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Abstract 

The area of one-bit compressed sensing (1-bit CS) focuses on the recovery of sparse 
signals from binary measurements. Over the past decade, this field has witnessed 
the emergence of well-developed theories. However, most of the existing literature 
is confined to fully random measurement matrices, like random Gaussian and random 
sub-Gaussian measurements. This limitation often results in high generation and stor-
age costs. This paper aims to apply semi-tensor product-based measurements to 1-bit 
CS. By utilizing the semi-tensor product, this proposed method can compress high-
dimensional signals using lower-dimensional measurement matrices, thereby reducing 
the cost of generating and storing fully random measurement matrices. We propose 
a regularized model for this problem that has a closed-form solution. Theoretically, we 
demonstrate that the solution provides an approximate estimate of the underlying 
signal with upper bounds on recovery error. Empirically, we conduct a series of experi-
ments on both synthetic and real-world data to demonstrate the proposed method’s 
ability to utilize a lower-dimensional measurement matrix for signal compression 
and reconstruction with enhanced flexibility, resulting in improved recovery accuracy.

Keywords: 1-Bit compressed sensing, Semi-tensor, L1-norm, Dither

1 Introduction
Compressed (CS) has drawn widely studied and applied in many fields such as moderate 
resolution imaging [1, 2] and magnetic resonance imaging (MRI). One-bit compressed 
sensing (1-bit CS) [3–9] has garnered significant attention in recent years as a unique 
paradigm of (CS) [10, 11]. In contrast to the classic compressed sensing method, which 
utilizes an infinite-precision real-valued measurement b = Ax where A ∈ R

m×n is the 
measurement matrix and x ∈ R

n denotes a sparse signal, 1-bit CS only records the signs 
of real-valued measurements as y = sign(b) = sign(Ax) . Using binary measurement, 
1-bit CS offers a cost-effective hardware implementation and high-speed sampling. 
Additionally, it exhibits greater resilience to various nonlinear distortions commonly 
encountered in input electronics [5]. Due to the aforementioned reasons, it possesses a 
wide range of potential applications in massive MIMO systems [12, 13], wireless sensor 
networks [14], synthetic aperture radar systems [15], and other scenarios where large-
scale sparse data are typically involved [16].
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Mathematically, standard 1-bit CS aims to recover the direction of the underlying 
sparse signal x ∈ R

n (i.e., x/‖x‖2 ) from 1-bit measurements

where sign(·) applies componentwise on real-valued measurement Ax , satisfying 
sign(v) = 1 if v ≥ 0 , and sign(v) = −1 if v < 0 . The standard measurement model (1) 
fails to capture information on the magnitude of x (i.e., ‖x‖2 ), resulting in the afore-
mentioned studies being limited to the unit sphere Sn := {x ∈ R

n : �x�2 = 1} . Jacques 
et al. [5] have proposed an ℓ0-minimization method for this problem, which has been 
proven to yield an optimal solution that provides a robust estimate of the original sig-
nal. Although a binary iterative hard threshold (BIHT) algorithm has been developed 
to approximate the underlying solution empirically, solving the ℓ0-minimization model 
exactly remains an NP-hard problem. Plan and Vershynin [6] utilize the ℓ1-norm as a 
means of promoting sparsity, proposing a convex programming approach that is also 
supported by theoretical guarantees. Moreover, their method demonstrates robustness 
against bit flips, a prevalent form of noise in binary measurements. Zhang et al. [7] sug-
gest the following regularized model

and present the existence of a closed-form solution, namely Sγ (A
T y)/‖Sγ (A

T y)‖2 
where Sγ (·) denotes the soft-thresholding operator [psee Eq. (22)]. However, the ℓ1-
norm is a loose approximation of ℓ0-quasi-norm, often resulting in an over-penalized 
problem [17]. In our prior research [8], we proposed an ℓp(0 < p < 1)-minimization 
method and demonstrated its superiority over the ℓ1-norm based counterpart in terms 
of reducing the required number of measurements.

The aforementioned studies have solely focused on fully random Gaussian distribu-
tions, which limits their applicability in processing large-scale data. Unfortunately, Ai 
et  al. [18] have shown that even with the commonly used fully random sub-Gauss-
ian measurement matrices, it is impossible to recover any sparse unit signal from (1) 
without additional constraints (e.g., x is not too sparse). To mitigate this issue, it has 
recently been discovered that introducing dithers can be beneficial. Let

where τ ∈ R
m denotes a random dither vector. Dirksen and Mendelson [19] demon-

strated that a convex program can be applied to recover the signal x ∈ R
n from (3) when 

τ is generated from a uniform distribution, and A is a random sub-Gaussian measure-
ment matrix. However, fully sub-Gaussian measurements still pose challenges in terms 
of high costs for generating and storing measurement matrices. Dirksen et  al. [20] 
showed that randomly subsampled Gaussian circulant matrices can be utilized for 1-bit 
CS, and Liu et al. [21] provide an optimization algorithm based on it under generative 
prior. Dirksen et al. [22] further applied randomly subsampled sub-Gaussian circulant 
matrices to 1-bit CS and prove that the proposed algorithm is robust to analog pre-
quantization noise as well as to adversarial bit corruptions in the quantization process. 

