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Abstract 

Equipment failures and communication interruptions of satellites, aircraft and ground 
devices lead to data loss in Space-Air-Ground Integrated Internet of Things (SAGIoT). 
The incomplete data affect the accuracy of data modeling, decision-making and spec-
trum prediction. Reconstructing the incomplete data of electromagnetic environ-
ment is a significant task in the SAGIoT. Most spectral data completion algorithms 
have the problem of limited accuracy and slow iterative optimization. In light of these 
challenges, a novel high-precision reconstruction method for electromagnetic envi-
ronment data based on multi-component time series generation adversarial network 
(MTS-GAN) is proposed in this paper. MTS-GAN transforms the reconstruction method 
of electromagnetic environment data into the data generation problem of multiple 
time series. It extracts the time–frequency joint features and the overall distribu-
tion of electromagnetic environment data. To improve the reconstruction precision, 
MTS-GAN simulates the time irregularity of incomplete time series by applying a gate 
recursive element to adapt to the attenuation effect of discontinuous time series 
observations. Experimental results show that the proposed MTS-GAN provides high 
completion accuracy and achieves better results than competitive data completion 
algorithms.

Keywords: Electromagnetic environment data, High-precision reconstruction, 
Generative adversarial network, Multi-component time series

1 Introduction
With the development of the Sky-to-Ground Integrated Internet of Things (SAGIoT), 
various heterogeneous signals from satellites, aircraft and ground devices are fused into 
a large-scale electromagnetic spectrum dataset. However, due to equipment failures and 
communication interruptions, the acquired spectrum data often contain missing values 
and gaps. Spectrum data of satellite communications exist with gaps due to changes in 
relative geographical positions and obstructions by obstacles. Spectrum data transmit-
ted by aircraft have gaps due to electromagnetic interference, adverse weather condi-
tions and other reasons. Spectrum data of ground devices are missing due to distance 
limitations and equipment aging. Completing these missing spectrum data is crucial for 
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improving the performance of downstream analysis tasks such as target identification 
and anomaly detection. Generative adversarial networks (GANs) provide a promising 
solution for spectrum completion by learning the underlying distribution of spectrum 
data.

For the rapid improvement of communication technology and the exponential growth 
of communication devices [1], the electromagnetic environment presents complex and 
transient characteristics [2]. Scientific establishment of electromagnetic environment 
model and adequate electromagnetic environment mining and evolution play a crucial 
role in fusion mining of potential information and correlation, accurate cognition of 
electromagnetic activity and frequency behavior [3] and auxiliary spectrum allocation 
and decision-making. The spectrum data of electromagnetic environment refer to the 
data related to the radio environment [4]. Large, complete and accurate spectrum data 
are the premise of electromagnetic environment modeling and monitoring [5].

In the early data completion, the feature and distance of the known data near the miss-
ing item were analyzed by introducing features, kernel function and confidence, and the 
missing item was estimated. In recent years, these methods have been combined with 
deep learning to better extract features and improve completion accuracy. For example, 
Tang et al. [6] constructed a new learning-guided convolutional network based on kernel 
weight prediction, which automatically generates spatially varying convolutional kernel 
according to input and extracts depth image features through a spatially variable channel 
convolution stage and a spatially invariant cross-channel convolution stage convolution 
network. Bao et al. [7], Sattari et al. [8] considered the influence of data from the same 
site in the same period and used kernel-based support vector regression and Gaussian 
process regression to complete the missing rainfall data, but did not further introduce 
the correlation of data from different time periods [9]. In addition, Eldesokey et al. [10] 
introduced a normalized convolution layer through confidence propagation for depth 
completion of unguided scenes. However, without the availability of multimodal data, 
these methods are limited and lose depth of detail and semantic information [11]. Zhao 
et  al. [12] use an attentional mechanism to graph propagation, and multi-scale fea-
tures can be recovered by applying these propagations to different graphs derived from 
observed pixels [13].

