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Abstract 

Multi-Agent Systems are characterized by the presence of multiple independent 
agents and find diverse applications. In the context of smart cities, MAS is employed 
in traffic management to enhance operational efficiency, optimize resource utilization, 
and improve the quality of life for residents. This research paper focuses on the design 
of a multi-agent intelligent scheduling system, where passengers, vehicles, and car-
pooling platforms serve as intelligent agents. The primary objective of passengers 
is to identify suitable shared vehicles based on criteria such as waiting time, budget 
constraints, and willingness to carpool. Vehicles, on the other hand, organize their 
schedules based on passenger demands and designated routes. The carpooling 
platform takes into account resource allocation priority and optimization problems 
to ensure the efficient operation of the system. To address the issue of vehicle ordering, 
k-regret queries are utilized, while passenger preferences provide insight into deter-
mining loss factors. To safeguard privacy, differential privacy techniques and a random 
response mechanism are employed when dealing with multiple passenger queries. 
Furthermore, a direction-preserving insertion verification method is implemented 
to mitigate computational complexity. The effectiveness and efficiency of the pro-
posed approach are validated through experimentation.

Keywords: Multi-agent systems, Ride sharing, k-regret query, Differential privacy

1 Introduction
Multi-agent systems are primarily applied in smart cities to achieve intelligent, efficient 
operations and optimize resource utilization [1, 2]. Technologies such as information 
technology and the Internet of Things (IoT) are leveraged in smart cities to enhance 
urban management and service levels. Various subsystems within a city can be con-
nected by multi-agent systems, forming a collaborative network. Areas such as trans-
portation, energy, environment, security, healthcare, and education are encompassed by 
these subsystems. The field of transportation provides an example of the application of 
multi-agent systems in smart cities [3]. The use of ridesharing or taxi services is facili-
tated by multi-agent traffic systems, reducing the reliance on private vehicles, alleviat-
ing traffic congestion, and mitigating environmental pollution. Furthermore, passenger 
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safety, comfort, and convenience are enhanced by intelligent traffic systems, thereby 
increasing satisfaction and usage of public transportation. Consequently, the implemen-
tation of intelligent traffic systems plays a crucial role in promoting the popularity of 
shared mobility solutions and ensuring the sustainable development of the future trans-
portation industry.

In the realm of intelligent transportation systems employing multiple agents, both 
industries and researchers are developing methods to combat difficulties, such as aggra-
vated traffic congestion, intensified pollution, and heightened urban energy consump-
tion. By providing shared commuting, carpooling holds the potential to satisfy travel 
needs, reduce energy consumption, and relieve traffic congestion [4–6]. For example, 
recent statistical data indicate that in Shanghai, there are around 120,000 intersections, 
40,000 taxis, and over 400,000 taxi trips per day. However, the low vehicle utilization rate 
implies that most cars run without passengers, and the average occupancy rate for taxis 
or private cars is typically less than two people per car. Carpooling is a service that uti-
lizes geographic location devices to organize shared rides dynamically, mainly employ-
ing taxis and private cars. These platforms transmit ride requests, which include pick-up 
location and destination, to nearby taxi drivers who determine whether or not to accept 
the request. Although some studies [7, 8] have proposed advanced improvement meth-
ods, the previous methods cannot adequately measure the degree to which taxis meet 
constraints that reflect the passenger experience. Furthermore, the problem of pas-
senger privacy infringement has been neglected when pairing vehicles and travelers, 
potentially resulting in loss or privacy violations for passengers. For example, consider 
a scenario where a user regularly prefers carpooling and is willing to pay more for an 
optimal experience on a shared transportation platform. However, if the platform’s data 
on user preferences were to be leaked, it could reveal users’ carpooling preferences and 
payment records. Malicious parties could exploit this information for targeted phishing 
attacks, leading users to pay unreasonable fees. Furthermore, some applications employ 
“big data discriminatory pricing” (BDDP) techniques to analyze user preferences for 
their financial gain. Unfortunately, this has led to records such as Didi Global Inc. being 
fined a record 8.026 billion yuan for a data breach in 2022. Hence, to maintain user pri-
vacy while understanding their preferences and requirements, the implementation of 
differential privacy technology is necessary. This approach assists in providing improved 
travel services, elevating user satisfaction and loyalty, increasing competitiveness, and 
encouraging sustainable development.

In response to the above problems, the Dynamic Ridesharing Model [9] researched by 
academia provides a new idea, which dynamically matches the trip requests submitted in 
real-time with the vehicles traveling on the road network. This type of travel is more flex-
ible and realistic and does not require passengers to have the same pick-up and drop-off 
locations, nor does it require passengers to submit their travel plans in advance, which 
places higher demands on the real-time vehicle-request matching. When ridesharing 
occurs, the route of the vehicle depends on the order of the boarding and alighting loca-
tions of the passengers on board, and the vehicle picks up and drops off passengers along 
the way, continuously completing the travel requests of different passengers, while the 
fare is recalculated based on certain criteria. As the route of different passengers will be 
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different due to different starting and ending points, to let new passengers on board, the 
vehicle will generally deviate from the original route of travel, which will cause negative 
effects on the passengers on board such as detour and delayed arrival time and in order 
to deliver each passenger, the route will not be the best route for each person; these fac-
tors will cause a certain degree of passenger dissatisfaction. On the other hand, when 
the degree of loss is quantified, i.e., when the loss appears, the ridesharing problem can 
be transformed into a problem of matching the most suitable vehicle to complete the 
trip. In this way, the loss factors are taken into account and are the main aspect to be 
considered. In this paper, furthermore, these factors are the privacy (preferences) of each 
passenger that needs to be protected, and we use Laplace noise to protect the user’s pref-
erence information while computing the loss. Finally, to preserve the privacy of multi-
passenger ridesharing information in subsequent queries, we utilize a random response 
mechanism to prevent the inquirer from deducing whether two people are sharing a 
car. As a result, this study aims to delve into the dynamic ridesharing problem, with the 
expectation to improve the quality of ridesharing trips and passenger satisfaction, which 
will further facilitate the sharing economy concept by enabling easier travel and amelio-
rating traffic congestion.

The contributions of this paper can be concluded as follows: 

1. In this work, we introduce a novel ranking mechanism in the car-sharing problem. 
This mechanism incorporates a multi-intelligence system that efficiently handles 
dynamic requests. We rank candidate cabs based on their regret value, which is cal-
culated using the min–max regret method. This approach allows us to quickly satisfy 
user requests while considering the potential regrets associated with each cab choice.

2. A function f is defined for computing the regret value, which is based on the user’s 
choice during the matching process and incorporates differential privacy so that the 
user’s preference can be protected. Furthermore, we also protect co-rider informa-
tion using the Random Response Mechanism in the subsequent query.

3. To enhance the efficiency of the proposed algorithm, we propose a flexible direction-
preserving-based filtering approach. This approach can quickly identify and ignore 
unqualified taxis, reducing redundant computation.

4. We conduct experiments to verify the effectiveness and efficiency of our approach.

The rest of the paper is organized as follows. In Sect. 2, we define the problem and dis-
cuss the classification of existing privacy-preserving methods, related definitions, and 
properties. In Sect. 3, we describe how to rank taxis with differential privacy, preserve 
information for subsequent queries and the method that accelerates the algorithm. 
Experimental results are presented in Sect. 4, and conclusions are drawn in Sect. 5.