(1)y = sign(Ax),

(2)û := arg min
�u�2≤1

− 1

m
�AT y,u� + γ �u�1,

(3)y = sign(Ax + τ ),
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It should be noted that circulant measurement matrices are typically limited to subsam-
pling, while oversampling is commonly employed in 1-bit CS despite being irrelevant in 
traditional CS problems. In practical applications of circulant matrices, we have to intro-
duce the zero-padding technique on the original signal to accommodate oversampling, 
which lifts the original signal to a higher dimension. Additionally, a square measurement 
matrix with a matching dimension has to be constructed. In summary, the research on 
designing measurement matrices for 1-bit CS is still in its early stages.

The concept of semi-tensor product of matrices was proposed by Cheng et  al., 
which is a generalization of conventional matrix product [23–25]. The introduction 
of semi-tensor product enables matrix multiplication even when two matrices do not 
meet the dimension matching condition. This concept has found applications in vari-
ous engineering fields, including but not limited to information security [26], vehi-
cle control [27], and gene regulation [28]. Specially, Xie et  al. [29] proposed a new 
model of signal compression and reconstruction based on the semi-tensor product, 
which breaks the dimension matching conditions required by the traditional CS 
model. The novel approach employs lower-dimensional sensing matrices to compress 
high-dimensional signals, while simultaneously reducing total reconstruction time by 
conducting the reconstruction phase among multiple CS decoders. Inspired by these 
advantages, we are considering the potential application of semi-tensor product in 
1-bit CS to tackle the challenge of storing large measurement matrices. The primary 
contributions of this paper are as follows.

• We first apply the semi-tensor product to the measurement model of 1-bit CS 
with employing the dither technique. The novel measurement model significantly 
reduces the dimensionality of the measurement matrix compared to existing fully 
random counterparts in 1-bit CS.

• We propose a regularized model with a closed-form solution and demonstrate 
that our proposed model, which employs an explicit selection strategy for the reg-
ularization parameter, can yield an approximate estimate of the underlying sparse 
signal with guaranteed convergence.

The rest of this paper is structured as follows. Section 2 introduces some notations, 
definitions, and useful lemmas. Section  3 clarifies the measurement model used in 
this paper. Section  4 elucidates the recovery model and then gives the correspond-
ing theoretical guarantee. Section 5 presents numerical experiments, and Sect. 6 con-
cludes this paper.

2  Preliminaries
2.1  Notations

We begin with some notations used throughout the paper. Scalars are denoted 
with lowercase letters, e.g., x, vectors with boldface lowercase letters, e.g., x 
and matrices with boldface capital letters, e.g., X  . We denote xi as the i-th ele-
ment of the vector x . The fields of real numbers are denoted as R . [n] denotes 
the index set {1, 2, . . . , n} . In denotes identity matrix of size n× n . The inner 
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product between matrices M = (mij) ∈ R
n1×n2 and N = (nij) ∈ R

n1×n2 of the same 
size is defined as �M,N � = Tr(MTN ) =

∑

ij mijnij . We define the ℓp norm of x ∈ R
n as 

�x�p = (
∑n

i=1 |xi|p)1/p where p ≥ 1 . �x�∞ denotes the absolute value of the elements 
of x that has the biggest magnitude.

2.2  Semi‑tensor product and some definitions

Definition 1 (See [25]) Let u ∈ R
1×nl be a row vector, and v ∈ R

l be a column vector. 
Divide u into l contiguous blocks, named u1, . . . ,ul , which are all row vectors of length 
n. Then, the semi-tensor product (STP) between u and v , denoted by u⋉ v , is defined as

Definition 2 (See [25]) Let A ∈ R
m×n , B ∈ R

p×q , ai denote the i-th row of A , and bi 
denote the i-th column of B . The STP of A and B , denoted as C = A⋉ B , consists of 
m× q blocks as C = (cij) where 

 (i) cij = ai ⋉ bi is of length p when p is a factor of n, and

 (ii) cij = (bi
T
⋉ aTi )

T is of length n when n is a factor of p,

for i ∈ [m] and j ∈ [q] . Specially, when q = 1 , C reduces to a vector of length mk where 
k := gcd(n, p) denotes the greatest common divisor(gcd).
We also introduce the Kronecker product, which is a mathematical operation that com-
bines two matrices to form a larger matrix with block entries.

