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1 Introduction
The moving sea surface with time-varying and non-stationary properties is a realistic 
scenario for target detection for high-resolution marine radar. Conventional algorithms 
using coherent accumulation are not very satisfactory. With only a few pulses, the clas-
sical detector with constant false alarm probability (CFAR) using Fast Fourier transform 
(FFT) technology is suboptimal because of the poor Doppler resolution and the energy 
spread. Adaptive detection strategies [1, 2] rely on clutter information to achieve a per-
formance improvement, which can ensure CFAR-ness of target detection under com-
pound-Gaussian clutter. The improved detectors are superior to the classical ones in 
most cases. Unfortunately, clutter characteristics, such as sea state, grazing angle, wind 
speed, polarization, and radio frequency [3, 4], are often unavailable depending on the 
collection conditions and radar system.

In recent years, matrix detectors based on information geometry have been developed 
[5–7], involving the geometric theory of probability distribution and its application. The 
data processed by the matrix detector is the covariance matrix of echo pulse train in 
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each range cell. The test statistic of the matrix detector is the Riemannian distance or 
divergence between two covariance matrices on the manifold. The Riemannian distance 
between the CUT and the reference cells can be calculated according to different Rie-
mannian metrics on the manifold space. Determine whether there is a target by com-
paring the Riemannian distance and a given threshold value. The matrix CFAR detector 
based on the Riemannian manifold significantly outperforms conventional FFT cell-
averaging CFAR and adaptive matched filtering detectors [8–10] in fewer pulse trains 
and heterogeneous clutter background [6, 11, 12].

The matrix detector based on Riemannian manifolds utilizes the geometric struc-
ture of the manifold to distinguish target and clutter. The curvature usually reflects 
the structure of manifolds [6], which varies with different metrics. The matrix detec-
tor with the AI Riemannian metric was applied in the monitoring of wake vortex tur-
bulence [4, 13], drone detection [14], and target detection in high-frequency surface 
wave radar [10]. The other metrics are used in the matrix detector to improve the 
performance, such as Log-Euclidean [11], Jeffrey divergence (JD), Kullback–Leibler 
divergence (KLD) [15, 16], sKLD, tKLD [6, 17], Riemannian-Brauer and the angle-
based hybrid Brauer [10].

It is exciting that the performance of the matrix detector still has the potential to 
be improved since the metric determines the Riemannian distance. The straight idea 
is to explore alternative metrics on the Riemannian manifold, which can increase the 
discrimination power between data. In this paper, motivated by optimal transmission 
theory, we generalize the BW distance into GBW distance on Riemannian manifolds 
and propose a matrix CFAR detector based on BW and GBW distances. Maximiz-
ing the GBW distance is formulated as an optimization problem and is solved by the 
Riemannian trust-region (RTR) method to achieve enhanced discrimination for target 
detection. Finally, the detection performance improvement of the proposed method is 
verified by the tests on simulated data and measured data.

The following content of this paper is organized as follows. Section II briefly 
introduces the signal model, the primary hypothesis of radar target detection, and 
the matrix detection framework based on Riemannian manifolds. Section III, The 
BW distance in the optimal transmission theory is introduced into the Riemannian 
manifold as a metric. The generalization of BW distance, called GBW distance, and 
their connections with AI metric is derived in detail. At the same time, the problem 
of radar target detection with GBW distance is formulated. Section IV discusses the 
GBW distance optimization for radar target detection. Section V shows computa-
tional complexity analysis and experimental results, which illustrate the improve-
ments based on GBW distance for radar target detection. Finally, section VI provides 
the brief conclusions of this paper.

Some notations must be explained in advance: The boldface x denotes vector, and 
the uppercase letter A denotes matrix. Superscripts (·)T indicates matrix or vector 
transpose. The tr(·) represents the trace of a matrix, and the det(·) represents the 
determinant of a matrix. The vec(·) indicates the vectorization of matrices. The sym-
bols Rn and Rnxm represent real vectors and n × m real matrices. ||·||F is the Frobe-
nius norm.⊗ denotes the Kronecker product. E[·] implies the statistical expectation. I 
mean the identity matrix.