2  Preliminary work
2.1  Related work

2.1.1  Ridesharing problem

A road network G = (V ,E,W ) consists of a vertex set V and an edge set E. Each edge eij 
from vi to vj is associated with a weight wij indicating the traveling cost along this edge. 
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Given two nodes in the road network, a path along with them is a vertex sequence. The 
path cost w(p) = wij is the sum of all edge costs wi,i+1 along the path, the minimum 
sum of the path is corresponding to the shortest path.

Use Ap for Agent passenger and At for Agent taxi. A trip request R represents a Ap ’s 
request for a taxi ride that is associated with a timestamp R.t indicating when the request 
is submitted, a picked-up point R.p, and a destination point R.d. A request has details 
such as the length of the shortest path R.sl, the length of the estimated path R.el, and 
the estimated arrival time R.et. A At status T represents the real-time state of a At and is 
identified by a unique identifier T.id, it also contains the current geographical location 
T.l, and the number of on-service requests T.n, a current schedule T.s and the arranged 
path T.path. A schedule is a temporally-order sequence of unfinished picked-up and 
destination points of n requests. The arranged path is a sequence of ordered vertex on 
the road network according to the schedule calculated by the shortest path program-
ming algorithm.

In practice, the shortest paths are generally not entirely consistent between two 
requests. So compared with the no-sharing trip, ridesharing will incur a delay due to the 
inserted sharing request in general. The delay combines multiple factors such as travel 
distance increment, travel time increment, passenger waiting time. These are called con-
straints or objective functions. General ridesharing systems aim to select the right taxi 
which meets the constraints or achieves the minimum objective function of that request.

The basic framework of the multi-agent ridesharing service is shown in Fig. 1. A Ap 
submits a request R to the system, the system invokes the At searching module to search 
for a set of candidate taxi set Ti which is filtered based on the At s’ index. Then, this set is 
pushed to the scheduling module to try to insert R into the schedule of a At in the set Ti . 
Next, the system chooses the right one. Finally, the system informs both the Ap and At 
and its submit updated status to the index module.

It should be noted that At ’s schedule will be reordered after accepting the new request, 
and it is a special case of the traveling salesman problem (a well-known NP-complete 
problem, which has already been proved to be NP-complete [10]) with order constraint 
and without the demand for returning the starting point. And the problem of minimizing 

Fig. 1 Framework of multi-agent ridesharing service
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the total travel distance of all At s for the whole query stream is also NP-complete and 
can be proved to be a generalization of the traveling salesman problem . In [11] for proof. 
Some literature [7, 11] choose to remain the intact order of points in the current sched-
ule when inserting a new request. Some, like [12, 13], choose to reorder the At schedule 
completely by the kinetic tree approach combined with the pruning strategy.

In multi-agent solving of intelligent dispatching problems, MATSim [14] is an agent-
based traffic simulation framework. An iterative co-evolutionary learning approach is 
utilized, where each agent attempts to maximize their daily score under a given activity 
plan. Positive scores are given to agents for successfully completing scheduled activities 
(e.g., work), while negative scores are given for being late. After each iteration, the agents 
evaluate their previous execution plans and derive their scores. While the remaining 
agents choose from the existing plans based on the scores, some agents have the option 
to modify their plans by selecting new routes or alternative modes of transportation. 
Similar to MITO, MATSim is an open-source Java program that facilitates the integra-
tion of both into a single software package. Multiple extensions are included in MATSim 
for simulating on-demand mobility systems [15]. An extension for simulating (ride-
sharing) autonomous taxis was developed by [16]. It was further extended by [17, 18], 
incorporating different operational strategies and algorithms for operating (rideshar-
ing) autonomous on-demand systems. The Demand Responsive Transportation (DRT) 
extension developed by [19] was utilized for this study. When trip requests with pick-
up and drop-off coordinates are submitted, vehicles that can serve the request within 
the defined maximum waiting time without exceeding the maximum travel time of any 
other passenger or vehicle are searched for by the algorithm. The performance of DRT 
systems highly relies on service parameters, as demonstrated by [19, 20].

To meet the time constraints of request processing and solve the time-consuming 
problem of minimizing total travel distance, a greedy strategy, which only takes At s 
around the request into consideration based on grid indexing, is performed to speed up 
response time. In path re-planning, we use an insertion check method of remaining the 
original order likes [7, 11, 21].

2.1.2  Grid‑partitioned map and adjacency matrix

For the purpose of selecting the most preferred taxi, a straightforward approach in [22] 
is estimating all taxis for request. Unfortunately, this idea is too time-consuming because 
the computation is expensive, and the number of taxis is huge. And some vehicles can be 
filtered directly which are outside the passenger waiting time constraints for the remote 
distance between them. So, we want a taxi searching process to select a small set of taxis 
quickly and wisely, which are likely to satisfy the requirements.

Similar to the taxi index structure used in most literature [7, 11], we adopt a road 
network based on grid partitioning and select road network nodes near the geographic 
center of the community as anchor nodes. As shown in Fig.  2(a), taxis are indexed 
according to the grid corresponding to their current location. Assuming that each grid 
unit is folded onto its anchor node, the distance between any two points is equal to the 
distance between the corresponding anchor nodes. Therefore, the shortest path dis-
tance from one anchor node to another can be calculated in advance and saved in the 
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adjacency matrix. If we obtain speed information for the road segments, travel time can 
also be calculated. The grid distance matrix, as shown in Fig. 2(b), provides an approxi-
mate shortest path distance between grid units.

2.1.3  k‑regret query

Extracting a few tuples from the database as query answers is an important operator 
in the database and many applications. Top-k [23–25] and skyline [26] query are two 
well-studied query operator. A promising new alternative is the regret −minimizing set , 
introduced by [27], which is inspired by the maximum regret minimization 
( min−max regret ) method and hybridizes the skyline operator with top-k queries.

The maximum regret minimization method is an approach to minimize the maximum 
difference in the objective value of the optimal solution over all scenarios, compared to 
the best possible objective value achievable in each scenario. This approach is usually 
known as min-max regret [28, 29]. It is used for uncertainty decisions in management 
first and aims to optimize the worst-case performance of a solution without knowledge 
of a probability distribution over uncertain scenarios. As shown in the following exam-
ple, Fig. 3(a) indicates the travel expense of passengers and drivers when a new passen-
ger travels on different vehicles, the lowest expense of passengers is 0.88 and the drivers 
is 0.71 which are outlined in black. We calculate the difference between the expense of 
the passenger or driver and the corresponding minimum value, called regret. Then, we 

Fig. 2 Grid indexing

Fig. 3 Example pf min–max regret approach
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choose the maximum regret value in the same vehicle and fill it in the last column; the 
taxi which is corresponding to the minimum value marked in a black box is the final 
result as shown in Fig. 3(b).

However, due to its min–max structure, these problems are typically very hard to 
solve, both from a theoretical and practical point of view. −regret minimizing set was 
proved to be NP-hard in [30] employing a reduction from the SET-COVER decision 
problem. When k=1, it is similar to the optimal solution.