The completion of tensor data is generally carried out by tensor decomposition and 
kernel norm minimization. Yokota et al. [14] added “smooth” constraints and low-rank 
approximation to low-rank tensor decomposition with high missing proportion by effec-
tively selecting the model to minimize tensor rank and smooth PARAFAC decomposi-
tion of incomplete tensors [15]. For the missing data containing noise, Qiu et  al. [16] 
adopted tensor ring kernel norm (TRNN) and least squares estimator to regularize the 
underlying tensor and observation terms, respectively, and proposed an effective noise 
tensor completion model.

In addition, data completion based on generative adversarial network comes into 
people’s sight, which guarantees the global consistency of data through the interaction 
of generator and discriminator. Iizuka et al. [17] used GANs with global and local con-
text discriminators to distinguish between false and non-false images. This method can 
make the completed image data consistent both locally and globally. Ehsani et al. [18] 
proposed SeGAN, an appearance scheme based on improved generative adversarial 
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network to complete the blocked object [19]. Through the generated realistic synthetic 
data, the exact boundary of the invisible region was obtained, and on this basis, the 
segmentation and generation of the invisible part of the object were jointly optimized. 
Dhamo et al. [20] proposed to use CNN to jointly get deeper features and foreground 
separation mask, learn the standard depth map and foreground background mask using 
the full convolutional network, and fill in the color and depth of the missing region using 
the conditional GAN generator [21]. Further, in Kortylewski et  al. [22] an improved 
deep feature learning model is proposed to recognize the masked regions and extract 
the features of the unmasked regions [23]. Zheng et al. [24] use improved GAN to com-
plete image occlusion completion. GAN is used to segment and complete the input 
samples at the same time to achieve the performance optimization of the model [25]. 
Zhou et al. [26] further introduced human posture to solve the problem of segmentation 
mask occlusion and human body occlusion with invisible human appearance content by 
improving GAN [27].

For electromagnetic spectrum data, because the current electromagnetic environment 
monitoring and mining still rely on long-term complete spectrum data, spectral data 
missing completion is a key problem in spectrum data preprocessing. In order to fill in 
the gaps in the spectrum data and use the completed spectrum data to aid in the study of 
a complicated electromagnetic environment [28], Sun et al. [29] developed a spectrum 
tensor completion strategy based on HaLRTC. The problem lies in the random missing. 
Sun et al. [30] proposed a brand-new method for long-term spectrum forecasting based 
on tensor completion (LSP-TC) [31], which visualizes the spectrum data of various fre-
quency bands or points throughout the entire sky in various time intervals. Ding et al. 
[32] developed a robust online spectrum prediction (ROSP) framework with incomplete 
and damaged observations by considering possible anomalies [33], omissions and data to 
be predicted in the measured spectrum data and carried out joint optimization of matrix 
completion and recovery from the perspective of spectrum-time 2D. However, the above 
studies only considered the impact of individual known elements on the missing time 
series and did not consider the inter-sequence impact from the aspects of time domain 
and frequency domain. From the perspective of missing data for multiple time slots in 
broadband, the decay of the influence of past observations over time is also rarely con-
sidered. Therefore, the contributions of this paper are as follows: 

(1) In this paper, the problem of electromagnetic environment data completion is 
transformed into the problem of multi-component time series data generation 
and reconstruction, and multi-component time series generation adversarial net-
work (MTS-GAN) is proposed. The accuracy of electromagnetic environment data 
reconstruction is improved by extracting multiple sequences and their features and 
learning the correlation between time domain and frequency domain.

(2) As the influence of gated loop unit on past observations gradually decreases with 
time, in order to adapt to the attenuation effect of discontinuous time series obser-
vations, an improved gate recursive unit is adopted in this paper to simulate the 
time irregularity of incomplete time series, so as to ensure the accuracy of feature 
extraction of temporal data distribution and the robustness and accuracy of recon-
struction under severe data missing.
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(3) In this paper, a comprehensive evaluation method of multiple indicators is used to 
ensure the reliability and robustness of the results. The results are compared with 
the tensor statistical calculation method of SiLRTC, FaLRTC and machine learning 
method of SAEs under different miss rates, which fully demonstrates the effective-
ness and superiority of the proposed method.