Page 3 of 18Huang and Zheng  EURASIP Journal on Advances in Signal Processing        (2023) 2023:126  

2  Problem formulation
2.1  Signal model

Multiple data are generally sampled on the range dimension within one pulse repetition 
frequency (PRF). The observed complex radar data of N pulse sequences in each range 
cell can be written as x = {x0, x1, · · · xN−1}

T corresponding to complex circular multi-
variate stationary Gaussian process with covariance matrix R

The target detection is a binary hypothesis problem as follows

H0 and H1 represent null and alternative hypotheses, which indicate only clutter and 
target superimposed over clutter, respectively. x is the data of the CUT, s is the target 
echo, and c is the clutter and noise. The target signal during one CPI is

where a is amplitude, and others are the steering vector. The fd is Doppler shift. K is the 
number of pulses within one CPI.

The likelihood function P(x|R) can also represent the hypothetical model of observed 
data, which forms a statistical manifold M = {p(x|R)} . Therefore, the covariance matrix 
can be used as the parameter of test statistics. The detection problem in the additive 
clutter-dominated environment can be formulated as the following binary hypotheses:

where Rc and Rs are the covariance matrices of clutter and target signal, respectively.
The covariance matrix of observed data in each range cell can be written as

where ai is the correlation coefficient 
ai = E(xmx

∗
m−i)(i = 0, 1...N − 1;m = 0, 1...N − 1;m > i) . The averaging over time can 

be substituted for the statistical expectation since the stationary Gaussian processes 
have ergodicity. The correlation coefficient can be estimated as
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exp(−x
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2.2  Detection framework

The matrix detection method based on Riemannian manifolds can be illustrated in 
Fig. 1.

The covariance matrix of the echo complex pulse train is a symmetric positive 
definite (SPD) matrix. In Euclidean space, the SPD matrices are stretched to form 
a convex subset space [18] which naturally lies on Riemannian manifolds [19]. This 
manifold can be given a Riemannian metric. Therefore, target and clutter can be dis-
criminated by calculating the distance between the points on the curved Riemannian 
manifold with proper distance metric. The test statistic is used to determine whether 
the target exists or not, which can be written as

where RT and R represents the covariance matrix of CUT and reference cells. The test 
statistic d represents the distance between the CUT and the mean of reference cells, 
where it is assumed that these cells have no signal components. γ is a given threshold. 
Target detection can be understood as the discrimination between RT and R on Rie-
mannian manifolds. If the distance between the RT and RT is greater than the detection 
threshold, the target is present; otherwise, the target is absent.

2.3  Geometric distance and mean

On the Riemannian manifold, distance can be induced according to the inner product 
g, also known as metric. A smooth inner product is also known as a metric, through 
which we can measure the dissimilarity between SPD matrices. The SPD matrices X 
was defined as

Under the view of differential geometry, the set of SPD is known to be a smooth 
manifold. A manifold accompanied by a continuous and smooth inner product is 
often referred to as a Riemannian manifold [20]. A curve l connecting two points [x, 
y] → M on Riemannian manifolds can be integrated to obtain length as

(7)d
(

RT ,R
)
H1

≷
H0

γ

(8)M={X : X ∈ Rn×n,X = XT , vTXv > 0, v ∈ Rn}

Fig. 1 Matrix CFAR detection framework
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The Riemannian distance is defined as the following infimum

where Ŵ indicates curve sets passing through x and y on the manifold.
There are many well-known Riemannian metrics studied in the relevant literature, 

such as the AI, Log-Euclidean (LE) [4, 11, 21], and Log-Cholesky [22] metrics. The AI 
metric can be written as

where X ∈ M is a point on the manifold,P,Q ∈ TXM are tangent vectors in the neigh-
borhood around X. The distance between two points R1,R2 ∈ M induced by this metric 
is given

AI distance is also called geodesic distance, representing the actual distance of two 
points on a manifold. In the view of AI metric, the geometry is a Riemannian manifold 
with non-negative curvature [23–25].

