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Abstract 

Due to the advantages of rapid deployment, flexible response and strong invulner-
ability, unmanned aerial vehicle (UAV) swarm has been widely applied in collaborative 
warfare and emergency communication. However, UAV swarm in complex environ-
ments is prone to chaotic collapse due to obstructions. A UAV swarm obstacle avoid-
ance system model for multi-narrow type obstacles is established. Due to the fact 
that only one UAV is allowed to pass through each small hole at any given moment, 
addressing the issue of congestion caused by swarming effects becomes crucial 
in addition to managing the competitive allocation of multiple UAVs to multiple holes. 
Aiming at this problem, a dual-game real-time obstacle avoidance scheme is proposed 
for UAV swarm with multi-narrow type obstacle scenarios, which divides the flight 
process of the UAV swarm into two stages: maintaining the flight state of the UAV 
swarm unchanged when no obstacles are encountered, and implementing matching 
separation and motion state switching by means of dual-game strategy when fac-
ing multi-narrow type obstacles, ultimately achieving orderly passage after multiple 
rounds of games. For the proposed scheme, a dual-game based Flocking (DGF) 
obstacle avoidance algorithm is proposed. Specifically, the motion state of each UAV 
obtained from the game is parameterized and integrated with the Flocking algorithm 
to calculate the motion control input for each UAV. The solution is iteratively obtained 
until the UAV swarm completes the obstacle avoidance. Simulation results demon-
strate that the proposed DGF algorithm not only enables smooth obstacle avoidance 
for the UAV swarm in multi-narrow type obstacle scenarios, but also effectively resolves 
the internal chaos problem in the UAV swarm, thereby preventing rigid collisions.

Keywords:  UAV swarm, Multi-narrow type obstacles, Dual-game, Flocking obstacle 
avoidance algorithm

1  Introduction
With the rapid development of current wireless communication technology and the 
increasing intelligence of mobile devices, the application of unmanned aerial vehicle 
(UAV) has evolved from single UAV to UAV swarm [1–4]. Compared with the sin-
gle UAV system, UAV swarm has the advantages of decentralization and high envi-
ronmental adaptability [5, 6]. Additionally, UAV swarm can fully leverage inter-UAV 
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collaboration and efficiently accomplish tasks that cannot be completed solely by 
UAV quantity accumulation [7–9]. However, due to the complexity of the environ-
ment, UAV swarm inevitably encounters obstacles during task execution, so forma-
tion avoidance has become the hot topic in the field of UAV swarm in recent years 
[10–12].

The flight environment of UAV swarm under multi-level task requirements is highly 
complex, often encountering threats from various types of obstacles, which brings sig-
nificant uncertainty to the flight safety of UAV swarm [13–16]. Currently, the commonly 
used obstacle avoidance strategies for UAV swarm include leader-follower, virtual struc-
ture and artificial potential field methods [17–19]. Mata-Machuca et al. [17] simulated 
the control performance of a leader-follower approach for differential configuration 
two-wheeled robots. Under any conditions, the follower is able to estimate the trajectory 
at the next instant based on the information received from the leader and then flexibly 
avoid obstacles. However, the leader-follower approach has poor robustness because the 
entire swarm will be completely paralyzed when the master node fails. Tan et  al. [18] 
proposed the virtual structure method, which forms a rigid body composed of a cen-
tral leader and surrounding UAVs to achieve formation maintenance. Although the vir-
tual structure method improves the weak robustness of the leader-follower approach, 
the skyrocketing communication and computation requirements make it unsuitable for 
large-scale swarm formations. Tian et al. [19] introduced an overall configuration plan-
ning method based on an improved artificial potential field approach, which avoids com-
plex kinematic calculations and exhibits good environmental adaptability. Although the 
artificial potential field approach has advantages in smooth control, it easily falls into 
local optima and leads to deadlock. It can be revealed that traditional UAV swarm obsta-
cle avoidance methods have reached relative maturity, but their deficiencies in flexibility, 
robustness and computational complexity make them inadequate for meeting the obsta-
cle avoidance requirements of large-scale UAV swarm.

