filtering

Table 3 Effect of different denoising functions on the quality of the simulated signal

Denoising function

Quantitative metrics

SNR MSE

Hard threshold(sgtwolog) 95734 0.0079
Soft threshold(sqgtwolog) 5.9241 0.0183
Hard threshold(rigrsure) 13.2785 0.0034
Soft threshold(rigrsure) 124951 0.004

Hard threshold(heursure) 13.3426 0.0033
Soft threshold(heursure) 12.3653 0.0041

Hard threshold(minimaxi) 12.0376 0.0045
Soft threshold(minimaxi) 8463 0.0102
Garrote threshold 9.6412 0.0078
Improved threshold 139215 0.0029

slightly surpasses both soft and hard thresholding methods in terms of signal fidelity.

However, the new improved threshold function outshines others, exhibiting the high-

est SNR and lowest MSE. This suggests that its filtered signal closely approximates the

original.

Furthermore, the time-frequency distribution maps of the soft and hard threshold

functions based on the rigrsure threshold and the improved threshold function are

drawn (Fig. 10). From these maps, it can be seen that the improved wavelet threshold

function better reflects the amplitude-frequency characteristics of the original signal, as

the amplitudes corresponding to the three groups of muscle cycle movement waveforms
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Fig. 10 Individual example of the extraction of muscle synergies. a Original signal amplitude-frequency
graph, b signal amplitude-frequency graph after adding noise, ¢ signal amplitude-frequency graph after soft
function filtering based on rigrsure threshold, d signal amplitude-frequency graph after soft function filtering

based on rigrsure threshold, and e signal amplitude-frequency graph after improved threshold function
filtering
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appearing around 2 s, 5 s, and 8 s are more similar for the improved threshold function.
Comparing the amplitude-frequency plots a and b, it is evident that introducing white
noise significantly amplifies the baseline noise during the resting intervals of the elec-
tromyographic signal. Additionally, the peak amplitude during the active phases of the
exercise is slightly increased due to the addition of white noise. When contrasting b with
¢, it is clear that the soft thresholding approach effectively filters out the noise during
these resting intervals. However, it considerably attenuates the signal peaks during the
active phases, which can compromise the signal fidelity and impact subsequent analysis.
In contrast, comparing b with d shows that while hard thresholding effectively retains
the signal peaks, it does not handle the baseline noise during the resting phase as effec-
tively. Overall, the improved thresholding method demonstrates the best overall filter-
ing performance across the entire time series, enhancing the signal’s fidelity and utility.
The chosen adjustment parameters, u = 0.91 and § = 0.01, will be applied for processing
subsequent field-recorded signals.

5.3 Case study

After optimizing the simulated signals, two specific adjustment factors were derived.
These factors were then utilized to construct a filtering algorithm model for the actual
instance. Given that both the frequency and sampling duration of the simulated signal
mirrored those of the actual signal, the obtained factors are of significant reference value
for processing the actual instance.

The laboratory utilized a 16-channel wireless SEMG instrument (delsys Trigno IM)
with an electrode spacing of 10 mm and a bandwidth ranging from 10 to 850 Hz. A total
of 10 sEMG signals were captured from various muscles of the pilot subjects, sampled at
a rate of 1260 Hz, as illustrated in Fig. 11. The average sample duration was 110 s, with
the experimental signal being sent to the main computer in real-time, enabling real-time
observation of the muscle motion, as depicted in Fig. 12.

The experimental protocol required participants to hold the operating handle in the
left and right directions under varying torques: high, medium, and low. The two degrees
of freedom operating device, regulated by a PLC, simulated the X/Y plane movement
of an aviation control stick, as shown in Fig. 13. Both the photoelectric encoder of the
motor and the torque sensor relayed real-time positional and force data to the host
computer via the PLC. The sequence involved starting with a leftward hold under high
torque, transitioning through medium and low torques, and then switching the torque
direction for rightward holds from low to high torques. Each hold lasted 10 s. Between
experiments with different torques, an 8-s break was introduced to mitigate the impact
of muscle fatigue on signal quality. Figure 14 shows the real electromyogram (SEMG)
collected in the experiment, with the black part representing the raw data. As a compari-
son, the red part displays the signal processed by the improved threshold algorithm for
denoising. To better describe the filtering effect, the amplitude-frequency graph of the
signal is plotted.

The simulation findings confirm that the improved threshold function effectively fil-
ters out noise, especially the undesired baseline noise observed during muscle rest
periods, from the sEMG signals. Simultaneously, it preserves the essential muscle
activity signals during motion. As evident in the amplitude comparisons in Figs. 15
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#}i?és\\

Fig. 11 sEMG signal acquisition experiment

Fig. 12 Two degrees of freedom joystick

and 16, the energy of the noise signal around timestamps 20 s, 40 s, and 55 s is nota-
bly reduced after filtering. Simultaneously, the peak activity signals during the mus-
cle maintenance phase at approximately 10 s and 30 s are well-preserved. Our results
highlight the enhanced signal fidelity achieved with the modified threshold function.
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Fig. 13 Real-time signal reception interface

original signal
reconstructed signal

120

15 30 45 60 75 90 105

Time/s
Fig. 14 Comparison between the example signal and the signal after improved threshold filtering

Our evaluations focus on the fidelity with which the processed signal replicates its
unaltered state, regardless of whether we adopt standard values or leverage adjust-
ment coefficients derived from simulations. A promising avenue for future research
is integrating paraconsistent logic into wavelet filter design. Given its capability to
systematically address contradictions within stipulated contexts, paraconsistent logic
may offer innovative strategies to strengthen filter robustness. The primary goal is to
utilize this synthesis to refine the relationship between adjustment coefficients and
motion recognition accuracy, thereby enhancing the algorithm’s resilience in uncer-
tain scenarios and augmenting the efficacy of wavelet-based signal processing meth-
odologies [38].
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6 Conclusion

In this study, we introduce an advanced wavelet threshold denoising methodology by
extending the Garrote threshold function. We meticulously design a threshold func-
tion fortified with dual adjustment factors, enabling the derivation of an array of fil-
tering algorithms that adeptly adapt to varying noise intensities. Noteworthily, our
methodology transcends the boundaries of myoelectric signals and showcases com-
patibility with a diverse set of signals, paving the way for tailored applications as per
experimental mandates.

Our innovative strategy confers distinct advantages:

(1) By holistically appraising the signal’s temporal attributes and its spectral distribu-
tion in the frequency domain, we achieve superior denoising by prudently selecting
pertinent adjustment factors.

(2) Drawing upon inherent signal characteristics, we craft a simulated waveform and
deploy a specialized preference algorithm. This algorithm facilitates the extraction
of optimal adjustment coefficients through iterative cycles of noise infusion and
subsequent denoising. These deduced coefficients are subsequently interfaced with
the foundational threshold function, catalyzing enhanced denoising.
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The essential advantage of this method is the ability to select the filtered signal with
the most significant reduction in noise from a large number of function models,
resulting in the optimal threshold function that effectively suppresses noise. In realms
like biomedical engineering and physiotherapy, our strategy promises to give some
inspirations, especially for intricate tasks such as eigenvalue extraction and post-
denoising signal appraisal.
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