Definition 3 The Kronecker product between matrices A = (aij) ∈ R
m×n and 

B ∈ R
p×q is defined as

It is readily checked that the Kronecker product has the following property.

Proposition 1 For any matrices A ∈ R
m×n and B ∈ R

p×q , it holds that

The STP of matrices can be equivalently defined through the Kronecker product.

Definition 4 (See [24]) The STP of two matrices A ∈ R
m×n and B ∈ R

p×q satisfies

where t is the least common multiple of n and p, denoted as t = lcm(n, p).

The following lemma was proved in [7], which may facilitate our analysis.

u⋉ v =
l

i=1

uivi ∈ R
1×n.

A⊗ B =







a11B . . . a1nB
...

. . .
...

am1B . . . amnB






∈ R

mp×nq

(A⊗ B)T = AT ⊗ BT .

A⋉ B = (A⊗ I t/n)(B⊗ I t/p),
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Lemma 1 (See [7]) Suppose b = θ(Au) with θ(·) satisfying (10), and A ∈ R
m×n is popu-

lated by i.i.d. random standard Gaussian variables. With probability at least 1− e1−t , it 
holds that

3  Problem description
Let A be the measurement matrix of size m× n . We suppose the signal x is of length nk 
where k ≥ 1 denotes some integer. As a result, the measurement matrix only requires 
1/k of the parameters compared to traditional sensing models, which typically have a 
size of m× nk . The standard measurement model for 1-bit CS under STP may be natu-
rally given by

where y ∈ {−1, 1}mk denotes the sign measurements. Note that (5) loses any scaling 
information, and is restricted to narrow types of measurement such as random Gaussian 
distribution. To circumvent this issue, a mature strategy is to introduce random dither 
τ ∈ R

mk before quantization, leading to the dithered one-bit measurements

where y ∈ {−1, 1}mk . Please see Sect. 4.3 and [3] for more discussion on the dither tech-
nology. To facilitate discussion, we define the exactly sparse set

and the approximately sparse set

In practice, there will always be adversarial noise in the measurements during acquisi-
tion and transmission, which usually flip some signs [5]. In this case, the noisy measure-
ments may be modeled as

where ⊙ denotes the dot product between vectors, ξ ∈ {−1, 1}mk denotes random bit 
flips, which are populated by i.i.d. Bernoulli random variables satisfying P(ξi = 1) = p , 
meaning that each sign measurement yi is only correct with probability p.

To illustrate how to construct a loss function for the noisy measurements (9), inspired 
by [6], we begin with a more general measurement model. We assume

where zi = (A⋉ x)i , x ∈ R
n denotes the needed-to-be-recovered signal, and θ(·) is some 

function unknown or unspecified, which automatically must satisfy −1 ≤ θ(z) ≤ 1 . We 
also assume

(4)
∥

∥

∥

∥

1

m
ATb − �u

∥

∥

∥

∥

∞
≤ O

(
√

t + log(n)

m

)

.

(5)y = sign(A⋉ x),

(6)y = sign(A⋉ x + τ ),

(7)K
∗
s := {z ∈ R

nk |�z�2 = 1, �z�0 ≤ s},

(8)Ks := {z ∈ R
nk |�z�2 = 1, �z�1 ≤ s}.

(9)y = ξ ⊙ sign(A⋉ x + τ ),

(10)E(yi|zi) = θ(zi), ∀i ∈ [m],
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to capture the relation between yi and (A⋉ x + τ )i , where g is a standard normal ran-
dom variable. In (9), since yi = ξisign((A⋉ x)i + τi) for each i ∈ [m] , then it holds that 
θ(z) = Eτi(Eξi(yi|z, τi)) = 2(p− 1/2)(1− 2P(τ ≤ −z)) in (10), and the correlation coef-
ficient � = E(θ(g)g) can be evaluated using integration by parts, which gives

For instance, if τi(∀i ∈ [mk]) are random variables generated from the uniform 
distribution

where c > 0 denotes a constant, then

where �(·) denotes the distribution function of standard Gaussian variables.
We formulate theories based on model (10) in the following section as it naturally 

encompasses the model presented in model (9).

4  Main results
This part introduces the optimization model for recovering the underlying signal from 
model (10) and subsequently establishes its corresponding theoretical guarantee.

4.1  The proposed model

Suppose x∗ ∈ R
nk is the underlying signal in Ks where k is a positive integer, and y satis-

fies (10). We reorder its entries to define x̃∗ such that

and also reorder entries of y to define ỹ such that

A direction application of Lemma 4 in [7] to each ỹ(l) indicates the following result.