Other metrics, such as divergence, have also been studied in some works [6, 26, 27]. 
The Jeffrey divergence and Kullback–Leibler divergence of two matrices R1,R2 ∈ M are 
given as

where n denotes the dimension of the matrix R. It should be noted that divergence can 
be used to distinguish points on the matrix manifold. However, it is not an actual "dis-
tance" because it does not meet the symmetry characteristics, such as KLD.

The mean of some matrices can be defined as the same as the arithmetic standard of 
several real numbers in Euclidean space. In the view of Karcher barycenter [28], the geo-
metric mean of the SPD covariance matrix can be determined by solving the following 
formula

The above problems show that the geometric mean is defined through the measure 
induced by the metric g. It should be noted that the geometric mean varies depending 
on the metric. To solve the optimization problem of geometric mean, we can use the 

(9)Len (l) =

∫ y

x

√
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Ŵ
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∣
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gradient algorithm to find the closed solution or use the fixed-point iteration method to 
recurse [5, 29–31].

The AI geometric mean can be derived using the fixed-point method

where t is the iteration index. It can be initialized using the arithmetic mean of the 
matrices.

The JD and KLD mean of SPD matrices are given as

3  BW and GBW geometry
3.1  BW geometry

One central issue in statistics is to explore how to measure the difference between ran-
dom variables in the probability space [32]. With the latest development in this topic, the 
Wasserstein metric is used to distinguish the dissimilarity of a probability distribution. 
The metric on the probability space can be written as [33]:

where A and B are random variables with U and V distributions, respectively. Fréchet 
distance is the Wasserstein distance W2(μ,v) between μ and v as[33]

where probability is measured Ŵ(µ, v) with marginals μ and v. In quantum mechanics, 
this metric is named Bures distance and is known as Wasserstein distance in statistics 
[34]. Indeed, the BW metric is a Riemannian metric.

In many practical applications, the observation data X and Y are square-integrable fol-
lowing U and V with zeros means and SPD covariance matrices RX and RY. The BW dis-
tance between RX and RY is given by [9, 34]

The probability distribution is regarded as a differentiable manifold in the theory of 
information geometry; while, the covariance matrix of random variables is considered as 

(16)Rt+1 = R
1/2
t exp

(

1

N

N
∑

i=1

log
(

R
−1/2
t RiR

−1/2
t

)

)

R
1/2
t

(17)RJD=P−1/2
(

P1/2QP1/2
)1/2

P−1/2

P =
∑

i
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i ,Q =
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i

Ri

(18)RKLD =
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1

N

N
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i

)−1

(19)d2(U ,V ) = inf E�A− B�22

(20)

W2(µ, v) = inf
A∼µ,B∼v

{

E�A− B�22

}1/2
=

{

inf
ζ∼Ŵ(µ,v)

∫

Rn×Rn

∥

∥a− b
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2

2
dζ(a, b)

}1/2

(21)dBW (RX ,RY ) =

(

tr(RX )+ tr(RY )− 2tr(R
1/2
X RY R

1/2
X )1/2

)1/2
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points on these manifolds. We noted that the Wasserstein distance of order 2 between 
two Gaussian variables with zero mean is the BW distance of covariance matrices 
[34–36].

When endowed with a metric g (a smooth inner product), the SPD matrix set becomes 
a Riemannian manifold [24]. The BW metric [34, 37] is defined as, for U ,V ∈ TXM

The BW metric has a linear dependence on X, which is a more suitable and robust 
choice for some problems, especially for modeling time-varying data. The primary char-
acteristic of MBW is non-negative sectional curvature[24], while MAI is a nonpositively 
curved space [38]. The nonnegatively curved spaces can be applied in distinguishing the 
covariance matrix of radar echo.