2.1.4  Differential privacy

Differential privacy has a rigorous mathematical proof with strong privacy protection 
and quantifies the degree of privacy protection, which intuitively means that query 
results are probabilistically almost indistinguishable, regardless of the existence of any 
individual in the data set or the value of the corresponding data entry. The means to 
achieve this is to add noise to the query results that satisfy the definition of differen-
tial privacy [31–33]. It has therefore been widely used in recent years [34–37]. The most 
common mechanisms are the Randomized Response mechanism, the Laplace mecha-
nism and the Exponential mechanism, with the trend toward distributed applications. 
This also led to differential privacy being divided into CDP (Center Differential Privacy) 
[38] and LDP (Local Differential Privacy) [39, 40]. The CDP is the traditional form, 
which collects data from the data provider and then analyses it, satisfying the differen-
tial privacy protection in the process of analysis, but this is all based on the fact that 
this data center is trusted, but many cases show that it is very difficult to find a trusted 
third party in real life. Therefore, LDP, which is the counterpart of CDP, works without a 
trusted third party because it encrypts the data before it is transmitted so that the data 
center does not know the information of a specific individual, and then, the third party, 
the data collection center, eliminates the effect of the encryption on the data as much as 
possible by estimation.

Differential privacy has been widely applied to the problem of ridesharing services in 
order to protect the personal information of passengers and drivers, in particular with 
respect to their location and the tracking of their movements. By using differential 
privacy techniques, ridesharing service providers can add some noise to the collected 
location data, thereby avoiding revealing personal privacy information to potential 
attackers. For example, [41] uses smooth sensitivity, and the utility of the data set is 
greatly improved by reducing the amount of noise added. [42] adds some noise to these 
locations to protect users’ privacy. [43] defines δ location set-based differential privacy 
to account for the temporal correlations in location data. In addition [44, 45], monitors 
vehicle routes by applying differential privacy techniques to the vehicle trajectory, such 
as fuzzification or noise addition, and the vehicle’s location privacy information can 
be protected. In [46], the objective function of each agent is perturbed with noise in a 
manner that ensures differential privacy. This approach guarantees differential privacy 
at the functional level and is particularly suitable for systems with asymptotically stable 
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dynamics. Additionally, [47] focuses on preserving the privacy of the initial states of 
agents in average consensus.

2.2  Preliminary definitions

The definition of k-regret query, differential privacy, some common noise mechanisms 
satisfying differential privacy, and the problem are described as follows:

Definition 1 Utility Function f The utility function f is a mapping function 
f : Rd

+ → R+ . The utility of a piece of data p corresponding to a utility function f is f(p)

Definition 2 Gain Determine the utility function f and the subset S of the full set D of 
data, with the benefit defined as the maximum utility obtained by the points in the sub-
set corresponding to the utility function f.

Definition 3 Regret Ratio

where rD(S, f ) = Gain(D, f )−Gain(S, f )

The regret rate is in the range of [0,1], and the closer to 0, the better the subset is 
close to the global optimum, indicating that the subset is well chosen. The smaller the 
user’s regret value is, the user is satisfied with the returned results.

In addition, since it is assumed that the user’s utility function does not have 
advanced disadvantages, a utility function set F can be set up, which contains multiple 
utility functions. There are many utility functions, such as monotonic functions, lin-
ear functions, convex functions. In the scope of this paper, the utility function refers 
specifically to the linear utility function, and the sum of the weights is 1.

Definition 4 Maximum Regret Ratio:

Definition 5 k-regret Query: Given a positive integer k, the full set D of data contain-
ing n d-dimensional item is chosen to contain as many as k points in the subset S such 
that the maximum regret rate of the subset is minimized.

(1)Gain(S, f ) = max
p∈S

f (p)

(2)rrD(S, f ) =
rD(S, f )

Gain(D, f )

(3)

rrD(S, F) = sup
f ∈F

rrD(S, f )

= sup
f ∈F

max
p∈D

f (p)−max
p∈S

f (p)

max
p∈D

f (p)
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Definition 6 ǫ-Differential Privacy: Given a query function f (x) : X → R , and 
the noise is represented by r, so the final output result is M(x) = f (x)+ r . M(x) 
satisfies ǫ-differential privacy iff. for two data sets with Hamming distance of 1, 
P[M(x) ∈ S] ≤ eǫP[M(x′) ∈ S] is satisfied for any output set S, where ǫ is the privacy 
budget.

By definition, the smaller the privacy budget, the greater the protective effect.

Definition 7 Randomized Response Mechanism Suppose there are n users and we 
want to count the percentage of a certain privacy attribute to initiate a questionnaire. 
Each user responds to this, and the i th user’s answer Xi is yes or no, but for privacy rea-
sons, the user does not respond directly to the true answer. The answer is given with the 
help of a non-uniform coin with probability p for heads up and 1− p for tails up, which 
is tossed to give the true answer if heads are up and the opposite answer if tails are up.

By proving that it is satisfied ln( p
1−p )-DP.

Definition 8 Laplace Mechanism Given a query function f (x) : X → R , D,D′ is 
a pair of adjacent data sets(e.g., there is only one element difference), the sensitivity is 
△f = max�f (D)− f (D′)�1 , the output is M(D) = f (D)+ Y  , which is the noise con-
forming to Laplace distribution added by Y, and its parameters are (0, △f

ǫ
).

2.3  Problem definition

The scenario involves a fixed number of At(Agent Taxi) (n) traveling on a road network 
G, along with a series of requests R. The At s are represented by the set {At1,At2, ...,Atn} . 
A set of candidate vehicles {A′

t1,A
′
t2, ...,A

′
tn} is selected by each vehicle, satisfying differ-

ential privacy constraints through the calculation of regret (loss). Furthermore, when 
two passengers share the same vehicle more than k times, an intimate relationship is con-
sidered to exist between them. Hence, a random response mechanism is applied to pro-
tect the privacy of shared ride queries q. In order to decrease computational complexity 
and enhance response time, the vehicle set {At1,At2, ...,Atn} is filtered and reduced based 
on angles to {At1,At2, ...,Atn′ } where n′ < n based on angle filtering, before calculating 
regret. At the stage, the line connecting two points pi and pi + 1 is denoted by pipi+1 . 
The direction of pipi+1 is represented by θ(pipi+1).

3  Our approach
In ridesharing problems, due to unexpected detours or extra time taken by car sharing, 
Ap(Agent Passengers) on board may experience discomfort. Additionally, if a At(Agent 
Taxi) is matched with a request that is too far out of their way, even in the opposite 
direction, they are likely to decline the ride. It is evident that experiencing a detour and 
additional service time is unavoidable, hence, unpleasantness will always be an inher-
ent feature of carpooling services. As a result, ridesharing services inherently incur a 
sense of dissatisfaction, referred to as regret in this paper. We aim to make the optimal 
choice to minimize regret, which is referred to as a 1-regret query. There are various 
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methods of calculating regret, and each user may prioritize different factors such as 
fare, and ridesharing companionship, among others. We utilize Laplace noise to pro-
tect the user’s preference information during loss computations. Additionally, in subse-
quent investigations that involve multi-passenger ridesharing information, the Random 
Response mechanism is utilized to secure the user’s ridesharing data privacy, preventing 
the inquirer from gaining knowledge that two individuals share a ride. Finally, To accel-
erate the algorithm, we propose a flexible direction-preserving-based filtering approach 
to ignore the unqualified taxis and avoid redundant computation.