The structure of the rest of this article is as follows: In Sect. 2, we first explain the princi-
ple of data completion method based on generative adversarial network and then outline 
the overall process of data completion. In Sect. 3, the principle of spectral data comple-
tion based on multi-component time series generation adversarial network is explained 
in detail. In Sect. 4, we demonstrate the advantages of the proposed method in recon-
struction accuracy and convergence speed through experiments. In Sect. 5, the full text 
is summarized.

2  Data completion based on GAN
2.1  Generative adversarial network

Generative adversarial network, as a novel form of generative neural network, has exhib-
ited significant performance advantages in addressing data incompleteness issues. By 
employing an adversarial learning framework, GAN constrains the learned distribution 
of the model, thus ensuring it captures the true data distribution. Typically, GAN con-
sists of a generator (generative network) and a discriminator (discriminative network). 
The generator tries to properly understand the data distribution during training, while 
the discriminator aims to assign a high probability of authenticity to each sample. When 
the generator successfully captures the data distribution and the discriminator consist-
ently labels the samples as genuine, the model training converges.

The generator network G takes g as input in order to generate synthesized samples 
G(g) that aim to mimic the distribution of real samples as accurately as possible. And a 
represents real samples obtained by sampling from real data. Both real samples and gen-
erated samples are simultaneously input into the discriminator network D . The motive 
of the discriminator community is to decide whether or not the enter records is a actual 
pattern or a generated sample. For genuine samples, it outputs 1, and for produced sam-
ples, it outputs 0. On the other hand, the generator network’s objective is to produce 
synthetic data g and estimate the distribution p(a) of real data. The generator aims to 
make the output of the discriminator network D(G(g)) as close as possible to the output 
of real samples D(a). The objective function of GAN can be calculated using the follow-
ing formula:

In the formula, Pdata(a) represents the sample distribution of real data, and Pg(g) rep-
resents the sample distribution of generated samples from the generator. The Nash equi-
librium point in this minimax adversarial competition is achieved when the generator 
G and the discriminator D reach their respective minimum loss functions. At this stage, 
the discriminator is unable to tell the difference between the generated samples and the 
genuine samples, allowing the generator to produce phony data that closely resembles 
the distribution of the original sample. This leads to a convincing deception. In theory, 

(1)max
D

min
G

F(G,D) = La∼Pdata(a)[logD(a)] + Lg∼Pg (g)[log(1− D(G(g)))]
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it is possible to achieve this when Pg(g) equals Pdata(a) . However, training GAN can be 
challenging in practice as they often face convergence difficulties.

2.2  Data completion

When formalizing the description of electromagnetic data completion problem, data fill-
ing process is shown in Fig. 1.

where x̃ is the original data after pre-filling, x̄ is the completed time series data gener-
ated by the generator, and x̂ is the filled time series data. After filling, the existing data 
in the original data are retained and the missing part is replaced by the generated data 
of the generator, where LD is the discriminator loss function, Lrc is the generator recon-
struction loss, LA is the adversarial loss, and M is the data missing mask matrix. The fol-
lowing definitions are made: 

1. Definition X = {xi | xi ∈ Rn, i = 1, 2, . . . , n} is an incomplete time–fre-
quency data set with n samples and s attributes. The ith sample, denoted as 
xi = [xi1, xi2, . . . , xis]

T (i = 1, 2, . . . , n) , represents the observed values of s attributes 
at time ti . The observed value of the j-th attribute at time tj is represented by xij.

2. Let M be a binary mask matrix that describes the missing data pattern: 

 where xij =? represents missing data for xij , and Mij is 0 when the data at the corre-
sponding position of the time series are missing, and 1 when it is not missing.

During the training, the generator network parameters are fixed first, and the 
pre-filled time sequence data are input into the generator to generate complete 
time sequence data to fill the original missing data, and the generated completion 
data are input into the discriminator network for binary classification training. The 

(2)Mij =
0, xij =?
1, xxij �=?

Fig. 1 Common data filling procedure based on generative adversarial network
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training labels are sampled from the data missing mask matrix M, where the data 
labels Mij = 1 are denoted as 1 and the data labels Mij = 0 are denoted as 0. The dis-
criminator is trained to the point where it can distinguish the input sample from the 
true or false, then the training stops, and the generator network is trained.