3.2  GBW geometry

We can use parameters to generalize the BW metric, called GBW metric. The GBW is 
obtained by replacing the identity matrix with an arbitrary SPD matrix Z as follows

The above formula shows that the GBW metric reduces to the BW metric when Z = I, 
and it is equivalent to the AI metric if Z = X. In other words, the AI and BW metrics 
are special cases of the GBW metric. The GBW metric connects BW and AI metrics 
through parameter Z. The geometry generated by the GBW metric was proved to have a 
Riemann structure, denoted as MGBW. The Riemannian distance is induced by the GBW 
metric between RX and RY as [18]

The Riemannian distance on MGBW is equal to the Euclidean distance on general linear 
group MGL through a Riemannian submersion. A. Han [18] has proved that MGBW has 
non-negative sectional curvature, while MGL has zero curvature. The minimum curva-
ture of GBW geometry is the same as BW geometry [39]; while, the maximum curvature 
is determined by Z. According to matrix theory, we can obtain the following formula

Therefore, the GBW distance between RX and RY can be considered as the BW dis-
tance between Z −1/2RX M −1/2 and Z −1/2RY Z −1/2. This formula shows that the param-
eterized metric is equivalent to mapping the original matrix into another manifold space 
using a positive definite matrix. Its curvature characteristics can be used to increase the 

(22)gBW (P,Q) = �P,Q�BW =
1

2
vec(P)T (X ⊗ I + I ⊗ X)−1vec(Q)

(23)gGBW (P,Q) = �P,Q�GBW =
1

2
vec(P)T (X ⊗ Z + Z ⊗ X)−1vec(Q)

(24)dGBW (RX ,RY ) =

(

tr(Z−1RX )+ tr(Z−1RY )− 2tr(R
1/2
X Z−1RYZ

−1R
1/2
X )1/2

)1/2

(25)
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X Z−1RYZ

−1R
1/2
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= tr
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variance of the data on a manifold, which enhances the non-similarity of data in various 
application fields.

Like general geometry, the geometric mean between two SPD matrices under the 
GBW geometry is the midpoint on the geodesic connecting them. The GBW mean (bar-
ycenter) definition for several SPD matrices is similar to that in Euclidean space. The 
solution of GBW mean is equivalent to the following optimization problems for N SPD 
matrices

The optimization problem is solving a nonlinear equation unique in the convex cone 
of Sn++ . An alternative method for calculating the barycenter is the fixed-point iteration 
[34, 40]

If it reduces to the BW metric,M = I,ωl = 1/N  , the mean is

3.3  Target detection based on GBW metric

Radar target detection separates the target from the background as much as possible. Its 
essence is distinguishing two statistical models with the same type but different param-
eters. The detection method based on information geometry studies the problems of 
probability statistics and information theory as geometric problems in space. We dis-
tinguish their dissimilarity by the distance on the manifold formed by the covariance 
matrix of range cell echo data to determine whether they are targets or clutter. The vari-
able geometry of the data covariance matrix has different distances under different met-
rics. The flow diagram of the proposed method is shown in Fig. 2.

The processing steps are described as follows: 1) Sampling data x of radar echo signals 
in one CPI, which includes m PRFs and n range cells. 2) Obtaining high-resolution data 
through range dimension pulse compression. 3) Estimating the covariance matrix Ri of 
the compressed data of each range cell. The covariance matrix is modeled as a point on 
the SPD manifold. 4) The geometric mean R of the covariance matrix Ri of reference 
cells is calculated using BW distance on SPD manifold space. 5) Calculating the GBW 
distance d(RT,R ) between RT and R by dimensionality-reduced ideas using the RTR 
optimization method. 6) Comparison of the test statistics d(RT,R ) and the threshold γ 
to determine whether the target is present or not. The threshold γ is estimated by the 
Monte Carlo experiment according to the desired probability of false alarm.