Lemma 2 Suppose A ∈ R
m×n is populated by i.i.d. random standard Gaussian vari-

ables and ai denotes the i-th row of A . Following the definitions given by (10) and (11), it 
holds that

(11)E(θ(g)g) := �,

� = 2(p− 1/2)E[θ ′(g)] = 4(p− 1/2)E[f (−g)] > 0.

(12)Unif(−u,u)

(13)� = 2(p− 1/2)
2�(u)− 1

u
,

(14)x̃(l)∗ =









xl
xk+l

...
x(n−1)k+l









∈ R
n, l ∈ [k],

(15)ỹ(l) =









yl
yk+l

...
y(m−1)k+l









∈ R
m, l ∈ [k].
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where x̃(l)∗  , ỹ(l) are, respectively, defined as in (14), (15), and ỹ(l)i  represents the i-th element 
of ỹ(l).

By taking the inner product in both sides of (16) with respect to x̃(l)∗  and then summing 
over all l ∈ [m] , we can derive that

When θ(·) = sign(·) , � = E(|g |) =
√
2/π  achieves the maximum relation [6]. According 

to the law of large numbers, Eq. (17) suggests that the optimal solution x̂ is expected to 
also achieve a large value for the relation function

under the constraint �x̂�2 ≤ 1 . It is not hard to check that

On the other hand, given the sparsity of x , it is imperative that x̂ also exhibits sparsity, 
which can be achieved through regularization using the ℓ1-norm � · �1 . By combining 
(18) with the ℓ1-norm regularizer via a regularization parameter γ > 0 , we propose the 
optimization model

Since A⋉ u = (A⊗ Ik)u by Definition 4 and Proposition 1, we can equivalently rewrite 
(19) as

4.2  Theoretical guarantee

The following result shows that the model (20) has a closed-form solution.

Lemma 3 (See [7]) The optimal solution to (20) is given by

where the soft-thresholding operator Sγ (·)

(16)E
[

ỹ
(l)
i ai

]

= θ(x̃(l)∗ )T , ∀i ∈ [m], ∀l ∈ [k],

(17)E

[

k
∑

l=1

ỹ
(l)
i

〈

ai, x̃
(l)
∗
〉

]

= θ�x∗�22 = θ , ∀i ∈ [m].

1

m

m
∑

i=1

k
∑

l=1

ỹ
(l)
i �ai, x̂�

(18)
1

m

m
∑

i=1

k
∑

l=1

ỹ
(l)
i �ai, x̂� =

1

m
(A⋉ x̂)T y.

(19)min
�u�2≤1

− 1

m
(A⋉ u)T y + γ �u�1.

(20)min
�u�2≤1

− 1

m
uT (AT ⊗ Ik)y + γ �u�1.

(21)x̂ =
Sγ

((

AT ⊗ Ik

)

y
)

∥

∥

∥Sγ

((

AT ⊗ Ik

)

y
)∥

∥

∥

2

,
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applies componentwise.

To prove the main theorem, we first provide the following lemma.

Lemma 4 Suppose A ∈ R
m×n is populated by independent and identically distrib-

uted random standard Gaussian variables, x∗ ∈ R
nk where k is a positive integer, and 

y = θ(A⋉ x∗) with θ(·) satisfying (10). Then, with probability at least 1− ke1−t,

where κ > 0 is a constant, and � is specified by (11).

 Proof We define x̃∗ and ỹ∗ as given in (14) and (15), respectively. For each l ∈ [k] , we 
have ỹ(l) = Ax̃(l)∗  and

Since Lemma 1 indicates that

holds with a probability at least 1− e1−t for each l ∈ [k] , taking a union bound over all l 
implies that

holds with a probability at least 1− ke1−t . Therefore, we complete our proof. �

Now, we can present the main theoretical result.

Theorem 1 Assume A ∈ R
m×n is populated by independent and identically distributed 

random standard Gaussian variables, y is observed via (9), � is defined in Eq. (13), and

where c = 2κ is a constant with κ coming from (23). If x∗ ∈ R
nk belongs to (7) where k 

is a positive integer, with a probability at least 1− ke1−t , the estimation x̂ given by (21) 
satisfies

(22)Sγ (u) =
{

0, if |u| ≤ γ ,
sign(u)(|u| − γ ), otherwise.

(23)
∥

∥

∥

∥

1

m
(AT ⊗ Ik)y − �x∗

∥

∥

∥

∥

∞
≤ κ

√

t + log(n)

m
,

∥

∥

∥

∥

1

m

(

AT ⊗ Ik
)

y − �x∗

∥

∥

∥

∥

∞
= max

l∈[k]

∥

∥

∥

∥

1

m
AT ỹ(l) − �x̃(l)∗

∥

∥

∥

∥

∞
.

