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Abstract 

Mutual information (MI) quantifies the statistical dependency between a pair of ran-
dom variables and plays a central role in signal processing and data analysis. Recent 
advances in machine learning have enabled the estimation of MI from a dataset using 
the expressive power of neural networks. In this study, we conducted a comparative 
experimental analysis of several existing neural estimators of MI between random 
vectors that model power spectrum features. We explored alternative models of power 
spectrum features by leveraging information-theoretic data processing inequality 
and bijective transformations. Empirical results demonstrated that each neural estima-
tor of MI covered in this study has its limitations. In practical applications, we recom-
mend the collective use of existing neural estimators in a complementary manner 
for the problem of estimating MI between power spectrum features.
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1 Introduction
Mutual information (MI) is a measure of the amount of information that one random 
variable X contains about another random variable Y. Formally, the MI between X and 
Y, denoted I(X, Y), is the Kullback–Leibler (KL) divergence between the joint probability 
density p(x, y) and the product distribution p(x)p(y) of marginal densities [1],

where, with the base of the logarithm e, the entropy is measured in nats.
A processing stage which maximizes the mutual information between its output and 

its input mixed with noise, is a way to extract useful input features, and provides a model 
for perceptual functions [2–5]. This infomax principle forms the basis for applications 
such as speech recognition [6] and blind source separation [5]. In each application, 
learning rules are devised to maximize MI.

(1)
I(X ,Y ) = Ep(x,y) log

p(X ,Y )

p(X)p(Y )

= p(x, y) log
p(x, y)

p(x)p(y)
dxdy.
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Recent advances in MI estimation and optimization using neural networks have ena-
bled unsupervised learning of representations based on the infomax principle [7, 8] and 
contrastive predictive coding [9]. The latter combines predictive coding with a proba-
bilistic contrastive loss dependent on MI [9]. These applications involve neural net-
works that estimate MI from a finite dataset without prior knowledge of the underlying 
distribution.

However, measuring MI from a finite dataset poses challenges due to inherent statis-
tical limitations. It becomes impractical to obtain a high-confidence variational lower 
bound for MI larger than O(logN ) , where N is the number of data samples [10]. This 
exponential complexity also applies to specific estimators, for example, conventional 
k-nearest neighbor estimator [11, 12] and more recent variational estimators based on 
Donsker and Varadhan’s representation of the KL divergence [13, 14].

In this paper, we experimentally compare the performance of various MI estimators, 
including variational estimators accompanying the formal limitations derived in [10]. 
The experiments also incorporate an alternative estimator based on a flow-based gen-
erative model [14, 15], which has the potential to complement the variational estima-
tors when the true MI is large [10, 13, 14]. Collectively, we quantitatively evaluate the 
performance of the MI estimators to assess the applicability of recent advances in MI 
estimation.

While quantitative performance evaluations of MI estimators are present in the litera-
ture, they are often confined to the estimation of MI between Gaussian random vectors 
where the ground-truth MI is available in closed form [13, 14, 22]. This work extends 
the previous results to MI estimation between exponential random vectors that model 
power spectrum features in the frequency domain, where consecutive samples are likely 
to be asymptotically uncorrelated. Additionally, we include experiments in the high 
MI region, where the flow-based estimator shows a relative advantage over variational 
estimators.

To quantitatively evaluate the performance of the estimators against the ground-
truth MI, we employ a simplified model of the power spectrum features with a tractable 
expression of the MI. Additionally, we explore more realistic alternative models of the 
power spectrum features by leveraging information-theoretic data processing inequality. 
Potential applications of the MI between power spectrum features can be found in the 
speech processing literature, e.g., [17–19].

2  MI estimators
2.1  Estimators based on variational bounds

Beginning with the classic Barber and Agakov lower bound [20] and following the 
explanation in [13], we formulate the variational lower bounds of Nguyen [21], van den 
Oord [9], Belghazi [22], and Song [14]. These formulations, which utilize critic function 
fθ (x, y) parameterized by a neural network to approximate the ratio of the probability 
density functions p(x|y)/p(x) = p(y|x)/p(y) [13, 14], serve as candidates for the experi-
mental study in this paper.

First, the lower bound of Barber and Agakov is obtained by replacing the intractable 
conditional probability density function p(x|y) with the variational distribution q(x|y) as 
follows [13, 20],
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where h(X) denotes the differential entropy of the random variable X.
To circumvent the unknown differential entropy h(X), the variational distribution q(x|y) 

is defined using the critic function fθ (x, y) as follows [13],

where the partition function g(y) is given by

By substituting (3) into the last line of (2) and applying Jensen’s inequality, the following 
lower bound of Donsker and Varadhan is obtained [13],

Applying the inequality log(h) ≤ h/e with h = Ep(x)p(y)

[

efθ (X ,Y )
]

 in (5), the NWJ estimate 
of Nguygen, Wainwright, and Jordan is derived as follows [13, 21],

The NJW bound in (6) is tight with the optimal critic fopt(x, y) = 1+ log(p(x|y)/p(x)) 
[13]. However, the variance of the NJW bound is large, due to the estimation of the par-
tition function whose variance increases exponentially with respect to MI [13, 14].