Swarm intelligence-based UAV swarm obstacle avoidance has excellent performance 
in environmental adaptability and system self-healing ability and has been widely used 
to solve the obstacle avoidance problem of large-scale complex obstacles in recent 
years [20–22]. The earliest research on swarm intelligence for obstacle avoidance was 
conducted by Olfati-Saber, who proposed the distributed Flocking obstacle avoidance 
algorithm based on three principles observed in biological swarms: separation, cohe-
sion and alignment [23]. The main idea is to introduce virtual agents on obstacles and 
utilize the separation rule among agents to achieve obstacle avoidance. As the Flocking 
model has been gradually improved, numerous scholars have proposed Flocking-based 
obstacle avoidance algorithms, aiming to adapt to various scenarios by adjusting param-
eters or introducing additional control variables [24–26]. Hu et  al. [24] extended the 
two-dimensional (2D) Flocking obstacle avoidance to the 3D curved surface, enabling 
the application of the Flocking algorithm on a three-dimensional conical surface. Huang 
et  al. [25] proposed a novel Flocking algorithm based on decentralized model predic-
tive control, which ensures all agents to form a stable α-lattice, ultimately enabling safe 
passage through obstacle areas. Wei et al. [26] proposed a Flocking algorithm with mul-
tiple virtual leaders and validated its stability using the Lyapunov stability theorem and 
LaSalle’s invariance principle.
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It can be summarized that the current works on the Flocking-based obstacle avoidance 
algorithms have primarily focused on convex obstacles. However, the types of obstacles 
in practical scenarios are highly complex. Therefore, it is necessary to redesign obsta-
cle avoidance algorithms for non-convex obstacles to accord with complex scenarios 
[27–29]. Chang et  al. [27] proposed a rotational force that allows the agents to rotate 
their direction to avoid concave obstacles. Based on Bersani’s concave obstacle avoid-
ance model, Olcay et al. [28] designed an additional term to generate a rotational force 
field and guided the agents to move along the inner wall of the concave obstacles by local 
information exchange. Mikhail et al. [29] introduced a swarm control strategy based on 
Aristotelian mechanics, ensuring that the swarm can bypass obstacles without collisions.

However, non-convex obstacles not only include concave obstacles but also encom-
pass more extreme narrow obstacles, such as small holes. To address the issue of block-
age faced by UAV swarm in front of narrow type obstacles, several methods have been 
proposed, including formation, multi-UAV path planning and control-based methods 
[30–35]. Xu et al. [30] proposed a biomimetic formation scheme based on the charac-
teristics of biomimetic transformation to guide the agents as a collective entity in a dis-
tributed manner, enabling them to pass through narrow type obstacles. However, the 
scalability and adaptability of this method are limited since each UAV in the formation 
needs to maintain a predefined posture and perform transformation operations. Zhou 
et  al. [32] introduced a lightweight topology-based trajectory generation method and 
utilized an unreliable trajectory sharing network to generate safe, smooth and dynami-
cally feasible trajectories within milliseconds to avoid narrow type obstacles. However, 
with the expansion of UAV swarm, trajectory planning may become infeasible due to 
the increasing computational complexity and communication load. Since the control-
based methods can directly guide the motion of UAVs based on global paths and local 
information, they are more suitable for the large-scale UAV swarm. Gao et al. [34] pro-
posed a distributed vector field controller to guide the UAV swarm within a trapezoidal 
virtual tube through a narrow opening. However, the aforementioned works only con-
sider single narrow type obstacle scenarios. We note that the above works on narrow 
type obstacle avoidance either lack scalability or do not adapt to the large-scale UAV 
swarm. Moreover, most of the existing methods only focus on single narrow type obsta-
cle. In multi-narrow type obstacle scenarios, UAV swarm is prone to blockage due to the 
swarming effect and competitive allocation. Therefore, a real-time decision scheme is 
needed to determine the motion states of UAVs at each instant. Fortunately, game theory 
[36–38] provides a new perspective for obstacle avoidance algorithms in multi-narrow 
type obstacle scenarios, because it allows for state prediction and payoff balance. Cen 
et al. [36] proposed Nash equilibrium model and cooperative game model to find better 
paths by the cooperation and competition between the players in the game. Mohammad 
et  al. [37] introduced a game theory-based bio-inspired distributed intelligent control 
method that exhibits good learning capability and low computational complexity.

In summary, the current works on UAV swarm obstacle avoidance primarily focuses 
on convex obstacles, with a lack of investigation on narrow type obstacle avoidance in 
complex environments. Furthermore, future tasks will impose stricter requirements on 
timeliness, which necessitates UAV swarm to perform ordered obstacle avoidance while 
maintaining consistent motion. In light of these considerations, this paper proposes a 
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dual-game based Flocking (DGF) algorithm to efficiently perform UAV swarm obstacle 
avoidance in multi-narrow type obstacle scenarios. The main contributions of this paper 
are summarized as follows:

•	 A UAV swarm obstacle avoidance system model for multi-narrow type obstacles is 
established. The system consists of the UAV swarm and multiple small-hole type 
obstacles. Due to the extremely narrow aperture of each hole, only one UAV can pass 
through at a time. Therefore, the system not only considers the competitive alloca-
tion of multiple UAVs to multiple small holes, but also addresses the blockage prob-
lem caused by the swarming effect.