The training of generator network requires the participation of discriminator, and 
the trained discriminator is used to judge whether the generated sample is real data. 
During the training, the network parameters of the trained discriminator are fixed 
first, the generator and discriminator are connected in series to form a joint discrimi-
nant model, and then, the pre-filled timing data are input into the model for training. 
During the training, the discriminator parameters are fixed only for calculating errors 
and fed back to the generator for parameter adjustment. The training ends when the 
final discriminator cannot distinguish the true and false sample data generated by the 
generator, and the complete time series data generated by the generator are sufficient 
to fill in the missing part of the original data set.

The goal of missing data imputation methods is to find reasonable imputed val-
ues for each missing value in an incomplete dataset. These imputed values are then 
used to replace the corresponding missing values, resulting in a complete dataset that 
maintains a similar distribution, and scale as the original dataset. This process can be 
expressed as:

In the context of electromagnetic environment data reconstruction methods, address-
ing the issue of incorporating appropriate correlation analysis to handle existing corre-
lations in the data is one of the challenging problems that the network design needs to 
solve.

3  High‑precision reconstruction of electromagnetic environment data based 
on generative adversarial network

Based on the observation and analysis of the time and frequency characteristics of spec-
tral data, a Multivariate Time Series Generative Adversarial Network (MTS-GAN) is 
proposed. For incomplete time series data, extract the characteristics of multivariate 
sequences and sequences, and better capture the correlation between the time domain 
and frequency domain of electromagnetic environment data. It uses generative con-
frontation networks to generate and discriminate incomplete multivariate time series 
information. More potential relationships between time domain and frequency domain 
observations are learned.

In addition, this paper uses an improved gate recursive unit (GRUI) to simulate the 
time irregularity of incomplete time series, so as to ensure the accuracy of time series 
data distribution feature extraction and the robustness and accuracy of reconstruction 
under severe data loss. The model can be trained with incomplete samples to learn the 
distribution pattern and related information of data in time series and frequency distri-
bution. Once trained, it can generate new data to fill in missing values.

(3)

X =





3 10 ?
? 3 4 · · ·
? 9 ?



,M =





1 1 0
0 1 1
0 1 0



 ⇒ X̂ =





3 10 filled values
filled values 3 4 · · ·
filled values 9 filled values







Page 7 of 16Guo et al. EURASIP Journal on Advances in Signal Processing        (2023) 2023:125  

Under the framework of the complete network in Fig. 1, we propose an improved gen-
erative adversarial network complete model for electromagnetic signal data, as shown in 
Fig. 2. Generator networks based on gated cycle units GRUI for data interpolation can 
reconstruct the complete electromagnetic environment data from the original missing 
electromagnetic spectrum elements and fill in the missing parts of the original data set. 
This filling process can be represented as follows:

Electromagnetic environment data completion method based on MTS-GAN. The 
first is the pre-training part, which only contains the generator, generates false samples 
through random noise parameters, calculates errors and updates the pre-training model. 
Then, the GAN network is trained on the basis of pre-training. The generator network 
is built by the gated loop unit GRUI for data interpolation and the full connection layer. 
The missing electromagnetic environment data are first segmented to form the missing 
data set. The pre-filled data generate the complete time series data through the generator 
network. Then, combined with the data deletion matrix M, the missing values of the fre-
quency band sequence in the original electromagnetic spectrum are completed by filling 
in the missing values, and the generated complete data are obtained. The discriminator 
network also consists of an improved gated loop unit and a fully connected network to 
determine the probability that the input data are true. The input to the discriminator 
consists of two parts: One is the existing value that is not missing from the original data, 
and the other is the missing part of the original data, which has been filled by the gen-
erator’s generated sample, and the output of the discriminator is a sequence of values 
between 0 and 1, indicating the probability that each input data belongs to the real data.

Due to mode collapse issue, conventional GAN is difficult to train. The Wasserstein 
distance is used by WGAN, an alternate training approach for GAN that is simpler to 
use than the original GAN. WGAN is an alternative training method for GAN that 
uses the Wasserstein distance, which is easier to train compared to the original GAN. 