∥

∥

∥

∥

1

m
AT ỹ(l) − �x̃(l)∗

∥

∥

∥

∥

∞
≤ O

(
√

t + log(n)

m

)

(24)
∥

∥

∥

∥

1

m

(

AT ⊗ Ik
)

y − �x∗

∥

∥

∥

∥

∞
≤ O

(
√

t + log(n)

m

)

(25)γ = c

√

t + log(n)

m
,
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If x∗ ∈ R
nk belongs to (8), with probability exceeding 1− ke1−t the estimation x̂ given by 

(21) satisfies

 Proof Since x̂ is the optimal solution, we have

Thus one has

Combining it with Lemma 4, we have that

The remain discussion considers the two distinct types of sparse signals, respectively.
(1) When x∗ is exactly sparse, i.e., x∗ ∈ K

∗
s  , we define S as the support set of x∗ and 

S⊥ = [nk]\S be its complement set. We also define PS(u) as

denoting the sub-vector of u indexed by the set S. Then (26) implies

Therefore, using triangle inequality yields

�x̂ − x∗�2 ≤
3γ

�

√
s = O

(
√

s log(n)

m

)

.

�x̂ − x∗�2 ≤

√

3γ
√
s

�
= O

(

4

√

s log(n)

m

)

.

− 1

m
x̂T

(

AT ⊗ Ik
)

y+γ �x̂�1

≤ − 1

m
xT∗

(

AT ⊗ Ik
)

y + γ �x∗�1

γ �x∗�1

≥
〈

x∗ − x̂,
1

m

(

AT ⊗ Ik
)

y

〉

+ γ �x̂�1

≥
〈

x∗ − x̂, �x∗
〉

+
〈

x∗ − x̂,
1

m

(

AT ⊗ Ik
)

y − �x∗

〉

+ γ �x̂�1

≥�
(

1− x̂Tx∗
)

− �x∗ − x̂�1
∥

∥

∥

∥

1

m

(

AT ⊗ Ik
)

y − �x∗

∥

∥

∥

∥

∞
+ γ �x̂�1

(26)�

(

1− x̂Tx∗
)

+ γ �x̂�1 ≤
γ

2
�x∗ − x̂�1 + γ �x∗�1.

PS(u) = uS ,

�

(

1− x̂Tx∗
)

+ γ �PS(x̂)�1 + γ �PS⊥(x̂)�1

≤ γ �x∗�1 +
γ

2
�PS(x∗ − x̂)�1 +

γ

2
�PS⊥(x∗ − x̂)�1

= γ �x∗�1 +
γ

2
�PS(x∗ − x̂)�1 +

γ

2
�PS⊥(x̂)�1.
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where the final inequality follows the Cauchy–Schwarz inequality. Recalling 
�x∗ − x̂�22 ≤ 2(1− x̂Tx∗) , we obtain that

i.e., �x∗ − x̂�2 ≤ 3γ
�

√
s.

(2) When x∗ is approximately sparse, i.e., x∗ ∈ Ks , from (26), we have

which indicates

We complete our proof.  �

 Remark 1 Theorem 1 offers a practical recommendation for selecting the 
regularization parameter γ in model (20). As demonstrated experimentally in Sect. 5.1, 
when combined with finely tuned c in (25), the regularization parameter in (20) 
performs well on general sparse signals.

 Remark 2 According to the suggestion put forward by [7], we have selected u = 1 
in (12) for our methodology. In this case, we have � ≈ 1.365(p− 1/2) , meaning that 
recovering the signal x∗ is still possible even if each measurement is flipped with 
probability nearly 1/2. In particular, when k = 1 , the measurement model (9) reduces 
to the traditional 1-bit CS model. Therefore, the semi-tensor-based 1-bit CS can be 
considered as a generalization of traditional 1-bit CS, implying that Theorem 1 extends 
Theorem 1 in [7].

4.3  Discussion on dither technique

If ai denotes the i-th row of the measurement matrix A , then qi = sign(�ai, x�) indicates 
which side of the hyperplane Hai : �ai,u� = 0 (i ∈ [m]) the point x lies on. As all ai are 
generated randomly, the sign vector q = sign(Ax) encodes the cell of a random hyperplane 

�

(

1− x̂
T
x∗
)

+ γ

2
�PS(x̂)�1

≤ γ �x∗�1 − γ �PS(x̂)�1 +
γ

2
�PS(x∗ − x̂)�1

≤ 3γ

2
�PS(x∗ − x̂)�1 ≤

3γ

2

√

�x∗�0�PS(x∗ − x̂)�2,

�x∗ − x̂�22 ≤
3γ

�

√
s�x∗ − x̂�2,

�

(

1− x̂Tx∗
)