3.1  Regret calculation with differential privacy

When it comes to travel issues, cost evaluation is always essential. In non-ridesharing 
situations, people are mainly concerned with the distance and time of the journey, with 
the distance typically being translated into a fare through a pricing formula. In carpool-
ing, the problem remains primarily one of individual travel behavior, where users are less 
concerned with the pick-up and drop-off locations of fellow travelers, and more con-
cerned with the actual cost of travel, travel time and distance. Since distance is just a 
number, the critical aspect that users care about is how much they will have to pay on 
arrival and how this compares to traveling alone. These user preferences represent the 
sensitive data that needs to be protected, and the Laplace mechanism can be used for 
this purpose.

3.1.1  Price strategy

Before proposing a price strategy for carpooling, it is necessary to propose constraints 
on the recalculation of fares when carpooling: 

1. For Ap(Agent Passengers), the unit price of the distance on the carpool section is less 
than the unit price when there is no carpooling;

2. For At(Agent Taxi), the total carpool price per unit distance on the carpool section is 
higher than the total price when there is no carpooling.

We discuss passengers first. As shown in Eq. 4, we define the passenger’s regret value as 
the ratio of fare with ridesharing and fare without sharing. Denote by p the regular taxi 
fare per kilometer, p ∗ R.sl means the fare when a passenger travels alone without a traf-
fic jam, it will be determined once the request is generated. R.fare is the actual fare of the 
request. When detours increased and delivery is postponed to receive a new request, 
that leads to a growth of actual fare and regret value.

Based on the above constraints, the formula for calculating the price is as follows

(4)R.reg =
R.fare

p ∗ R.sl

(5)R.fare = max

{

p

c
∑

n−1

((1− �(n− 1)) ∗ disn),P

}
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Where � is the price floating parameter, take the value from range (0,  0.25); p is the 
distance unit price, similar to the cab price per kilometer; assume that the actual dis-
tance of a section is diss, passenger’s fare depends on the number of people n which ride 
together on this section, reduce the proportion of �(n− 1) , the actual fare of this sec-
tion is p(1− �(n− 1)) ∗ disn ; Since the complete trip of passenger travel is composed 
of various road sections with a different number of co-passengers, let the upper limit 
of the number of passengers by c. The actual trip distance is and the actual travel cost is 
p
∑c

n=1((1− �(n− 1)) ∗ disn).
When the passenger’s cost of the ride is determined, the driver’s revenue is the sum of 

the passenger’s costs, as shown in Eq. 6.

As to the drivers, the most important factor is income, and they do not care about pas-
sengers’ regret. As shown in Eq. 7, we use the ratio of non-ridesharing hourly price and 
hourly earnings when ridesharing to measure the value of the driver’s regret. Hourly 
earnings should more than income when carrying a single guest. Driver’s hourly earn-
ings are calculated by Eq. 8, where Ri.fare is the fare of i-th passenger. In general, the 
hourly sharing income is always higher than the non-ridesharing earnings when remov-
ing free time. Furthermore, drivers’ regret arises from making the wrong pick compared 
to a more profitable one.

In this paper, we adopt the greedy strategy based on insertion planning, that is, when 
adjusting the existing path to reach the boarding and alighting locations of new requests, 
we adopt the order of the boarding and alighting locations of accepted requests on the 
original path and choose the location that causes the smallest detour after inserting the 
starting point of new requests to insert the starting point and then, insert the request 
endpoint after the starting point to complete the path planning. As shown in Fig. 4, in 
this way, the representation of paths that retain only the starting and ending points of 

(6)T .fare =

c
∑

i=1

Ri.fare

(7)T .reg =
p

hourly_profit

(8)
hourly_profit =

c
∑

i=1

Ri.fare

T .at

Fig. 4 Insertion path plan
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the request allows the vehicle planning to be represented in segments, with the number 
of co-riders determined for each segment and using the optimal path internally.

It should be noted that although the planned path between key points is the optimal 
path, the request planning consisting of different key point line segments as a whole 
does not guarantee that the actual path length of the request is within a certain range 
or even the actual planned path quality due to the insertion strategy. Therefore, the 
actual path of the request needs to be measured in terms of how far it is wound com-
pared to the optimal path.

3.1.2  Regret calculation

Due to the inevitable detours and delays in ridesharing, insertion strategies in 
route planning, etc., passengers’ actual routes will always be weaker than the short-
est routes, and the travel experience will always be weaker than the experience they 
would have had if they were riding alone. But how much weaker is it? Passengers do 
not accept these dissatisfying factors without limits. This requires a quantitative defi-
nition of these factors and reasonable constraints on the matching to ensure the qual-
ity of the matching.

No matter what task is accomplished, there is always a price to pay. No matter what 
good things happen when you arrive at your destination on a daily trip, in the case of 
a passenger’s trip from the starting point to the destination, the passenger has to pay 
money and time to complete it. Maybe the roads are in good condition, and it took less 
fare and less time than usual, but the trip still costs money and time, which is called loss 
here. The greater the loss, the more dissatisfied the passenger is with the trip; the ideal 
situation is a trip with no fare and an instantaneous arrival, where the loss is 0.

Since different passengers have different factors to focus on, they need to be taken into 
account in the matching process. The factors that are important to passengers are pri-
vate data and need to be protected. In this paper, we use time and fare, which are the 
factors that most passengers care about, as a measure of loss, and the fare is calculated 
by Eq. 5 and is determined by the distance of the trip. The reason why only the distance 
factor is converted into the fare and not the time as well is, firstly, because in real life it is 
just the distance that is chosen as the only measure of the fare; secondly, because the dis-
tance factor is more controllable than the time factor when different vehicles complete 
the same trip; and thirdly, because converting the time into the fare essentially prede-
fines the weights of distance and time, no different from the previous work. Other fac-
tors are not considered.

Use R.fare
p∗R.Ssl

 to measure passenger fare loss, where R.fare is the actual fare for a ride in a 
carpool and p ∗ R.Ssl is the cost when riding alone, and this value reflects the relation-
ship between the magnitude of the carpool fare and the expected fare without the car-
pool. If the ratio is less than 1, the loss in the fare dimension alone will be higher than 
that in the non-ridership dimension, and the loss in the time dimension will increase 
because of the detour, and the ridesharing mode will be uncompetitive. Therefore, it is 
necessary to set a constraint that this ratio is less than 1 when matching is performed, to 
ensure the quality of matching. The range of values of passenger fare loss by constraint is 
[0,1].
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Passenger time loss is measured using R.Sat−R.Sst
R.Sst

 , where R.Sat − R.Sst represents the 
ridesharing delay and R.Sst represents the minimum time spent without ridesharing. 
This value reflects the ratio of the delay incurred during a ridesharing trip to the mini-
mum time spent without ridesharing. The ratio value is used instead of the delay value 
because it is inappropriate to use a uniform maximum delay for passengers with differ-
ent travel times, e.g., a 5-minute delay must be acceptable to a passenger with a 10-min-
ute rest trip and a passenger with a 1-hour total trip. However, the travel delay cannot 
be increased indefinitely, and it is a more feasible approach to set a certain percentage of 
the minimum usage time as the delay constraint α , such as the specified range of values 
[0,0.5], and the range of values of passenger time loss through the constraint is [0,1].