In this paper, using the manifold optimization method, we use the GBW geometry intro-
duced above for target detection and map high-dimensional GBW geometry to low-dimen-
sional space. By increasing the distance of the data covariance matrix on the manifold as 

(26)R := min
R∈Sn++

N
∑

l=1

ωld
2
gbw

(

Rl ,R
)

,

N
∑

l=1

ωl = 1

(27)Rn+1 := MR
−1/2
n

(

N
∑

l=1

ωl

(

R
1/2
n M−1RlM

−1R
1/2
n

)1/2
)2

R
−1/2
n M

(28)Rn+1 := R
−1/2
n

(

1

N

N
∑
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(
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1/2
n RlR

1/2
n
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much as possible, we can easily distinguish between targets and clutter. We expect to seek a 
positive definite matrix Z, which conforms to the following formula

where RT is the covariance matrix of CUT data and R is the mean of the covariance 
matrices of the reference cells.

The optimization problem is a typical "max–min" problem, which is difficult to solve 
directly. From matrix theory, we know that any n-dimensional SPD matrix A ∈ Sn++can 
be factorized as A = WWT for any invertible matrix W ∈ R

nxd (d < n). Let Z−1 = WWT , the 
above formula can be written as

(29)

max
M−1∈Sn++

d2GBW
(

RT ,R
)

:= max
M−1∈Sn++

(

tr(Z−1RT )+ tr(Z−1R)− 2tr(R
1/2
T Z−1RZ−1R

1/2
T )1/2

)

Fig. 2 a Flowchart of the proposed algorithm b Visual representation of the flowchart
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If W∗ is an optimal solution, then Z−1 = W ∗(W ∗)T . We construct an objective 
function

Our optimization goal is the following classic problem:

In Lie group theory, the elements of Grassmann Manifolds or compact Stiefel Mani-
folds can be assumed as the parameter W in the above formula. This problem can be 
solved by the existing manifold optimization method, a promising alternative way to 
solve constrained optimization by unconstrained optimization on manifold [41, 42].

4  Optimization
Although the convergence is slow, the steepest descent algorithm is still the simplest 
solution to most convex optimization problems. The superlinear convergence is achieved 
by the second-order derivatives or Hesse of the objective function. The more workable 
superlinear convergence methods are grouped into two broad categories: trust-region 
and line-search strategies [41].

This paper focuses on the RTR method, which has some advantages. Firstly, the objec-
tive function value will decrease after each iteration. Secondly, the trust-region algo-
rithm has been proven to converge to stationary points for all initial conditions. Finally, 
the trust region can guide stopping the internal iteration, which retains local conver-
gence speed [41].

4.1  Some basic concepts

The RTR approach works with the concept of retraction.
Definition retraction:
A retraction R is a mapping from the tangent bundle T M to a manifold M . The Rx 

represents the retraction on the tangent space Tx M of point x, which has two basic 
properties.

(1)Rx(0x) = x , where  0× indicates the zero elements of tangent space.
(2) DRx(0x) = idTxM , where idTxM indicates the identity mapping on Tx M.
Given a function defined on the Grassmann manifold G(p, n) , its Riemannian gradient 

and Hessian at X [43] are defined as

(30)

W ∗ := sup
WTW=I

tr
(

WWTRT

)

+ tr
(

WWTR
)

− 2tr
(

R
1/2
T WWTRWWTR

1/2
T

)1/2

= sup
WTW=I

tr
(

WTRTW
)

+ tr
(

WTRW
)

− 2tr
(

WTR
1/2
T WWTRWWTR

1/2
T W

)1/2

= sup
WTW=I

dBW

(

WTRTW ,WTRW
)

(31)f (W ) = −tr(WHRTW )− tr(WHRW )+ tr(WHRTWWHRW )1/2

(32)W ∗ := arg min
W∈M

f (W )

(33)grad f (X) : =PHXG(p,n)(∇f (X))
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where PHXG(p,n)(Z) = Z − XXTZ is the horizontal projection. The horizontal space can 
be represented as HXG(p, n) = {Z ∈ R

n×p : ZTX = 0} . The ∇f (X) is Euclidean gradient.
To obtain the Riemann gradient and Hessian of f(W), we first calculate the directional 

derivative Df(W). The directional derivative is generally defined as

Let

The Euclidean gradient of formula (34) can be derived as

Then we can obtain the Riemann gradient and Hessian by formula (34) and (35).