•	 A dual-game real-time obstacle avoidance scheme is designed. When the UAV 
swarm reaches the decision distance, the first-level game is initiated to divide the 
UAV swarm into two sub-swarms. This division aims to prevent one small hole from 
being congested by a large number of UAVs while leaving the other hole unused. 
Upon reaching the front of small holes, the sub-swarms trigger the second-level 
game to compete for the priority to pass through that hole, thereby achieving smooth 
obstacle avoidance for the UAV swarm.

•	 An iterative algorithm is proposed to implement the above scheme. The algorithm 
assigns different motion states based on corresponding game strategies. The UAV 
swarm is endowed with two distinct motion states by the first-level game. As the 
algorithm iterates, the sub-swarms gradually gather in front of small holes and 
update the motion states of UAVs by the second-level game. This process continues 
until all UAVs pass through the small holes in an orderly manner, achieving efficient 
obstacle avoidance for the UAV swarm.

The rest of the paper is organized as follows. Section  2 presents the proposed system 
model. Section 3 introduces the principles of the Flocking obstacle avoidance algorithm. 
The proposed DGF algorithm is detailed in Sect. 4. A comparison of simulations is con-
ducted in Sect. 5, and our concluding remarks are drawn in Sect. 6.

2 � System model
In this section, we first model the small-hole type obstacle as shown in Fig. 1, where R2 
represents the maximum width of the UAV, R1 represents the diameter of the small hole, 
and we assume 2R2 > R1 > R2 . Therefore, at any given instant, only one UAV is allowed 
to pass through each small hole.

Fig. 1  Modeling of small-hole type obstacle
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As shown in Fig. 2, this paper focuses on a multi-narrow type obstacle avoidance 
system for the UAV swarm consisting of N  UAVs and two holes. The UAV swarm 
gathers around hole A, and each UAV is represented as an α agent with position and 
speed denoted as qi and pi , respectively. The interaction range between α agents is 
r . All α agents within a circle with agent i as the center and r as the radius form the 
neighboring set Nα

i  . The UAV swarm needs to move toward target points, so virtual 
γ agents are introduced to attract the α agents. During the flight to the target, the α 
agents project on the surface of the wall to form virtual β agents, which use the sepa-
ration rule of the swarm to avoid collisions. qβi,k and pβi,k represent the position and 
speed of the β agents, respectively, and the interaction range between α agents and 
β agents is r′ . Upon reaching the decision distance, the swarm initiates the first-level 
game to achieve dispersion, mitigating the congestion in front of one small hole while 
leaving the other hole underutilized. Subsequently, when the sub-swarms approach 
the front of the small holes, they trigger the second-level game to compete for the 
privileged passage through the small holes. The main notations used in this paper are 
listed in Table 1.

Fig. 2  UAV swarm obstacle avoidance system model for multi-narrow type obstacle

Table 1  Notational conventions

Notation Description

N Number of UAVs

qi Position of UAV i

pi Speed of UAV i

q
β

i,k
Position of obstacle k formed by the projection of UAV i

p
β

i,k
Speed of obstacle k formed by the projection of UAV i

Nα
i Neighboring set of UAV i

r Interaction range of the UAV

r′ Interaction range of the UAV to obstacles
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3 � Overview of classic flocking algorithm
3.1 � Flocking algorithm principle

The dynamics of a group of N  agents are given by the following system of differential 
equations

where ui is the control input.
Each agent possesses an individual communication range within which other agents 

are considered as neighbors. The agent i can communicate only with its neighbors, the 
set of neighboring agents of agent i at instant t is defined as

where �·� represents the Euclidean norm of the vector, and vα represents the set of α 
agents.

The geometry is considered to be in a stable state when each agent keeps a distance 
d from its neighboring agents. Hence, we define a mathematical boundary condition as 
follows:

At this point, the lengths of the edges in the network formed by the agents are all equal, 
and this structure is referred to as an α-lattice. However, the network structure formed 
by the UAV swarm in this paper does not conform to a standard α-lattice configura-
tion in most cases. Instead, a quasi α-lattice is considered, which satisfies the following 
inequality constraints

where δ represents the uncertainty factor.
We create the deviation energy as a function of the distance between two agents. In 

order to ensure the differentiability of the function at z = 0 , a mapping called σ-norm is 
introduced as follows:

where ξ > 0 . In order to have a smooth potential function, the following bump function 
is defined

where h ∈ (0, 1) . The bump function can create the adjacency matrix A[q] = aij(q)  , 
whose element aij(q) can be expressed as