In summary, after defining the fare and time constraints that passengers care about when 
traveling together, it is necessary to define the loss of passenger travel. Passenger loss is the 
calculated result when the two dimensions account for different ratios, and the weights w1 
and w2 are the coefficients in the utility function 

∑n
i=1 wi = 1 . The specific expressions are 

shown in Eq 9.

3.1.3  Applying differential privacy in k‑regret ranking

As mentioned earlier in this paper, our objective is to protect users’ preferences, which are 
reflected in the coefficients, or weights, assigned to different factors when calculating regret 
values. To achieve this objective, two noise-addition methods can be employed, the first 
being the addition of Laplace noise with sensitivity of 1 to the weights, and the second being 
the addition of Laplace noise with sensitivity of max

(

R.fare
p∗R.Ssl

, R.Sat−R.Sst
α∗R.Sst

)

 to the outputs as a 

whole. In this paper, we use the former approach.

Limma 1 Parallel Combination It is applied to different data sets and different query 
functions. Similarly, Mi represents a ǫi-differential privacy algorithm, Di represents dis-
joint data sets Mi(X

⋂

Di) indicates that the action data sets between various differen-
tial privacy algorithms do not intersect each other, so the overall satisfaction satisfies 
max{ǫi}-differential privacy

Theorem  1 Given a function R.loss = w1 ∗
R.fare
p∗R.Ssl

+ w2 ∗
R.Sat−R.Sst
α∗R.Sst

 , where w1,w2 are 
within the range [0,1], if Laplace noise with a sensitivity of 1 is added on w1,w2 with a 
privacy budget of ǫ , then the overall privacy budget of the computation is given by ǫ.

1  Proof
For the purpose of convenience of proof, it is assumed that the loss is comprised of a single 
influencing factor, that is, R.loss = w1 ∗

R.fare
p∗R.Ssl

.

(9)R.loss = w1 ∗
R.fare

p ∗ R.Ssl
+ w2 ∗

R.Sat − R.Sst

α ∗ R.Sst
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Substituting this into the definition of differential privacy yields

The parallelism principle dictates that the overall privacy budget of the computation is ǫ . 
 �

It can be determined that the noise we added follows the Laplace distribution. There-
fore, the first step is to transform it into the form of Pr[noise = x] , which is convenient 
for subsequent substitution into the probability density function of the Laplace distribu-
tion. Secondly, according to the definition of differential privacy, the ratio between two 
distributions is calculated and the absolute value inequality is used for bounding in the 
final step.

3.2  Dual‑side taxi matching algorithm

We propose a request-taxi matching algorithm from two sides, including the passen-
ger side and the driver side. The so-called passenger side means that we consider only 
the maximum regret value among all passengers in a car. In the second aspect, we con-
sider the driver’s regret for parting with the passengers. We then use the min-max regret 
approach to choose the taxi with the minimum regret as the final answer.

Pr[R.loss(w′
1) = z]

= Pr

��

w1 + Laplace

�

0,
b

ǫ

��

∗
R.fare

p ∗ R.Ssl
= z

�
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
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�
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Fig. 5 A new arriving request

Fig. 6 Example of Dual-side matching
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Require: a request R, Taxi set T
Ensure: The taxi ID with minimal regret value
1: for Grid cell gi around the request do
2: if gi.Tθ < α then
3: T ⇐ T + gi.T
4: else
5: break
6: end if
7: end for
8: while T is not empty do
9: condidateTaxi[i].receiveRequest(Ti,R)

10: if Ti.preg < minpreg then
11: minpreg ⇐ Ti.preg
12: end if
13: if Ti.treg < mintreg then
14: mintreg ⇐ Ti.treg
15: end if
16: end while
17: ID ⇐ arg(min(max(TI .preg −minpreg, Ti.treg −mingtreg)))
18: return ID

Algorithm 1 Dual-side taxi matching algorithm

To dive into the details of the algorithm, consider the example illustrated in Fig.  5 
and Fig. 6. It is assumed that there are at most 3 passengers in one taxi and 0 says no 
passenger.

At first, there is a request R, R.s is the location of the request, R.d is the destination, 
and its shortest path is marked by a red line as shown in Fig. 5. We search taxis around 
the request from the taxis set quickly and let us assume T1,T2,T3,T4 is searching result. 
T1 is one of the candidate taxis around and its arranged path is marked by a lack line in 
Fig. 5. Different passengers in different taxis have different regret and their temporal sta-
tus are shown in Fig. 6(a).

Secondly, since regret values of taxis are different for various newly joined passengers, 
we recalculate the regret value among passengers and drivers in one car after accepting 
the request concerning Sect. 3.1 and Fig. 6(b) as a recalculation result. Thirdly, seeing 
Fig. 6(c), we fill the maximum value as the representation of passengers’ regret among 
passengers in the same taxi and the corresponding driver’s regret in a new table. Finally, 
let us select the minimum value of each column and alters values in cells after calculat-
ing the difference between the minimum and original values as shown in Fig. 6(d). We 
choose the maximum value from two regret values to represent each solution and fill in 
a new column, deciding the taxi that corresponds to the minimum value among those 
as the final result marked in the black box in Fig.  6(d), then push it to the passenger 
and finish the service. The pseudo-code of the dual-side taxi matching is presented in 
Algorithm 1.

3.3  Mixed taxi matching algorithm

The Dual-said Taxi Matching algorithm can match taxi services for each request. How-
ever, there may be a situation where two requests submitted in adjacent time periods 
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could be matched with the same vehicle. In this case, the Dual-said taxi matching algo-
rithm would individually match each request.

Require: a request R, Taxi set T
Ensure: The matching of request and taxi
1: while R is not empty do
2: condidateTaxi[i].receiveRequest(Ti,Ri)
3: if Ti.preg < minpreg then
4: minpreg ⇐ Ti.preg
5: end if
6: if Ti.treg < mintreg then
7: mintreg ⇐ Ti.treg
8: end if
9: regret(Ri,Ti)⇐max((Ti.preg-minpreg),(Ti.treg-mintreg))

10: sort(regret)
11: end while
12: while R is not empty do
13: result[Ri][Ti]⇐result(0)
14: result.remove(Ri,Ti)
15: end while
16: return result

Algorithm 2 Mixed taxi matching algorithm

Then, we propose the mixed − taxi matching algorithm and it is a matching process 
that screens the candidate of passengers and drivers in a certain period by combining 
them as a whole. Concretely speaking, we do a Cartesian product of representational 
passengers and drivers, so we have diverse combinations. We recalculate the regret 
value of the passengers after joining the new requested passenger into each of the taxis 
as exemplified in Fig. 7(a). Then we fill in the corresponding maximum regret value of 
passengers and drivers in the table, seeing in Fig. 7(b). Thirdly, we select the minimum 
value of each column and fill values in a new column after calculating the difference 
between the minimum and other regret values like dual-side matching done. Finally, the 

Fig. 7 Example of mixed matching
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algorithm ranks the final regret value in ascending order and finishes the matching. See 
Fig.  7(c), the final service taxi for Request1 is Taxi2 and the taxi for Request2 is Taxi1 
marked with a black box. The pseudo-code of the mixed taxi matching is presented in 
Algorithm 2.