≤ γ �x∗�1 − γ �x̂�1 +
γ

2
�x∗�1 +

γ

2
�x̂�1

≤ 3γ

2
�x∗�1,

�x∗ − x̂�22 ≤ 2
(

1− x̂Tx∗
)

≤ 3γ

�
�x∗�1 ≤

3γ

�

√
s.
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tessellation [30] in which the signal x is located. A popular strategy used for recovering x is 
searching for a vector x# that is quantization consistent, i.e., q = sign(Ax#) . However, due 
to the homogeneity of these hyperplanes, it is impossible to separate any two points on a 
ray from the origin even when all possible hyperplanes are utilized (see Fig. 1a). In other 
words, the measurement q = sign(Ax) loses information regarding the signal’s scale. Fortu-
nately, the issue can be circumvented by introducing a dither vector prior to quantization. 
In the context of random tessellations, dithering can be geometrically interpreted as adding 
random parallel shifts to homogeneous hyperplanes, resulting in nonhomogeneous hyper-
planes Hai ,τi : �ai,u� + τi = 0 (i ∈ [m]).

As illustrated in Fig.  1, the random parallel shifts enable the appropriate separation 
between two points on a ray originating from the origin, provided that τ is suitably selected. 
Although we focus on unit signals in this paper, our proof process reveals that under the 
circumstances of semi-tensor product measurement, sparse signals are restored by seg-
ments. This necessitates coding the signal scale in quantization to prevent magnitude dis-
tortion during recovery. Consequently, we have employed the dithered measurement (6) 
and its noisy variant (9) in this study. Indeed, Chen et al. [31] proved the following result:

Proposition 2 (Lemma 1, [31]) Let x, τ be two independent random variables satisfying 
|x| ≤ B , τ ∼ uni([−γ , γ ]) where γ ≥ B , then we have

Proposition 2 states that if all elements of τ are drawn from the uniform distribution 
[−γ , γ ] , where the bound γ > 0 is chosen such that γ ≥ �Ax�∞ , then the dithered meas-
urements sign(�ai, x� + τi) contain most scale information on 〈ai, x〉 . By Cauchy–Schwartz 
inequality, it is not hard to obtain

E(γ · sign(x + τ)) = E(x).

Fig. 1 Illustration on random hyperplane tessellation in R2 . a corresponds to homogeneous hyperplanes 
in which case any two points on a ray from the origin cannot be separated even if one uses all possible 
hyperplanes. b Corresponds to hyperplanes with random parallel shifts (resulted by random dithers) in which 
case we can approximate distances between signals
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Since we assume �x�2 = 1 in this paper, we suggest setting γ = maxi∈[m] �ai�2 to gener-
ate uniformly distributed dithers τ.

5  Simulations
This section initially conducts experiments on synthetic data to facilitate the selection of 
regularization parameters. Subsequently, we apply the proposed method to ECG signals, 
MRI data, and hyperspectral images (HSIs) for evaluating its effectiveness. All experi-
ments are conducted using MATLAB (2016a) on a platform equipped with AMD Ryzen 
7 5800 H 3.20-GHz CPU and 16 GB memory.

Practical analog-to-digital converters (ADCs) not only sample signals, but also quan-
tize each measurement to a finite number of bits. The performance of ADCs is pri-
marily limited by the quantizer, resulting in an exponential decrease in sampling rate 
as the resolution increases linearly [32]. This implies that higher resolution per meas-
urement results in slower sampling rates and increased costs for the ADC. The con-
ventional CS framework provides a solution to mitigate the quantization bottleneck 
by reducing the ADC sampling rate, while the 1-bit CS framework directly addresses 
this issue in the quantization domain by decreasing the number of bits per measure-
ment. In other words, while a sampling rate SR > 1 is not significant in conventional 
compressed sensing, it may prove highly practical in 1-bit (binary) systems that can 
acquire sign measurements at extra-low bit rates [5]. We define the recovery error (RE) 
as RE := �x̂/�x̂�2 − x/�x�2�2 , where x denotes the original signal and x̂ denotes its 
estimate.

�Ax�∞ = max
i∈[m]

�ai, x� ≤ max
i∈[m]

�ai�2�x�2.