(1)
{

q̇i = pi
ṗi = ui

qi, pi,ui ∈ R
m

(2)Nα
i =

{

j ∈ vα :
∥

∥qj − qi
∥

∥ < r
}

(3)
∥

∥qj − qi
∥

∥ < d ∀j ∈ Nα
i

(4)−δ <
∥

∥qj − qi
∥

∥− d < δ

(5)�z�σ = 1

ξ

[

√

1+ ξ�z�2 − 1

]

(6)ρh(z) =











1, z ∈ [0, h)
1
2

�

1+ cos

�

π (z−h)
(1−h)

��

, z ∈ [h, 1)
0, otherwise
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where rα = �r�σ . If the distance between agent i and j is greater than rα , then 
∥

∥aij
∥

∥ = 0.
For an obstacle with a hyperplane boundary that has a unit normal ak and passes through 

the point yk , the position and velocity of the β agent are determined by

where P = I − aka
T
k  is a projection matrix. If the velocity direction of the β agent is par-

allel to the surface of the obstacle, then aTk q̂i,k = 0.
uαi  , uβi  , uγi  are generated in the Flocking cooperative control algorithm so that the expres-

sion for the control quantity can be calculated for each of the α agents as follows:

where uαi  denotes the rules of movement between α agents that satisfy the three basic 
rules of aggregation behavior proposed by Reynolds: separation, alignment and speed 
cohesion. uαi  can be expressed as

where cαq and cαp are positive constant parameters. ni,j is defined as

The potential functions needed for the gradient-based term are defined as

where σ1 = z√
1+z2

 and 0 < a ≤ b , c = |a−b|√
4ab

 , which guarantee φ(0) = 0.

u
β
i  denotes the repulsive force relationship between α agents and virtual obstacle β agents, 

which can be expressed as

where cβq and cβp are positive constant parameters. nβ
i,j is defined as

(7)aij(q) = ρh

(
∥

∥qj − qi
∥

∥

σ

rα

)

∈ [0, 1], j �= i

(8)q̂i,k = Pqi + (I + P)yk

(9)p̂i,k = Ppi

(10)ui = uαi + u
β
i + u

γ
i

(11)uαi = cαq

∑

j∈Nα
i

φα
(∥

∥qj − qi
∥

∥

σ

)

ni,j + cαp

∑

j∈Nα
i

aij(q)
(

pj − pi
)

(12)ni,j =
qj − qi

√

1+ ξ
∥

∥qj − qi
∥

∥

2

(13)φα(z) = ρh

(

z

rα

)

φ(z − dα)

(14)φ(z) = 1

2
[(a+ b)σ1(z + c)+ (a− b)]

(15)
u
β
i = cβq

∑

k∈Nβ
i

φβ
(∥

∥q̂i,k − qi
∥

∥

σ

)

n
β
i,j + cβp

∑

k∈Nβ
i

bi,k(q)
(

p̂i,k − pi
)
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The individuals in the swarm have to move toward the target point, so the virtual target 
is introduced which is called the γ agent. uγi  denotes the attraction relationship between 
α and γ agents, which can be expressed as

where σ1 = z√
1+z2

 , cγq and cγp are positive constant parameters.

3.2 � Flocking algorithm steps

In summary, the Flocking obstacle avoidance algorithm is shown in Algorithm  1. 
First, if the distance between agent i and its neighboring agents is less than r, the 
neighboring set Nα

i  is formed, and then the spatial adjacency matrix element aij(q) is 
obtained. Secondly, the movement rules between α agents are obtained based on the 
spatial adjacency matrix. A virtual β agent is projected onto the obstacle when agent 
i encounters the obstacle. If the distance between agent i and the obstacle is less than 
r′ , the repulsion relationship uβi  between α agent and the virtual β agent is calculated. 
Next, the acting force uγi  between α agent and the target agent γ is calculated. Finally, 
ui , qi and pi are obtained, respectively.

Algorithm 1  Flocking obstacle avoidance algorithm.

(16)n
β
i,j =

q̂i,k − qi
√

1+ ξ
∥

∥q̂i,k − qi
∥

∥

2

(17)u
γ
i = −cγq σ1(qi − qr)− c

γ
p (pi − pr)
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4 � Dual‑game based flocking obstacle avoidance algorithm
4.1 � Dual‑game real‑time obstacle avoidance scheme

The proposed dual-game real-time obstacle avoidance scheme aims to maintain the 
integrity of the swarm structure and divides the formation flight process into two stages. 
First, the motion state of the UAV swarm remains unchanged when no obstacle is 
encountered. Then, when facing multiple small holes, the UAV swarm utilizes the dual-
game to determine the next motion state, ensuring successful obstacle avoidance.