3.4  Carpool information query

To enhance user privacy and streamline the process, the backend system of the carpool 
matching software may include queries that seek information about which users shared 
the same car at a particular time. For example, the query q1 represents a search for the 
shared car of user A at a particular time. The actual return value is the taxi At1 , but if q2 
represents a search for the shared car of user B at the same time, the returned taxi would 
also be At1 . Thus, if both individuals repeatedly appear in the same vehicle, it can be 
inferred that they may have an intimate relationship. To prevent such attacks, we intro-
duce a random response mechanism in subsequent queries. Specifically, when searching 
for a user’s shared vehicle at a given time, we first retrieve a candidate set of vehicles At s 
with the same time period and route, and then randomly return a vehicle from At s. This 
approach ensures both the prevention of the aforementioned attacks and the availability 
of the data. The pseudo-code for searching the user’s carpooling vehicles is presented in 
Algorithm 3.

Require: User A, Dataset D
Ensure: Candidate cars set Cs

1: Iinitiate Cs

2: for c in D do
3: if c.passenger == A then
4: Search for a set C of vehicles with the same departure time and route
5: Cs.append(Random Response(C))
6: end if
7: end for
8: return Cs

Algorithm 3 Search user’s carpooling vehicles algorithm

In the case of the carpool information query, shown in Fig. 8, firstly, according to the 
time and location of the user’s carpool, We randomly draw a response from the set of 
candidate cars, and the final privacy budget satisfied is related to the size of the candi-
date set, e.g., the size of the candidate set is d, then its privacy budget is ln(d).

1  Proof

From Definition 6, it follows that differential privacy satisfies 
P[M(x) ∈ S] ≤ eǫP[M(x′) ∈ S] , i.e., P[M(x) = c] = 1 , P[M(x′) = c] = 1

d

 �

P[M(x) ∈ S]

P[M(x′) ∈ S]
= d ≤ eǫ

ǫ = ln(d)
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Figure 9 shows the results without using a randomization mechanism, from which it 
can be observed that A and B shared three rides at the same timestamp. Therefore, it 
can be inferred that they have an intimate relationship. On the other hand, Fig. 10 repre-
sents the results after implementing a randomization mechanism. In Case A, c102 shares 
the same route segment with c202, and c099 shares the same route segment with c010. 
Similarly, c103 and c143, as well as c289 and c276, have identical route segments. How-
ever, only one of these cars overlaps with Case B. Consequently, the attacker is unable to 
deduce any intimate relationship between them.

3.5  Direction‑preserving‑based taxis filter

To cut down the amount of calculation further as much as possible in the final search, 
most of the literature is to build related index structures around the taxis, filtrate sub-
standard candidate taxis based on time and distance constraints. However, there is little 

Fig. 8 Search case

Fig. 9 Example of subsequent query without RR

Fig. 10 Example of subsequent query with RR
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consideration of the factor of taxi traveling direction, and it is a normal phenomenon 
that drivers are more willing to share the trip with passengers in the same current direc-
tion in real life. Inspired by this idea, we propose a direction filter algorithm and we will 
introduce it in detail next.

3.5.1  Insert verification with bounded direction error

Before getting starting the direction filter, let’s introduce some concepts first.
The straight line linking two positions from pi to pi+1 is denoted by pipi+1 . Seeing 

Fig. 11(a), the direction of pipi+1 , denoted by θ(pipi+1) , is defined to be the angle of an 
anticlockwise rotation from the positive x-axis to a vector from pi to pi+1 . Thus, each 
direction falls in [0, 2π).

The angular difference between two directions θ1 and θ2 , denoted by �(θ1, θ2) , is 
defined to be the minimum of the angle of the anticlockwise rotation from θ1 and θ2 , and 
that from θ2 and θ1 , i.e., 

Figure 11(b) shows two cases where �(θ1, θ2) = |θ1 − θ2| and �(θ1, θ2) = 2π − |θ1, θ2|} . 
Note that the angular difference between any two directions falls in [0,π ].

As mentioned in Sect. 2.3, we assume that the order of points in the current sched-
ule remains intact when inserting a new request. That is, the schedule is composed of 
a series of points, such as requests’ pick-up and delivery point, it is a kind of trajectory 
data. In this case, we can regard the original schedule as a trajectory simplification of 
reorganized schedule after inserting a new request. The detour distance or deflected 
direction which caused by inserting a new request can be regarded as an error due to 
trajectory simplification.

The trajectory simplification algorithm generally traverse each possible simplification 
with its simplification error bounded by threshold α . But we only compute direction 
error after the insert position was known. In other words, we first utilize an algorithm 
similar to insertion feasibility check in [7] to get insert position and then use Algorithm 4 
to evaluate feasibility, which according to the direction error caused by the insertion 
after reordering.

(10)�(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1, θ2|}

Fig. 11 cases of direction filter
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For instance, consider the example shown in Fig. 12. T.l is the location of taxi and taxi’s 
schedule is T .l → R2.p → R2.d → R1.d . To verify inserting R.p immediately after point 
R2.p , the algorithm first calculate the angular difference θ1 between 

−→
BO and 

−→
BC and the 

angular difference θ2 between 
−→
OC and 

−→
BC . If they are both bounded by threshold α , this 

insert position passes the Verification. If not, the insertion fails. The pseudo-code of the 
mixed taxi matching is presented in Algorithm 4.

Require: threshold α,insert point O, insert position A and its next position B
Ensure: Result: direction-based error of this insert position; otherwise False
1: θ(AO) ⇐getDirection(

−−→
AB)

2: θ(OB) ⇐getDirection(
−−→
OB)

3: ∠OAB ⇐ min{|θ(AO)− θ(AB)|, 2π − |θ(AO)− θ(AB)|}
4: ∠OBA ⇐ min{|θ(OB)− θ(AB)|, 2π − |θ(OB)− θ(AB)|}
5: err ⇐ max{∠OAB,∠OBA}
6: if err> α then
7: return False
8: else
9: return err

10: end if

Algorithm 4 Insertion Verification with Bounded Direction Error

3.5.2  Theoretical properties

Since distance bounded insert verification can get insert position and filter out some taxis 
which cannot meet the distance constraints, is it better than the former Inspired by [48], if 
insert position satisfies insertion verification with bounded direction error, it will also meet 
some theoretical properties.

Limma 2 Let α be the threshold of direction error, if direction error, which is caused 
by inserting a new point, is bounded by α , the detour distance and deviation degree(i.e., 
vertical distance) are also bounded by α , we have

(11)0 ≤ detour ≤

(

1

cosα
− 1

)

∗ disNS

(12)d⊥ ≤
1

2
tan α ∗ disNS

Fig. 12 Direction-based error
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1  Proof

Seeing Fig.  13, we assume to insert node O between nodes A and B in the original 
path. If it meets the direction constraint, there are θ1 ≤ α and θ2 ≤ α . Thus, we have 
cosα ≤ cosθ1 =

AO′

AO ≤ 1 and cosα ≤ cosθ2 =
O′B
OB ≤ 1 . After simplification, they are 

0 ≤ (AO − AO′) ≤ 1−cosα
cosα ∗ AO′ and 0 ≤ (OB− O′B) ≤ 1−cosα

cosα ∗ O′B . And obviously, 
detour = ((AO − AO′)+ (OB− O′B)) . Equation 11 is right.
Values of ∠PAO′ and ∠PBO′ are equals to α , thus points are in 