Fig. 2 Recovery errors obtained with different values of the constant c in (25). a shows the results for signals 
of different lengths when SR = 20 , and b shows the results under different sampling rates when N = 1000
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5.1  Parameter selection

Theorem 1 has indicated that the regularization parameters � in (20) should be set as 
(25). However, determining the appropriate value for constant c remains unclear. To 
address this issue, we conducted a series of numerical experiments. Firstly, we gener-
ate N-dimensional signals with sparsity s randomly and evaluate the RE of the proposed 
method while keeping SR fixed at 20. We consider different values of c for N = 500 , 
s = 5 , N = 1000 , s = 10 ; and N = 2000 , s = 20 . The average results from repeating the 
experiment for a hundred times are presented in Fig. 2a. Next, we generate 1000-dimen-
sional signals with sparsity 10 randomly and evaluate the proposed method’s REs at dif-
ferent SRs. In addition, we conducted 100 trials and presented the average results in 
Fig. 2b. It can be observed that c = 0.3 is a suitable setting for Eq. (20), as it yields rela-
tively small REs across almost all cases. As the constant c does not depend on the struc-
ture of the signal, the parameter setting obtained can be applied universally. Therefore, 
we will maintain these settings throughout all remaining experiments in this article.

Next, we will examine the impact of factor k on recovery performance. We randomly 
generate signals with a length of N = 1000 with sparsity s = 10 , and consider various 
values for k, including k = 1 , k = 2 , k = 4 , k = 5 , and k = 10 . We repeat 100 trails and 
report the average REs at different SRs in Fig. 3. In addition to reducing the scale of the 
measurement matrix, we unexpectedly found from the experimental results that incor-
porating the semi-tensor product can enhance recovery accuracy. As revealed by our 
proof process, the semi-tensor product-based measurement is equivalent to the seg-
mented measurement scheme of sparse signals. This implies that an excessively large 
value of k may result in measuring some zero vectors. To avoid the trivial situation, we 
suggest empirically selecting k such that it does not exceed the sparsity s of the signal.

5.2  ECG signal recovery

In this section, we apply the proposed method to recover a 1000-length ECG signal seg-
ment randomly selected from the MIT-BIH Arrhythmia Database [33]. We compare the 
semi-tensor product-based measurement with other representative types of measure-
ments in 1-bit CS, including Gaussian measurement, symmetric Bernoulli measurement, 

Fig. 3 Recovery errors obtained with different values of factor k, where k = 1 corresponds to full random 
standard Gaussian measurement scheme
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and circulant Gaussian measurement. Denoted by Gaussian [7], we refer to a scenario 
where all entries of the measurement are independently and identically distributed 
according to the standard Gaussian distribution N (0, 1) . Denoted by Symm-Bernoulli 
[19], we mean that each element is independently sampled from a Bernoulli distribution 
with equal probabilities of 1 and −1 . Referred to as Circ-Gaussian [20], the measure-
ment matrix was generated by shifting one element of a random row Gaussian vector to 
the right relative to the preceding row vector through rotation. Besides, we also compare 
the proposed algorithm with methods based on other sparsity regularization. For ℓ0 reg-
ularization, we compare with a Hard Thresholding-based method [34], denoted as HT, 
which aims to solve a non-convex sparsity-constrained program. For weighted ℓ1-norm 
regularization, we compare our method with the Inverse Weights-based approach [35] 
(denotes as Inverse-WT) and the ℓ1-norm Shannon Entropy Weights-based method [35] 
(denoted as ℓ1-SE-WT).

The quantitative results are plotted in Fig. 4 for different sampling rates. The recon-
structed results of a fraction with a length of 250, obtained at SR = 40 , are depicted in 
Fig. 5. The measurements based on semi-tensor product have consistently demonstrated 
superior performance in 1-bit CS compared to commonly used measurements, both in 
terms of indicators and recovery outcomes, encompassing reconstruction performance 
and execution time. To evaluate the robustness of the proposed approach, we introduced 
random bit flips to the measurements by flipping each entry of binary measurements 
with a probability of 0.2. The quantitative results are plotted in Fig. 6 for different sam-
pling rates, and the reconstructed results of a fraction with a length of 250 at SR = 40 are 
illustrated in Fig. 7. Although the reconstructed results are slightly degraded compared 
to noise-free situation, our approach still demonstrates a significant advantage over its 
competitors. As is shown, though weighted ℓ1-norm based methods, Inverse-WT and 
ℓ1-SE-WT, obtain better reconstruction performance than most other ℓ1-norm based 
algorithms, it is still inferior to our method. We believe that our advantage primarily 
stems from the utilization of semi-tensor product-based measurements. If other sparse 

Fig. 4 Recovery errors obtained by different methods at various sampling rates with noiseless measurements
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Fig. 5 Reconstructed results obtained by different schemes from noiseless measurements (SR of 40)
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regularization methods are incorporated, it is possible to achieve improved recovery 
outcomes, which necessitates further exploration in future discussions.