At the decision distance, the UAV swarm triggers the first-level game. Firstly, the 
swarm obtains the relative position information of the two obstacles via a fully con-
nected network. Then, the two UAVs closest to the obstacles are selected as participants 
in the game. During the game, the payoffs for passing through the obstacles are gener-
ated, and the game matrix for the UAV swarm is obtained. Subsequently, according to 
the Nash equilibrium derived from the game matrix, the motion states of each UAV are 
adjusted, and then, the UAV gets the attraction from different targets. The purpose of 
this game is to disperse the UAV swarm, thereby avoiding the situation where one hole is 
congested with a large number of UAVs while the other hole remains idle. Assuming that 
UAV i(i = 1, 2, · · · ,N ) is closer to hole A than UAV 

(

j = 1, 2, · · ·N ; j �= i
)

 when reaching 
the decision distance, the game matrix for UAV i is shown in Table 2.

From Table 2, it can be observed that when UAV i reaches the decision distance and 
is closer to hole A than UAV j, the Nash equilibrium is achieved if UAV i flies toward 
hole A and UAV j flies toward hole B. Similarly, when UAV i is closer to hole B than 
UAV j upon reaching the decision distance, the corresponding game matrix is shown in 
Table 3.

From Table 3, it can be observed that when UAV i reaches the decision distance and 
is closer to hole B than UAV j, the Nash equilibrium is achieved if UAV i flies toward 
hole B and UAV j flies toward hole A. Therefore, after multiple rounds of the game at the 
decision distance, the UAV swarm can ultimately disperse in front of the two holes and 
prepare for the next level of the game.

Table 2  Game matrix when UAV i is closer to hole A than UAV j 

UAV j flying to hole A UAV j 
flying to 
hole B

UAV i flying to hole A (0,−2) (0,0)

UAV i flying to hole B (−2,−2) (−2,−1)

Table 3  Game matrix when UAV i is closer to hole B than UAV j 

UAV j flying to hole A UAV j 
flying to 
hole B

UAV i flying to hole A (−2,−1) (−2,−2)

UAV i flying to hole B (0,0) (0,−2)
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To avoid simultaneous gathering of the UAV swarm toward a single small hole, a 
matching separation strategy is employed when reaching the decision distance based 
on the relative distances between individual UAVs and obstacles. By establishing an α
-lattice structure, the UAV swarm forms a fully connected network, enabling informa-
tion exchange on position and speed among UAVs. Consequently, the first two UAVs 
reaching the decision distance gain the attraction from different targets by the first-level 
game. By multiple rounds of the game, the UAV swarm gradually converges toward the 
stable Nash equilibrium state, ultimately forming two cohesive and stable sub-swarms.

After the first-level game, the UAV swarm is dispersed around the two small holes. In 
special cases, the UAV swarm will pass through the small holes orderly in a straight line, 
but in general, the UAV swarm will be blocked in front of the small holes and cannot 
pass through them. At this point, each UAV is not only influenced by the attraction from 
its target but also affected by the repulsion from other UAVs, thus causing the UAVs to 
block each other from moving forward. To avoid this problem, the second-level game is 
introduced into the obstacle avoidance strategy, where UAVs need to compete for the 
right of passage through the respective small holes.

Specifically, assuming that UAV i is closest to small hole x 
(

x ∈
{

A, B
})

 at this instant, 
the game matrix with UAV j is shown in Table 4.

From Table 4, it can be observed that when UAV i passes through the small hole while 
UAV j waits for the next round of the game, it reaches the Nash equilibrium state. Fur-
thermore, considering the practical context, it is reasonable for UAV i to pass through 
the small hole in this scenario. Similarly, if UAV j is the closest to the small hole x 
(

x ∈
{

A, B
})

 at this instant, the corresponding payoff matrix between UAV i and UAV j 
is shown in Table 5.

From Table 5, it can be observed that when UAV j passes through the hole while UAV 
i waits, it reaches the Nash equilibrium state. Therefore, after multiple rounds of the 
second-level game, all UAVs can converge to the Nash equilibrium state, resulting in a 
sequential passage through small holes from the nearest to the farthest UAV.