Fig. 2 The MTS-GAN electromagnetic environment data completion network structure
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WGAN improves the stability of model learning and makes the optimization of GAN 
models easier. Its loss function is defined as follows:

where E is the mean square error loss, D is the discriminator, G is the generator, g is the 
random noise, and a is the real data.

If a variable has been missing for a period of time, the impact of previous observa-
tions should diminish over time. Due to the limited scale of the data, there can be 
significant differences in time lags between two consecutive valid observations, mak-
ing the traditional GRU cell or LSTM cell less effective. To accommodate the decaying 
effect of historical observations, we suggest using the GRAI, or gated recurrent unit 
with irregular time intervals to simulate incomplete time series’ temporal irregularity 
and learn hidden information from time gaps. Below are the calculation methods and 
results for the sample dataset:

where δ ∈ n×d is the time lag matrix, which keeps track of how much time has passed 
since the previous effective value and the present value. M indicates missing state.

To account for the impact of earlier observations, we model it using a time delay 
matrix and δti time decay vector to capture the interactions between variables:

In this model, the time decay vector, denoted as β , is a vector with elements ranging 
from 0 to 1. The larger the parameter δ , the smaller the decay vector β . The param-
eters Wβ and bβ need to be learned, and Wβ is a fully connected matrix.

The GRU hidden state is updated by multiplying it element-wise with the decay fac-
tor once we have obtained the decay vector. We also apply batch normalization to 
ensure that the hidden state k remains below 1.

Based on the multiplication decay approach, the update equation for GRUI is as 
follows:

where ε represents the update gate, r represents the reset gate, k̃ represents the candi-
date hidden state, and δ represents the sigmoid activation function. The other variables 
are trainable parameters.

(4)
LG = Eg [−D(G(g))],

LG = Eg [−D(G(g))] − Ea[D(a)]

(5)δ
j
ti
=
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(6)βti = 1/emax
(

0,Wβδti+bβ
)

(7)

k ′ti−1
= βti × kti−1 ,

εti = δ

(
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]
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Each row of has the same value when we enter the fictitious time series that the genera-
tor produced since there are no missing values. The generator additionally includes a GRUI 
layer and a full connection layer since we want to ensure that the produced sample has the 
same time latency as the original sample. Since the generator is a self-fed network, its most 
recent output will be fed into the same cell’s subsequent iteration. The random noise vector 
g is the generator’s initial input, and each line of the false sample’s has a constant value.

The results generated by the generator, along with the mask matrix, are simultaneously 
fed into the discriminator for training. The discriminator assesses the probabilities of a 
given position in the matrix representing either a real value or a missing value. Additionally, 
it is possible to incorporate weighted position losses for sensitive missing and non-missing 
positions in the input matrix. These weighted losses are used to calculate the overall loss, 
along with the inclusion of well-suited regularization terms.

A GRUI layer that learns partial or complete time series makes up the initial compo-
nent of the discriminator. The final concealed state of the GRUI is then put on top of a fully 
linked layer. We added dropout to the fully linked layer to avoid overfitting.

By updating the model, the error of random noise vector generation and original two-
dimensional matrix is gradually reduced. In this paper, two kinds of losses are defined to 
obtain the optimal generation model. An adaptive regression measurement method is used 
to calculate the losses. First, the mask reconstruction loss is defined as the square error 
between the data of the non-missing part of the original incomplete frequency–time two-
dimensional matrix and the data in the generated two-dimensional matrix, and the formula 
is as follows:

On the other hand, the discriminator loss is the loss obtained when the generated sam-
ples are input into the discriminator. It is a negative value that represents the authentic-
ity of the generated sample G(g):

By combining the aforementioned reconstruction loss and discriminator loss, we obtain 
the loss function for this framework:

For each sample, we take a set of samples from a Gaussian distribution and feed them 
into an established generation algorithm G(g). We then use backpropagation methods to 
train these samples and constrain them. After the loss convergence reaches the optimal 
solution, we have an intact matrix, corresponding to the following formula:

4  Experiments
4.1  Dataset description

The electromagnetic spectrum environmental data set collected in this study is named 
“Qingdao Offshore Measurement Data Set.” The dataset was collected simultaneously 

(8)Lr(g) = ||a× Q − G(g)× Q||2

(9)Ld(g) = −D(G(g))

(10)Limputation (g) = Lr(g)+ �Ld(g)

(11)aimputed = x ×M + (1−M)× G(g)
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by monitoring devices located in three different geographical locations. Data collected 
from different spatial locations have the same acquisition start and end time, and time 
and frequency domain resolution. Specifically, we choose a Qingdao offshore measure-
ment data set with a frequency resolution of 250KHz. We choose GSM1800 downlink 
frequency band data for experiments, and its time scale is 1650  min. Points to calcu-
late an average, and get a 9900*300 two-dimensional time–frequency data. For such a 
two-dimensional data, we divide the data into training set and test set according to 8:2 
according to the time dimension. Then, take 400 s of data in the training set and test set 
in turn to form training samples and test samples, and the data size of each sample is 
40*300.

4.2  Training settings

The discriminator is mainly composed of a sequential recurrent neural network layer 
and a fully connected layer, which normalizes the data before the training begins and 
extracts and saves the column mean and variance of the data. Firstly, the incomplete 
frequency–time two-dimensional matrix x, the generated complete frequency–time 
two-dimensional matrix G(g) and the corresponding δ input sequential recurrent neural 
network layer are obtained. The first input to the generator is random noise g , and we set 
the random noise dimension to 256. Before GAN training, the generator is pre-trained 
with a few epochs, where the pre-training is set to 10 times and the loss update model 
is calculated to predict the next value in the matrix. For Qingdao offshore monitoring 
data set, the input frequency–time two-dimensional matrix size is 40*300, the batch size 
is 32, and there are 64 hidden layers in GRUI’s generator and discriminator. The model 
was implemented in TensorFlow and optimized using the Adam optimizer with hyper-
parameters: training times of 40 times including pre-training times, learning rate of 
0.002 and generator loss factor of 0.05. The system environment used in the experiment 
is windows11, the editor is PyCharm, the main libraries include TensorFlow and math, 
and the hardware equipment is mainly NVIDIA RTX3060 and AMD R7-5800.

4.3  Comparison method

Tensor-based statistical computing methods are common and traditional data pro-
cessing and analysis methods, used to solve similar problems, using two low-rank ten-
sor completion (SiLRTC) [34] and fast low-rank tensor completion (FaLRTC) [35]. The 
rank tensor completion model [36] is used as a comparison. In addition, in terms of deep 
learning, we choose the missing completion algorithm based on stacked autoencoders 
[37] as a comparison.

Tensor is essentially a storage form of data elements, which is a multi-dimensional 
extension of vectors and matrices. Therefore, according to the rank-minimum frame-
work of matrix low-rank completion, the tensor rank is represented by the tensor kernel 
norm, and the optimization problem of low-rank tensor completion is obtained. On this 
basis, the SiLRTC model solves the following relaxed nuclear norm minimum optimiza-
tion problem through the block coordinate descent algorithm; the FaLRTC model con-
verts the nuclear norm minimization problem into a smoothing problem and uses an 
effective algorithm to solve the smooth optimization problem, to improve the conver-
gence speed of low-rank tensor completion models.
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The autoencoder maps m observations x and latent variable z to each other through 
a nonlinear function, where latent variable z is a low-dimensional representation of the 
matrix, and generates missing completions of the input data in the reconstruction stage. 
When approaching nonlinear functions, multi-hidden layer neural networks are more 
effective than single-hidden layer neural networks, so stacking autoencoders constitutes 
an incomplete data-depth autoencoder network to solve nonlinear functions through 
greedy layered training. To complete the missing data, compress X to Z through multi-
stage nonlinear mapping, and map Z back to X through multi-stage nonlinear mapping. 
At the same time, the missing items and parameters of X are optimized to minimize the 
error after missing data reconstruction.