�
PAB and there is 

PQ = 1
2 ∗ AB ∗ tanα . We know PQ = 1

2 ∗ AB ∗ tanα , so Eq. 12 is workable. �

In addition, if we rule passengers’ regret value can’t be more than 1, detour distance is 
constrained by regret referring to Sect. 3.1. We have

1  Proof

If passengers’ sharing travel cost is no more than ride alone, 
(disNS ≥

c
∑

num=1

(1− (num− 1) ∗ �) ∗ dnum) is tenable. In the optimal case, i.e., there is 

more than one person during the whole trip, the right side of inequality obtains the maxi-
mum (1− �(num− 1)) ∗ disS . So, there is disNS ≥ (1− �(num− 1)) ∗ disS . Now we 
know disS − disNS = detour . We can get Eq. 13 after simplifying according to above for-
mula.  �

There are Eqs. 11 and 13 that bound detour distance, respectively. When we assume 
that taxis in candidate set after direction filtering also satisfy the restraint in which pas-
sengers’ regret is no more than 1, they should meet Eq. 13. Thus, they meet the distance 
constraint once they meet the direction constraint. So, we need the following inequality 
holds:

If � = 0.2 and c = 3 , Eq. 14 can be simplified to cosα ≥ 0.6 and 0 ≤ α ≤ 53◦.
That is to say, even when each aspect is optimal selection, passengers’ travel costs 

when they are served by taxis in the candidate set filtered by using the threshold 

(13)detour ≤
(num− 1) ∗ �

1− (num− 1) ∗ �
∗ disNS

(14)detour ≤

(

1

cosα
− 1

)

∗ disNS ≤
(num− 1) ∗ �

1− (num− 1) ∗ �
∗ disNS

Fig. 13 Proof of theoretical properties
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α = 53◦ are not higher than hailing a taxi alone. When α is set to 0, taxis cannot 
detour and their schedule is the request’s shortest path. Only the requests whose pick-
up and delivery points are both on the planning path will be accepted. The threshold 
can be adjusted dynamically in different situations.

3.5.3  Direction‑preserving‑based filter

Refer to Sect. 3.5.1, we propose direction-preserving-based taxi filter algorithm. After 
obtaining the insert position of the start and end points, we check the direction-
preserving feasibility of the insert position using Algorithm 4 rather than calculating 
regret value directly.

For instance, consider the example shown in Fig. 14. The pseudo-code of the mixed 
taxi matching is presented in Algorithm 5.

Require: threshold ε,insert request R, taxi status T
Ensure: re-ordered schedule; otherwise False
1: initial detour
2: initial A,B,C,D
3: i ⇐ 0
4: while i < T.s.size do
5: det1 ⇐ dis(T.s.get(i),R.p)+dis(R.p,T.s.get(i+1))-dis(T.s.get(i),T.s.get(i+1))
6: if det1<detour then
7: detour⇐det1
8: A ⇐ i, B ⇐ i+ 1
9: end if

10: if insertCheck(ε, R.p,A,B)==False then
11: break
12: else
13: T.s.append(B,R.p)
14: j⇐B
15: while j < T.s.size do
16: dets⇐dis(T.s.get(j),R.p)+dis(R.p,T.s.get(j+1))-

dis(T.s.get(j),T.s.get(j+1))
17: if det2<detour then
18: detour⇐det2
19: C⇐j,D⇐j+1
20: end if
21: j⇐j+1
22: end while
23: if insertCheck(ε,R.d,C,D)==False then
24: T.s.remove(B)
25: break
26: else
27: T.s.append(R.d,D)
28: return T.s
29: end if
30: end if
31: i⇐i+1
32: end while

Algorithm 5 Insertion Verification with Bounded Direction Error
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4  Experimental analyses
4.1  Metrics

The performance of differentially private ridesharing services with min-max regret is 
evaluated by some measures.

Satisfaction Rate(SR): is the fraction of requests that get satisfied in the ridesharing. 
It is a crucial criterion for measuring the effectiveness of the ridesharing system. So, 
SR ∈ [0, 1] and the larger SR is, the more requests the ridesharing has satisfied.

Average Regret(AR): is the value of passengers and drivers calculated by Eq. 4 and Eq. 7. 
It reveals the effectiveness of ridesharing in the aspect of fare compared with no ride-
sharing. The smaller AR is, the more fare the passenger has saved on the basis of request 
being satisfied. When AR equals 1, we can assume that ridesharing does not happen.

Taxi vacancy rate(TVR): is the fraction of taxis has passengers in service during a 
given period. It provides an intuitive perception of how well the taxis are utilized. TVR 
ranges from zero to one, too. When TVR equals 1, it means a fully utilized outcome 
where the taxi has passengers all the time during this period.

We choose five important parameters: ǫ privacy budget, number of taxis, upper bound 
of regret value, taxi capacity, and fare inflating parameter. We need to first establish rea-
sonable defaults for the parameters and then, proceed to modify the parameters one at 
a time to evaluate their effect. In the experiment, we set taxi capacity as 3, i.e., there are 
three passengers at most and the fare inflating parameter � equals 0.2. The second and 
third parameters are adjusted to measure the performance of the different algorithms 
using the measures above.

4.2  Data set and experimental setting

We run the experiment on Windows PC with an Intel i7 processor and 16 G memory. 
The simulation framework is implemented in JAVA, and the simulation implementation 
is single-threaded.

We process 4,000 requests in the experiment, and we get them by TaxiQueryGen-
erator which was published by Yu Zheng (available at https:// www. cs. uic. edu/ sma/ 
rides haring/). TaxiQueryGenerator is developed based on the taxi trajectory database 
which contains the GPS trajectory recorded by over 33,000 taxis during a period of 87 
days spanning from March to May in the year of 2011. Those requests follow Possion 
distribution.

We carry out experiments using the real road network of Beijing and two simulated 
road networks. The real road network is released by Shujutang (available at http:// 
www. datat ang. com/ data/ 45422) which contains 171,504 road nodes and 433,392 road 
segments. Since we use the number of grid cells as 20*20, the cell size is 1.5km. So, we 

Fig. 14 Estimate of insert position

https://www.cs.uic.edu/sma/ridesharing/
https://www.cs.uic.edu/sma/ridesharing/
http://www.datatang.com/data/45422
http://www.datatang.com/data/45422
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need to process the real road network data first and select part of the data(longitude 
belongs in (116.2690, 116.5390) and latitude belongs in (39.7800, 40.0500)) for the next 
operation.

A taxi is initialized to a random vertex in the road network. At first, every taxi has 
an empty schedule. We set states of taxis after processing 1,000 requests as the initial 
states. They will follow the scheduled route when customers are on board or, otherwise, 
go to the nearest grid from the current grid. We assume a constant speed in the experi-
ment, and it can be easily extended to a dynamic depending on different times and traffic 
conditions.

4.3  Experimental results

4.3.1  Taxi matching

We measure the performance of dual-side taxi matching algorithm in Sect.  3.2 and 
mixed taxi matching algorithm in Sect. 3.3. Figure 15 is the performance of the regret-
based matching algorithm on a real road network.