Table 4  Game matrix when UAV i is closest to the hole

UAV j passes  UAV j waits

UAV i passes (−2,−2) (1,0)

UAV i waits (−1,−1) (0,0)

Table 5  Game matrix when UAV i is closest to the hole

UAV j passes  UAV j waits

UAV i passes (−2,−2) (−1,−1)

UAV i waits (0,1) (0,0)
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For the UAV blocked in front of small holes that cannot advance, it is known from 
the above game matrix that it is inevitable that the UAV close to the small hole gets the 
priority to pass through the hole. At this point, the UAV close to the small hole gets the 
attraction from the target and then cuts off the interaction force with other UAVs and 
passes through the hole by changing the control input. Meanwhile, other UAVs lose the 
attraction from the target and wait for the next round of the game. After multiple rounds 
of the game, all UAVs can obtain the right to pass through the small holes and finally 
pass through the small holes in an orderly manner.

According to the above game results, UAVs have different motion states under each 
layer of the game. Therefore, it is necessary to define different motion state expressions 
for each layer of the game in order to obtain the actual speed and position information 
of each UAV. In the first-level game, where UAVs need to fly toward different targets, we 
define motion state S1 as the attraction from the target corresponding to hole A, indicat-
ing that the UAV flies toward hole A. Similarly, motion state S2 is defined as the attrac-
tion from the target corresponding to hole B, indicating that the UAV flies toward hole 
B. Therefore, UAV motion state expressions corresponding to different motion states are 
defined as follows:

Similarly, it is necessary to control the order of UAVs passing through the small holes 
in the second-level game. The UAV closest to the target obtains the attraction from the 
target and cuts off the interaction force with other UAVs. At this instant, we define the 
motion state of this UAV as S3 . UAVs that have not acquired the attraction from the tar-
get remain stationary, waiting for the next round of the game, and their motion state is 
defined as S4 . The motion state expressions are, respectively, defined as follows:

(18)S1 : ui = cαq

∑

j∈Nα
i

φα
(∥

∥qj − qi
∥

∥

)

ni,j + u
β
i + u

γA
i

(19)S2 : ui = cαq

∑

j∈Nα
i

φα
(∥

∥qj − qi
∥

∥

)

ni,j + u
β
i + u

γB
i

(20)S3 : ui = cαq

∑

j∈Nα
i

φα
(∥

∥qj − qi
∥

∥

)

ni,j + u
β
i + u

γx
i ,

(

x ∈
{

A, B
})

(21)S4 : ui = uαi + u
β
i
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Algorithm 2  Dual-game real-time obstacle avoidance scheme flow

4.2 � Dual‑game based Flocking obstacle avoidance algorithm

Combined with Algorithm  1 and Algorithm  2, the proposed DGF algorithm is pre-
sented in Algorithm 3. First, according to Algorithm 1, the motion control inputs uαi  , uβi  
and uγi  are calculated for each α agent. Then, in the first-level game, the UAV swarm is 
divided into two sub-swarms, each influenced by attraction from different targets and 
the motion states S1 and S2 are obtained. Subsequently, in the second-level game, the two 
UAVs that are closest to the target are selected for the game, and the motion states S3 
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and S4 are obtained. Finally, the actual motion parameters of the UAVs are derived from 
the motion states, which further determine the UAV trajectories.

Algorithm 3  Dual-game based Flocking obstacle avoidance algorithm

4.3 � Complexity analysis

In this subsection, we will briefly analyze the computational complexity of the DGF algo-
rithm. The entire algorithm is controlled by the number of iterations, which is denoted as 
l. Firstly, in the first-level game, the algorithm calculates the squared Euclidean distance 
matrix twice, which has a time complexity of O

(

N 2
)

 , where N represents the number 
of UAVs. Secondly, in the second-level game, the algorithm updates the motion states 
based on the interaction results of the agents, which has a time complexity of O

(

N 2
)

 . 
Therefore, the overall time complexity of the algorithm is O

(

l × N 2
)

.

5 � Numerical results and discussion
In this section, we will present the numerical results of the UAV swarm passing through 
the small holes. The simulation parameters are set based on the classical Flocking algo-
rithm [23]. We set the safe distance between the UAVs to d = 5 m and the interac-
tion range between UAVs to r = 6 m . Similarly, the safe distance and interaction range 
between the UAVs and obstacles are set to d′ = 1.5 m and r′ = 1.8 m , respectively. To 
prevent collisions between UAVs, the interaction force coefficient need to satisfy cαq > c

γ
q . 

Hence, we set cαq = 5 , cγq = 1 and cβq = 12 . To enhance the speed of passing through the 
small holes, we set the step δt = 0.1 s and the number of iterations l = 1600 . Addi-
tionally, in the σ mapping function, we set ε = 0.1 , hα = 0.2 , hβ = 0.9 and a = b = 5 . 
In order to consider both algorithm performance and visualization simultaneously, we 
evaluate the algorithm based on both small-scale (N = 8) and large-scale (N = 28) UAV 
swarm scenarios.