4.4  Result

For the evaluation indicators, we selected a series of classic performance metrics, 
including mean square error (MSE), root-mean-square error (RMSE), square absolute 
error (MAE), mean absolute percentage error (MAPE), normalized mean square error 
(NMSE) and the time required for data completion (Second). By integrating multiple 
indicators, the advantages and disadvantages of the comparison method and the method 
used in this paper are evaluated comprehensively.

Figure 3a shows the MAE results of the electromagnetic environment data completion 
experiment by the method proposed in this paper and various baseline methods under 
the missing percentage of 20–80%. MAE is the average of the absolute errors between 
the actual observations and the model predictions. Compared with other methods, the 
MAE of the completed spectral data output by the MTS-GAN model is the smallest 
compared with the original complete data. As the proportion of data missing elements 
increases from 20 to 80%, the MAE of each model generally increases. As the missing 
percentage increases, the method proposed in this paper still maintains stable recon-
struction performance.

Figure 3b shows the RMSE results of the electromagnetic environment data comple-
tion experiment. RMSE is the square root of MAE, which is more sensitive to larger 
error values. As the deletion ratio increases, the RMSE of MTS-GAN increases by 
0.1014, that of SAEs increases by 0.1039, that of FaLRTC increases by 0.9196, and that 
of SiLRTC increases by 0.2621. Under the same missing degree, the maximum error of 
MTS-GAN data completion is at least 49% lower than SAEs, at least 58% lower than 
FaLRTC, and at least 19% lower than SiLRTC. This shows that the MTS-GAN method 
can capture the time–frequency correlation of multivariate time series in the electro-
magnetic environment data completion experiment, and the completion of most items 
will not deviate significantly.

Figure 3c shows the MSE results of the electromagnetic environment data completion 
experiment. MSE is the mean of the squares of the errors between the actual observa-
tions and the model predictions. In the low missing cases (40% missing percentage), the 
MSE of the method proposed in this paper is 0.10105. The MSE of the method proposed 
in this paper is slightly improved to 0.14516, which is less than 43% of other comparison 
methods. The MTS-GAN method proposed in this paper has certain robustness in elec-
tromagnetic environment data completion.
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Figure  3d shows the MAPE results of the electromagnetic environment data com-
pletion experiment. MAPE is the average of the percentage errors between the actual 
observations and the model predictions. It expresses the error as a percentage and is 
normalized for a uniform representation of the error across the different models. The 
MTS-GAN method proposed in this paper reaches a maximum of 0.15425%, which is 
66% higher than the baseline method. Therefore, considering the average error, maxi-
mum error and normalized error, the MTS-GAN method has the highest reconstruction 
accuracy.

The method proposed in this study showed excellent performance for the comple-
tion error evaluation indicators such as RMSE and MAE under different miss rates. This 
method shows the most superior effect in completing and reconstructing electromag-
netic spectrum data. As the missing rate gradually increased, the method still main-
tained significant accuracy, showing strong data reconstruction ability and robustness 
in the case of serious data missing. It is worth emphasizing that the experimental results 
clearly demonstrate the efficiency and robustness of the proposed method in the task 
of missing completion of electromagnetic spectrum data. In the trend curve of each 
evaluation index, we can clearly observe the excellent performance of this method. This 
series of trend analysis further confirms that our approach has achieved excellent results 
in the face of the challenge of missing and completing big data in the electromagnetic 
environment.

Fig. 3 Missing rates range from 20 to 80% under the curves for different error indicators
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In Fig. 4, the time required for our method and the comparison method to complete 
the electromagnetic environment data at different miss rates is shown. It can be seen 
from the chart that the completion time required by the traditional method based on 
tensor completion is about 120 s and 160 s, respectively, which is much higher than that 
of the method based on machine learning. Moreover, due to data differences, the com-
pletion time required by the method based on tensor calculation with different missing 
data has a large variation. Among the methods of machine learning, the time required by 
our method to complete the completion is basically maintained at 24.5 s, with small fluc-
tuation, while the time of stacked autoencoder method is larger than that of the method 
in this paper, and it also has certain instability. It can be seen from the results that our 
method can realize fast data reconstruction and completion and improve the efficiency 
of the completion algorithm compared with the previous methods.