Figure 15(a) shows requests’ SR(satisfaction rate) in two matching algorithms as the 
number of taxis changes. Two algorithms both show obvious advantages compared 
with non-ridesharing. This occurs naturally as there is ridesharing, and the accepted 
opportunities increase as well. As can be seen, since the mixed matching algorithm 
selects the optimal solution in a group of requests, the satisfaction rate is reduced to 
a little extent compared with dual-side matching. In addition, there is a steep increase 
in the satisfaction rate from 2K to 4K taxis and again from 6K to 8K taxis. Those make 
either 4K or 8K a good choice for the next experiment.

Figure 15(b) shows requests’ AR(average regret) in two matching algorithms as sev-
eral taxis changes. The regret values are always equal to 1 without ridesharing, it is 
because non-ridesharing neither allows detours nor price discounts. In contrast, two 
matching algorithms both first show a slight decrease and then keep rebounding in 
AR as the number of taxis increases. This is because as taxi quantity increases, the 
ridesharing opportunities increase as well. At first, the satisfaction rate of requests is 
low, increasing the number of taxis brings ridesharing opportunities to increase, and 
as a result, the satisfaction rate surges. When quantity gets larger, ridesharing oppor-
tunities do not emerge as fast as taxis arrive; therefore, AR starts increasing.

When the number of taxis is 4K, Fig.  16(a) shows requests’ SR in two matching 
algorithms as upper bound of regret increases. The two algorithms both show a grow-
ing trend as the upper bound increases. It is obvious that more requests can be satis-
fied as the maximum regret that passengers can tolerate is added. While this does not 
necessarily guarantee that the average regret of requests reduces.

Seeing Fig. 16(b) shows requests’ AR in two matching algorithms as upper bound 
of regret increases. It is inevitable that accepted requests after extending the upper 
bound have a larger regret, and it brings an inevitable worsening to the AR. Two algo-
rithms both show these tendencies, and the mixed matching algorithm has better 
control of the deterioration of AR on the premise of improved satisfaction rate.

In order to consider the interests of drivers, we measure the AR and TVR of drivers 
and the results show in Fig.  17. Figure  17(a) shows drivers’ AR(average regret) in two 
matching algorithms as the number of taxis changes. Drivers’ average regrets are equal 
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to 1 without ridesharing when we assume a taxi will stay where it is when its schedule is 
empty. Drivers’ AR in two algorithms are both increscents. Compared with a dual-side 
matching algorithm, mixed matching algorithm has a few advantages over AR. This is 
mainly caused by its local optimization strategy.

Figure  17(b) shows drivers’ TVR(taxi vacancy rate) in two matching algorithms as 
the number of taxis changes. Figure 17(c) shows drivers’ SE(service efficiency), i.e., the 
length of taxi time which has passengers in service during a given period has accounted 
for the entire time. With the increase in taxis number, TVR declines accordingly. This is 
because when the number of taxis increases, requests do not emerge as fast as new taxis 
arrive, more and more taxis cannot get the request.

4.3.2  Ranking with differential privacy

As depicted in Definition 6, the parameter ǫ represents the degree of privacy protection 
in a given privacy-preserving system. Higher values of ǫ correspond to lower levels of 
privacy protection, but this results in less noise addition. Empirical results from previ-
ous studies indicate a negative relationship between privacy protection and ǫ values. For 
instance, the work by Dwork and Roth established that the degree of differential privacy 
is inversely proportional to the magnitude of ǫ , and an increase in the ǫ parameter results 

Fig. 15 Performance of regret-based matching algorithm on real road network

Fig. 16 Performance of regret-based matching algorithm with different regret upper bound
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in a decline in privacy protection. Figure  18 shows that as ǫ increases, user satisfac-
tion levels increase. Moreover, the DM algorithm eventually converges at 90.41 with an 
upper bound of 2.0, while the MM algorithm stabilizes at 83.88 under similar conditions, 
which is a reasonable level of convergence.

4.3.3  Direction filte

For the purpose of measuring Direction-Preserving-based filter algorithm in 3.5.3, we 
add two measurements and set the upper bound to be equal to 2.0.

Filtration Rate(FR): is the fraction of remainder taxis after filtering. It is a crucial crite-
rion measuring the effectiveness of the filtering and ranges from zero to one. The smaller 
FR is the more taxis that cannot the direction constraint the filter has been filtered.

Hit Rate(HR): is the ratio of requests that match the same taxi compared with match-
ing result without filtering. It reveals the accuracy rate of filter algorithm. HR also ranges 
from zero to one. It is important to note that a higher FR does not mean a better filtering 
effect. While a lesser FR, the higher HR show that the filtering effect is great.

Referring to the result shown in Fig. 15, we use the number of taxis as 4k and 8k for 
the next experiment. Figure 19(a) shows FR of direction filter algorithms as the upper 
bound of threshold changes based on the set of taxis after grid-filtering. Figure  19(b) 
shows requests’ HR of filtering as upper bound of threshold changes. The two algorithms 
both show small fluctuations; this is not consistent with our expectations. Combined 
with Fig. 17(b), the more the number of taxis is, the more taxis without passengers are. 
But those empty taxis will not be filtered by direction.

Next, if we make α equal to π2  , then, increase the number of requests in unit time and 
introduce an inflated parameter δ , which stands for the ratio of the total number of 
incremental requests to the number of initial requests. The result is greatly improved 
as shown in Fig. 19(c) and (d). With the increase in δ , FR is gradually dropping, and HR 
changes a little. This is because, with the increment in the density of requests, more and 
more taxis are in service. That is to say, their schedules are non-empty and they have 
direction errors when inserting a new request. When remainder taxis after grid-filtering 
grow at a speed near linearly, remainder taxis after direction filtering will have a slow 
growth, and filter operation can filter out more taxis out of constraints.

Further, we make the number of taxis 4K and δ equal to 5, Fig. 20 shows the result of 
filter operation as α changes.

Fig. 17 Performance of regret-based matching algorithm on real road network
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This indicates that the latter has a better filtering effect. And results show hit rate 
that reaches a higher level when the threshold is π2  , and this is not nearly π3  proved in 
Sect. 3.5.2. This is mainly because we connect two points with a straight line directly, 
while a few paths between two points are straight lines in real life. Further, we measure 
the SR and AR of requests again, and the results are similar.

Fig. 18 Satisfaction rate with ǫ

Fig. 19 Performance of direction-preserving-based filter algorithm on real road network
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The above experimental results show that when request density is lower, using a grid-
filter has achieved a good effect and this would not be better by using a direction filter. 
When request density and taxi density are both higher, direction filter can filter more 
taxis that cannot meet the constraint. Direction-Preserving-based filters can a more 
important role during rush hour in the city.

5  Conclusion
This paper presents a multi-agent system that utilizes the Minimax Regret method and 
differential privacy in order to address the carpooling problem. A new problem, referred 
to as regret-based carpooling, is also defined. Two matching algorithms are proposed 
to achieve the pairing of taxis and requests in carpooling. The first algorithm considers 
taxis as agents to handle each request, while the slightly more complex second algorithm 
can handle approximate requests made at adjacent times (closer to practical scenarios). 
In order to enhance user privacy protection, the adoption of privacy-preserving meth-
ods in subsequent query processes is suggested. Additionally, to improve response time, 
a direction-aware taxi filtering method is proposed. Several open research questions 
in the field of carpooling are also addressed, including traffic impact, the existence of 
uncertainty, passenger privacy, and the establishment of trust between drivers and pas-
sengers. The goal of this study is to tackle these issues in future research.
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