Figure 3 presents the simulation results of the small-scale UAV swarm with N = 8 
passing through the small holes. From Fig. 3a and b, it can be observed that the UAV 
swarm adopts an α-lattice structure and flies toward the targets before encountering 
the small holes. Upon reaching the decision distance, the swarm undergoes matching 
separation, with sub-swarms continuing to fly toward the two targets. As seen from 
Fig. 3c, the sub-swarms initiate a sequential and orderly passage as they approach the 
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small holes. This is achieved by the dynamically adjusting UAVs’ motion states based 
on the second-level game. The UAV closest to the small hole obtains the right to pass 
through it and maintains the motion state S3 , while the remaining UAVs switch to the 
motion state S4 , disconnect from the target attraction and wait for the next round of 
the game. From Fig. 3d, it is evident that the UAV swarm successfully pass through 
the small holes and reach target points after multiple iterations.

Figure  4 presents the simulation results of the large-scale UAV swarm with N = 28 
passing through the small holes. Similar to the small-scale case, the UAV swarm stead-
ily passes through the small holes over time. From Fig. 4c, it can be observed that the 
UAVs within the ellipse exhibit a tendency to move away from the targets in the oppo-
site direction. This phenomenon is attributed to the fact that the UAVs are not only 
influenced by the attraction from the targets but also affected by repulsion from other 
neighboring UAVs. As a result, they adjust their acceleration in the opposite direction to 
maintain a safe distance from neighboring UAVs. From Fig. 4d, it is evident that the UAV 
swarm successfully pass through the small holes, ultimately reaching the target points. 
This illustrates the effectiveness and universality of the proposed DGF algorithm.

Figure 5 illustrates the relationship between the passage time of UAVs and the deci-
sion distance with N = 8 . As seen from Fig. 5, the passage time of UAVs decreases as 
the decision distance increases, which indicates that UAV swarm can pass through 

Fig. 3  The perforation process of UAV swarm for N = 8
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the small holes more quickly by increasing the decision distance. However, a longer 
decision distance implies a stronger UAV perception capability. Notably, a significant 
change in passage time occurs when the decision distance is 40 m. Moreover, as the 

Fig. 4  The perforation process of UAV swarm for N = 28

Fig. 5  Perforation time versus decision distance
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decision distances increase, the decreasing trend in passage time becomes less pro-
nounced. Therefore, using 40 m as the decision distance can provide the UAV swarm 
with shorter passage time while imposing lower perception requirements. This is also 
why a 40-m decision distance is selected in the previous and following simulations.

Figure  6 shows the speed components of each UAV in the x-axis and y-axis with 
N = 28 . Firstly, from Fig. 6a, it can be observed that the speed component in the x-axis 
gradually increases from 0 m/s to 1.8m/s and stabilizes within the 0–250 time steps. This 
time period represents the convergence process where the UAV swarm self-organizes 
into an α-lattice structure and achieves convergence based on the speed consensus prin-
ciple of the Flocking algorithm before encountering obstacles. Secondly, it can be seen 
from Fig. 6a and b that when the UAV swarm flies during the 250–1500 time steps, the 
speed components in both x-axis and y-axis oscillate remarkably. The reason for this 
phenomenon is that obstacles appear within the perception range of the UAVs during 
this time period, and the UAVs dynamically adjust their speed according to the positions 
of the obstacles and other UAVs in the neighboring set, thus avoiding collisions. Lastly, 
when all UAVs successfully pass through the small holes, it can be observed from Fig. 6a 
and b that the speed components in the x-axis and y-axis converge again and eventually 
approach 0. This demonstrates that the proposed DGF algorithm can dynamically adjust 
the motion states of individual UAVs according to the environment, ensuring the safe 
flight of the UAV swarm.