5.3  MRI data recovery

We also utilize the proposed method to conduct further test on MRI data, which usually 
exhibit sparsity under discrete cosine transform (DCT) or wavelet basis. We used two dif-
ferent datasets—Data A and Data B. Data A is a cardiac cine MRI dataset distributed by the 
2013 ISMRM Recon Challenge committee,1 which was collected using a 2D cine breath-
held bSSFP sequence with 32-channel cardiac receiver coils. Data B is a publicly available 
myocardial perfusion MRI dataset from [36], which was acquired using a saturation recov-
ery FLASH sequence. We introduce random bit flips to the measurements by flipping each 
entry of binary measurements with a probability of 0.1. To facilitate the implementation 
of the measurement process and enhance solving speed, we employed a block-based sam-
pling scheme. Empirically, we partitioned the original image into 32× 32-sized parts and 
subsequently perform DCT on each part to obtain sparse signals through vectorization. 
The reconstruct is conducted in blocks. Readers concerning on further information on 
block-based samplings may refer to [37, 38]. Two quantitative indicators, peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) [39], and execution times (in seconds) 
were calculated at SRs of 5, 10, 20, and 40 and are presented in Table 1, where the bolded 
data represent  the optimal outcomes. Figure  8 displays the twentieth frame along with 
the reconstructed results from various methods for each of the MRI datasets obtained at 
SR = 40 . It is evident, both quantitatively and visually, that our recovery method achieves 
better reconstruction performance. In addition, the reduced computational complexity of 
matrix and signal multiplication operations in semi-tensor product-based measurement 
results in significantly shorter execution time for our algorithm compared to other algo-
rithms. This aligns with the MRI’s requirement for fast sampling and reconstruction speed.

5.4  Hyperspectral images recovery

We also apply the proposed method to perform compressed sensing of HSIs. We select 
two typical HSI datasets, pure HYDICE Urbanpart and AVIRIS Moffett Field, both of 

Fig. 6 Recovery errors obtained by different methods at various sampling rates with noisy measurements

1 http:// chall enge. ismrm. org/ node/ 66.

http://challenge.ismrm.org/node/66
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Fig. 7 Reconstructed results obtained by different schemes from noisy measurements (SR of 40)
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which are sized to 256× 256× 128 for our experiments. To facilitate the implementa-
tion of the measurement process, we also employed a block-based sampling scheme. 
Empirically, we partitioned the original data into 16× 16× 16-sized blocks and subse-
quently perform three-dimensional DCT on each block to obtain sparse signals through 
vectorization. The recovery process is conducted in a block-wise manner. We evaluate 
the recovery performance by calculating the PSNR, SSIM values and execution times at 
SRs of 10 and 20. The quantitative indices are reported in Table 2, where the bolded data 
represent  the optimal outcomes, and the images of all methods with bands 6-45-155 
as R-G-B at SR = 20 are depicted in Fig. 9. The superiority of both ℓ1-SE-WT and our 
method in terms of recovery performance is evident, with ℓ1-SE-WT exhibiting a slightly 
better performance than ours. However, our method exhibits a significant advantage in 
execution time compared to the former.

6  Conclusion
This paper proposes a model for data compression and reconstruction from one-bit meas-
urements using semi-tensor product. Unlike traditional measurements, this new method 
does not require the number of columns in the sensing matrix to be equal to the length 
of the underlying signal, thus breaking the dimension matching condition. Leveraging the 
theory of semi-tensor product, this approach is capable of compressing high-dimensional 
signals with lower-dimensional sensing matrices. Theoretically, we provide an upper bound 
for the recovery error of this method. We also apply the proposed method to the com-
pressed sensing of real-world data such as ECG signals, MRI data, and HSIs to show the 
low time complexity of our approach.

The selection of an optimal value for k may be influenced by the characteristics of the 
underlying signal, and this article presents empirical approaches to aid in its determina-
tion. In future research, we intend to explore a theoretical solution to this issue. Addition-
ally, the current compressed sensing MRI method relies on a sampling matrix derived from 
partial Fourier transform. However, due to the limitations imposed by one-bit quantiza-
tion, this paper proposes the utilization of a semi-tensor product measurement based on 
Gaussian distribution, which distinguishes it from real-world scenarios. Further research is 
needed on how to apply 1-bit quantization and semi-tensor product-based measurements 
to the real application scenarios of MRI in future. Additionally, there is still much to be 

Fig. 8 Visual display of the reconstructed results obtained by different approaches on frame 20 of Data 
A (upper), and Data B (lower) at SR = 40. a Original image, b Gaussian, c Sym-Bern, d Circ-Gauss, e HT, f 
Inverse-WT, g ℓ1-SE-WT, h Ours
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investigated regarding the application of semi-tensor product-based measurement in high-
dimensional scenarios, particularly with respect to compressed sensing of low-rank matri-
ces and tensors from binary measurements.
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