4.2  RTR algorithm

The most crucial step of the RTR algorithm in the iterative process is to solve the sub-
problem as follows, at kth iteration xk

The trust radius of the kth iteration is �k . This subproblem can be solved using the 
truncated conjugate-gradient (TCG) algorithm [44]. A descent direction ξk ∈ TxkM is 
a solution to this subproblem. We determine whether zk = Rxk (ξk) be accepted or not 
through a ratio

If ρk > η ∈ (0, 1) , zk = xk+1 is accepted and updated, where η is a given reference 
factor. Otherwise, zk is rejected. In some cases, the radius of the trust-region will be 
updated based on ρk to overcome the algorithm hesitating. The steps of the RTR algo-
rithm for matrix detectors are shown in Table 1 [43]

5  Performance assessment
5.1  Computational complexity analysis

Computational complexity is an important indicator for evaluating algorithms. In 
this section, we will briefly discuss the computational complexity of different detec-
tion method in this paper. Computational complexity analysis includes three types of 

(34)Hessf (X)[V ]=PHXG(p,n)(∇
2f (X)[V ] − VXT∇f (X)),V ∈ TXG(p, n)

(35)Df (W )[H ] = lim
t→0

f (W + t ·H)− f (W )

t























M = (WTRW )1/2

P = D(M · (WTRTW ) ·M)1/2[Id]

P1 = DM[P ·M ·WTRTW ]

P2 = DM[WTRTW ·M · P]

(36)

∇f (W ) =
∂f (W )

∂W
= −2(RTW + RW − 2RTW (M · P ·M)− 2RWP1 − 2RWP2)

(37)min
ξ∈TxkM

mk(ξ) :=
〈

gradf (xk), ξ
〉

xk
+

1

2

〈

Hess f (xk)[ξ ], ξ
〉

xk
s.t.�ξ�xk ≤ �k

(38)ρk =
f (xk)− f (zk)

mxk (0xk )−mxk (ξk)
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calculations: basic matrix operations, geometric distances and geometric means, and 
complexity of optimization.

1) For SPD matrices R1 and R2 with dimension n× n , the computational complexity of 
basic operations is shown in Table 2.

2) Based on the basic matrix operations, we can calculate the distance between two 
matrices and the geometric mean of m matrices under different measures. k is the 
number of fixed-point iterations. These calculations’ cost is shown in Table 3. We see 
that the AI measure requires the maximum amount of computation. In other words, 
BW and GBW metrics achieve performance improvements without increasing com-
putational complexity.

3) The Riemannian manifold optimization technique is employed in this paper. The 
computational cost of each iteration includes three parts, namely, the objective func-

Table 1 RTR algorithm for matrix detector

Input: Covariance matrix manifold M of radar echo data in one CPI by formula (5); a metric g by (23); function f on 
M by formula (31); retraction R
Optimization problem: formula (32)
Output: sequence {Wk}

Step 1: Calculate the mean of the reference cells matrix by formula (28);
Step 2: Set dimension n of parameter W in formula (32);
initialize W0 = I;
Step 3: Riemannian gradient and Hessian of cost function by formula (33) (34) (36);
Step 4: Set Parameters of classical trust region algorithm;
Step 3: for k = 0, 1, 2,... do
Solve formula(40) with TCG method to obtain ξk;
Computer ρk in (38);
Iteration according to classical trust region algorithm;
end for