From the above experimental results, it is shown that this study not only proposes an 
electromagnetic environment data completion method for actual scenarios, but also 
compares it with the tensor-based statistical calculation method and the stacked autoen-
coder machine learning method. During the process, we adopted a comprehensive eval-
uation method to ensure the reliability and robustness of the results, which fully proved 
the effectiveness and superiority of our method.

4.5  Ablation experiment

Then, an ablation experiment was set in this section to compare the effect of time atten-
uation factor on the improvement of high-precision reconstruction performance for 
the proposed improved GRUI unit. First of all, we change our generator and decision, 
choose two basic LSTMCell and GRUCell loop units and build a time series recurrent 
neural network as a comparative experiment. Then, there is the GRUICell unit proposed 
in this chapter. On the basis of GRUCell, considering the time distribution of missing 
data, time attenuation factor is introduced to compare and analyze the high-precision 
reconstruction performance of the improved GRUI unit and the basic RNN unit, and the 
effectiveness of extracting data distribution features in the case of irregular time series. 
Other parameter settings remained consistent in the comparison test.

In Fig. 5, three graphs show the MAPE, NMSE, and MSE results of the generator and 
decision experiments for three different RNN units. It can be seen from the figure that 
the errors of MAPE, NMSE and MSE obtained by using LSTMCell and GRUCell cycle 

Fig. 4 Comparison of the time required to complete missing data using different methods
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units are basically consistent under different data loss rates, which also indicates that 
the feature extraction performance of gated cycle units is similar to that of long short-
term memory networks when the data volume is relatively small. The error of the high-
precision electromagnetic environment reconstruction method proposed in this chapter 
based on MTS-GAN model is obviously better than the other two methods, and the 
reconstruction error of GRUICell element is always lower than the first two methods 
with the same missing rate. The mean MAPE error decreased by 0.10687 compared 
with the base cell, which was 8.6% higher than the baseline method. The average error 
of NMSE decreased by 1.043167e− 6, which was 10% higher than that of the baseline 
method. The MSE error decreased by an average of 0.017764, a 16.5% improvement over 
the baseline method. Therefore, considering the average error, maximum error and nor-
malization error comprehensively, the high-precision reconstruction method of elec-
tromagnetic environment proposed in this chapter based on MTS-GAN model has the 
highest reconstruction accuracy, fully indicating that the improved cyclic gating unit can 
better improve the effectiveness of feature extraction of generated adduction network 
under irregular missing data and obtain higher reconstruction accuracy.

The above experimental results show that this study not only proposes a high-preci-
sion reconstruction method of electromagnetic environment data for the actual scene, 
but also compares it with the tensor-based statistical calculation method and the stacked 
autoencoder machine learning method. In this process, the comprehensive evaluation 
method is adopted to ensure the reliability and robustness of the results, which fully 
proves the effectiveness and superiority of the method. Then, an ablation experiment 

Fig. 5 Missing rates range from 20 to 80% under the curves for different error indicators
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was set for the proposed improved GRUI element to compare the effect of time attenu-
ation factor on the improvement of high-precision reconstruction performance. By 
comparing the reconstruction error results obtained by different loss rates, the high-pre-
cision reconstruction error of the GRUICell element was always lower than that of the 
improved basic element method. It is proved that the proposed method is effective to 
improve the precision of high-precision reconstruction.

5  Conclusion
In this paper, MTS-GAN was proposed to achieve fast, accurate and high-precision 
reconstruction for electromagnetic spectrum data. Aiming at the discontinuity of time 
series, an RNN model with improved gate recursion element was proposed to extract 
the distribution characteristics of time–frequency signal data more accurately and 
reduce the influence of random loss of time series. The reconstruction experiment 
results on the 20–80% missing measured spectrum data showed that compared with the 
tensor completion and SAEs methods, the error of the proposed MTS-GAN method in 
this paper reduced by about 19%. In addition, the average running time of MTS-GAN 
was 24.5 s, which was 20.4% of the tensor completion method and 15.3% of the SAEs 
method, improving the efficiency of the reconstruction in SAGIoT, further refining the 
architectures of the network structures, more efficient training algorithms and better 
hyperparameter tuning to enhance model performance.
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