Figure 7 presents the variation curves of the motion control inputs of the UAV swarm 
with N = 28 . Figure  7a shows the variation curve of the interaction term uα between 
UAVs, while Fig. 7b shows the variation curve of the interaction term uβ between UAVs 
and obstacles. It can be observed from Fig. 7a that the value of uα gradually increases 
from 0 and then decreases until it tends to 0 and remains stable. The reason for this phe-
nomenon is that during this process, the UAV swarm transitions from the initial forma-
tion to the α-lattice structure. Once a stable formation is achieved, the potential energy 
function in the algorithm approaches 0 and remains stable without external forces act-
ing on it. From Fig. 7a and b, it can be seen that the values of uα and uβ start to increase 
abruptly around the time step of 255 and oscillation phenomenon appears. This is due 
to the fact that the obstacle starts to appear within the perception range of the UAV 

Fig. 6  Speed component with step
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swarm at this instant, and each UAV starts to dynamically adjust the control input to 
move away from the surface of the obstacle due to the strong repulsion. An interesting 
phenomenon is observed in Fig. 7b, where after 1200 time steps, only one UAV exhibits 
repetitive oscillations in the uβ value, eventually converging to 0. This indicates that at 
this instant, only that UAV remains in front of the small hole and successfully passes 
through it after a certain period of time. Furthermore, from Fig. 7a, it can be seen that 
the value of uα for the UAV swarm eventually stabilizes, indicating that the UAV swarm 
reestablishes a stable α-lattice structure. This further demonstrates the effectiveness of 
the proposed DGF algorithm.

Figure  8 shows the distance variations between UAV 28 and the other UAVs in the 
swarm with N = 28 . It can be observed from Fig. 8 that the distance between UAV 28 
and the other UAVs does not exactly equal the lattice spacing d. This is because the pro-
posed DGF algorithm utilizes a quasi α-lattice structure, where there exists an elastic 
variable δ for the avoidance distance between UAVs. Furthermore, from Fig. 8, it can be 
noticed that after passing through the small holes, the distances between UAV 28 and 

Fig. 7  UAV motion control input with step

Fig. 8  Curve of distance change between UAV 28 and other UAVs
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UAV 15 and UAV 20 return to d − δ . This indicates that after passing through the small 
hole, UAV 28, along with UAV 15 and UAV 20, reestablishes a quasi α-lattice structure 
and then continues flying toward the target. Also, this proves that the proposed DGF 
algorithm effectively avoids the issue of structural fragmentation that may occur in the 
original Flocking algorithm during the obstacle avoidance process.

Figure 9 shows the minimum distance between UAV 28 and the other UAVs at each 
time step. It can be observed from Fig. 9 that although the minimum distance fluctuates 
at each time step, it never falls below the quasi lattice spacing of d − δ . This indicates 
that the UAVs consistently maintain a safe distance during flight, thereby demonstrating 
the effectiveness of the proposed DGF algorithm in avoiding hard collisions between the 
UAVs.

Figure 10 illustrates the trajectories of the UAV swarm under different control algo-
rithms with N = 8 . Figure  10a shows the trajectory of the UAV swarm for the origi-
nal Flocking algorithm, while Fig. 10b shows the trajectory of the UAV swarm for the 
proposed DGF algorithm. From Fig. 10a, we can see that in the case of original Flock-
ing algorithm, a phenomenon occurs that the UAV swarm gets blocked in the front of 
a small hole because only one UAV can pass through it. Moreover, the UAV swarm is 
simultaneously subjected to the repulsive force of the obstacle wall and the attraction of 
the target agent, thus resulting in potential function of 0, so the UAV swarm remains in 
a stable state outside the wall. In addition, the UAVs break the lattice distance constraint 
in front of the obstacle wall and inter-UAV collision occurs. This is because the attrac-
tion from the targets to the UAV far exceeds the repulsion from the obstacle as well as 
other UAVs, and the UAVs eventually collide when the safe distance is gradually com-
pressed. From Fig. 10b, we can see that with the DGF algorithm, the UAVs can get the 
optimal sequence of hole crossing after the dual-game and finally reach the target points 
smoothly. Thus, it can be seen that the proposed DGF algorithm can guide the UAV 
swarm to pass through the small holes smoothly while avoiding the collision between 
UAVs, which also confirms its reliability.

Fig. 9  Curve of minimum distance between UAV 28 and other UAVs
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6 � Conclusions
In order to enable UAV swarm to pass through multi-narrow type obstacles in an 
orderly manner, a dual-game real-time obstacle avoidance scheme is proposed in this 
paper, aiming to realize the matching separation and obstacle avoidance control for 
UAV swarm. For the proposed scheme, a dual-game based Flocking obstacle avoid-
ance algorithm is proposed. Specifically, the obtained motion states of each UAV 
from the game are transformed into actual motion control inputs, which are then 
integrated with the Flocking algorithm to determine the actual motion parameters 
of each UAV. Finally, the obstacle avoidance process is successfully accomplished 
after multiple iterations. Simulation results demonstrate that the proposed DGF algo-
rithm enables the UAV swarm to pass through multi-narrow type obstacle scenarios 
successfully. Moreover, the algorithm effectively solves the hard collision problem 
between UAVs and notably improves the safety of the system.
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