Table 2 Computational complexity of basic matrix operations

Operation computational cost

R1R2 8n3-2n2

R1 + R2 2n2

Tr(R1) 8n2-6n-2

det(R1) 8n2-2n-6

R1
−1 8n3-2n2

R1
1/2 24n3 + 2n2-8n

exp(R1) n4/2 + 24n3 + 3n2/2-n

log(R1) n4/2 + 25n3 + n2-3n/2

Table 3 Computational complexity of distance and geometric mean

Metric distance geometric mean

AIJD n4/2 + 73n3 + 5n2-31n/2–1 52n3 + 10n2-20n-4 (m + 1)n4/2 + (41n + 88)n3-
(2m + 13)/2-(3m + 18)n/2

KLD 16n3 + 14n2-8n-6 m(16n3-4n2) + 136n3-2n2-32n

BW 112n3 + 32n2-50n-6 8(m + 1)n3-2n2

GBW (112n3 + 32n2-50n-6) + l(n4/2 + 384n3 + 15n2/2-
91n-6)

(m(96n3-24n) + 48n3 + 4n2-
16n)k (m(96n3-
24n) + 48n3 + 4n2-16n)k
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tion, the gradient, and TCG on G(p, n) . The computational complexity of objec-
tive function (31) is l(96n3 + 8n2-26n-6), where l is the number of iterations (about 
30–50). The computational complexity of the gradient (36) is l(240n3 + 4n2-64n). 
The computational complexity of TCG on the Grassmann manifold contains Rie-
mannian gradient(33) and retraction. The complexity of the Riemann gradient is 
l(24n3-6n2). We use the exponential retraction in this paper with a complexity of 
l(n4/2 + 24n3 + 3n2/2-n).

5.2  Experiments

In this section, we use simulation data and measured data to verify the feasibility of the 
proposed matrix detection scheme based on GBW geometry. At the same time, this 
method is compared with some existing approaches to illustrate its advantages.

A. Simulated Data.
In the simulation experiments, we use K-distribution to simulate clutter data. The 

amplitude probability density of sea clutter follows the K distribution is

where Kv(·) denotes v-order modified second-kind Bessel function, here shape param-
eter v = 1 and scale parameter a = 0.5; Ŵ (·) denotes Gamma function. A total of  105 CPI 
clutter data are generated. We assume that the number of pulse trains in one CPI is 7, 
the PRF is 1 kHz, and within one pulse duration contains 17 range cells.

Since the explicit expression for detection probability (Pd) is not available, the thresh-
old required for false alarm (Pfa) probability is estimated through Monte Carlo experi-
ments. In the case of only the clutter presence, the detection threshold is determined 
with desired Pfa by  105 Monte Carlo simulation. A point target with 2 guard cells is 
injected into the clutter data and placed in the range cell in the middle (9th). The Dop-
pler frequency is set to constant. When the target is injected into the clutter, different 
signal clutter ratios (SCR) can be obtained by changing the target signal power while 
keeping the clutter power constant. For each SCR, we run independent  104 simulations 
to estimate the Pd. Here, we compare the performance of matrix detectors under differ-
ent metrics.

Figure 3 shows Pd versus SCR under different geometric distances with Pfa =  10−4 and 
 10−3, respectively. It is obvious that the detection performance using AI metrics is poor, 
but there is still an improvement of about 3dB compared to coherent processing algo-
rithms based on FFT. The detection performance based on JD and KLD is slightly better. 
Compared with AI distance, the SCR requirement is reduced by about 1.5dB and 4 dB at 
the same Pd. The proposed detector with BW metric has the best detection performance. 
For the same Pd, it has about 2dB lower SCR than the KLD-based detector. These results 
show the superiority of BW geometry for target detection.

The comparison result of Pd versus SCR by GBW geometric optimization is shown 
in Fig.  4. The indicator GBW-n in Figure represents mapping the matrix to the 
n-dimensional manifold, the optimization parameter W ∈ R

7xn (n < 7). Figure shows 

p(z) =
2

aŴ(v + 1)

( z

2a

)v+1
· Kv

( z

a

)

, v > −1, a > 0
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that the detection performance improvement slightly increases as n reduces. When 
n = 2, the SCR requirement is reduced by about 2dB and 1.5dB at the same Pd corre-
sponding Pfa =  10−4 and  10−3, respectively. It clearly shows the detection performance 
based on GBW geometry further improved projection space. The simulation results 
demonstrate that the proposed matrix detection scheme based on GBW geometry 
achieves better detection performance.

B. Measured Data.
The radar measurement data collected from the Naval Aeronautical University 

(NAU) X-band solid-state radar is used to evaluate the introduced method’s perfor-
mance. The main technical indicators are shown in Table 4.

The available raw data are the complex data after pulse compression, which 
is preprocessed by removing the DC components and scaling down. Data file 
"20191012112446_01_staring.mat," collected from the radar work in the staring 
state[45], is used for experiments. The data set contains cells  104 pulses and 5250 range 
cells. We choose the clutter data without a target for the experiment. In total, 17 range 
cells and 7 pulses are used as one CPI in each test. One moving target is injected into the 
clutter data and located at the 9th range cell. Based on different geometric metrics, the 
result of experiments by the Monte Carlo technique is displayed in Fig. 5.

Fig. 3 Pd versus SCR with different metrics (simulated data)

Fig. 4 Pd versus SCR with GBW geometric (simulated data)
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The detection probability versus SCR with different metrics is depicted in Fig. 5. As 
illustrated, the proposed detector with BW metric has the best detection performance, 
which is consistent with the simulation results. The KLD-based detector and JD-based 
detector follow. Specifically, at the same detection probability, the SCR of the detector 
with BW metric is reduced by about 5dB compared with the AI-based detector. The per-
formance of the coherent processing algorithm based on FFT is the worst.

Figure 6 indicates the result of Pd versus SCR by GBW geometric optimization. Similar 
to the simulation results, the detection performance improvement slightly increases as 
the dimensional reduces. When n = 2, SCR improvement of about 1.5dB and 1dB can be 
obtained at the same Pd corresponding Pfa =  10−4 and  10−3, respectively. The experimen-
tal results demonstrate that the detector based on GBW geometry has better detection 
characteristics. The reason is that the GBW geometry can enhance the discriminability 
between the target and clutter in the surroundings.

6  Conclusion
The proposed method in this paper maps the covariance matrix of the data to the manifold 
space and uses BW and GBW distance to distinguish their differences using the intrinsic 
structure of Riemannian manifolds. It can not only be used for detecting sea surface targets 
but also for target detection in other non-Gaussian clutter backgrounds, such as targets in 
ground clutter backgrounds. It uses only a few numbers of echo pulses, which can meet 

Table 4 X-band radar parameters

Technology index Parameters

RF frequency 9.3 ~ 9.5GHz

Range span 0.0625 ~ 96nm

Signal bandwidth 25MHz

Range resolution 6m

PRF 1.6kHz, 3kHz, 5kHz, 10kHz

Peak power 50W

Working mode staring, scanning

Polarization HH

Fig. 5 Pd versus SCR with different metrics (measured data)
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the needs of fast scanning search radar. Compared with conventional coherent process-
ing methods, its detection performance can be greatly improved in the case of fewer echo 
pulses, with only a small increase in computational complexity.

In conclusion, the BW geometry and GBW geometry based on the Riemannian manifold 
and their applications in target detection have been introduced in this paper. The advan-
tages of GBW geometry in Riemannian manifolds include: (1) The GBW metric connects 
the Riemannian AI distance on the manifold with the BW distance in the optimal transmis-
sion theory; (2) the geometric curvature structure of GBW is conducive to target detection 
in clutter. The GBW optimization problem is converted to an unconstrained problem on 
the manifold and solved by the RTR method. The simulation and measured results demon-
strate that the proposed strategy can effectively work in an actual application. Subsequent 
work includes include analysis of the complexity of the proposed scheme and the design of 
a practical detector.
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