The variance of the NJW bound can be reduced by using multiple independent samples. 
The Noise Contrastive Estimation (NCE) lower bound is obtained by averaging the bound 
over N replicates [13].

However, unlike the NWJ bound, the NCE bound is loose since it is upper bounded by 
log(N ) [13].

Another neural estimator, known as Mutual Information Neural Estimator (MINE), is 
also derived from the lower bound of Donsker and Varadhan in (5). The gradient of the 
Donsker and Varadhan lower bound is given by

(2)

I(X ,Y ) = Ep(x,y)

[

log
p(X |Y )

p(X)

]

≥ Ep(x,y)

[

log
q(X |Y )

p(X)

]

= Ep(x,y)[log q(X |Y )]+ h(X) = IBA(X ,Y ),

(3)q(x|y) =
p(x)

g(y)
efθ (x,y),

(4)g(y) = Ep(x)

[

efθ (X ,y)
]

.

(5)IDV(X ,Y ) = Ep(x,y)[fθ (X ,Y )]− logEp(x)p(y)

[

efθ (X ,Y )
]

.

(6)INWJ(X ,Y ) = Ep(x,y)[fθ (X ,Y )]− Ep(x)p(y)

[

efθ (X ,Y )−1
]

.

(7)INCE(X ,Y ) = Ep(x1:N ,y1:N )

[

1

N

N
∑

i=1

log
efθ (Xi ,Yi)

1
N

∑N
j=1 e

fθ (Xi ,Yj)

]

.

(8)∇θ IDV(X ,Y ) = Ep(x,y)[∇θ fθ (X ,Y )]−
Ep(y)[∇θg(Y )]

Ep(y)[g(Y )]
.
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where the expectations over a mini-batch lead to a biased gradient estimate [22]. The 
bias is reduced by the MINE gradient estimator, which replaces the estimate in the 
denominator of the second term in (8) by exponential average across mini-batches [22].

Since the MINE estimate also includes the partition function, the variance increases 
rapidly with respect to the MI [10, 14]. To alleviate this, the Smoothed Mutual Informa-
tion Lower-bound Estimator (SMILE) is proposed by limiting the variance of the par-
tition function using the clipping function clip(a, τ ) = max(min(ea, eτ ), e−τ ) for some 
τ ≥ 0 [14],

Specifically, IDV and INWJ are appealing since they become tight with the optimal critic. 
However, they exhibit high variance due to their reliance on the high variance partition 
function estimator [13]. INCE and ISMILE aim to reduce the variance at the cost of increas-
ing bias. The hyperparameter τ of ISMILE can be adjusted for the bias-variance trade-off 
[14], and for this work, we fixed τ = 1.

In summary, the variational estimators aim to maximize the lower bound of mutual 
information with respect to the critic function implemented as a neural network. The 
loss function to minimize is defined as the negative lower bounds of (5), (6), (7) and (9), 
where the expectation is implemented by the sample mean under mini-batches. Gradi-
ent descents are employed to fit the parameters of the neural networks, and the esti-
mates of the MI lower bound are smoothed across the mini-batches considering the 
small sample size of the mini-batch. The loss function during training the neural net-
work is directly used for the estimator.

2.2  Estimators based on flow‑based generative model

Given a set of data instances without labels, generative models capture the data distribu-
tion by fitting the parameters to maximize the data likelihood. Neural networks are used 
to fit the parameters, and the data log-likelihoods log pφ(x, y) , log pψ(x) and log pξ (y) of 
samples from a mini-batch are evaluated to estimate MI as follows, [14]

where the expectations are implemented by sample means. Again, exponential smooth-
ing of the MI estimates across the mini-batches is performed to obtain a more reliable 
estimator.

A restricted Boltzmann machine (RBM), described by a probabilistic undirected graph, 
is a maximum likelihood model that learns a probability distribution over its data [23]. 
Although greedy multi-layer training theoretically enhances the variational bounds of 
the log-likelihood, achieving the theoretical bounds may necessitate a prolonged Gibbs 
sampling, leading to an approximation such as contrastive divergence [23]. Additionally, 
the computation of the log-likelihood involves an intractable partition function [24].

In a directed graphical model, efficient approximate inference can be achieved by shar-
ing variational parameters across data instances, a strategy called amortized inference 
[25]. In particular, variational autoencoder (VAE) leverages the efficiency of amortized 
inference while counteracting sample noise by the reparametrization trick. However, the 

(9)ISMILE(X ,Y ) = Ep(x,y)[fθ (X ,Y )]− logEp(x)p(y)[clip(fθ (X ,Y ), τ )].

(10)IGEN(X ,Y ) = Ep(x,y)

[

log pφ(X ,Y )
]

− Ep(x)

[

log pψ(X)
]

− Ep(y)

[

log pξ (Y )
]
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evaluating log-likelihood of a data point requires Monte-Carlo estimation using random 
samples of latent variables from the inference model [26].

Such approximations can be avoided by adopting a flow-based generative model 
instead, by leveraging the change of variable law of probabilities to transform a simple 
distribution into a complex one [27]. A flow-based model using real-valued non-volume 
preserving transformations (real NVP) leads to an unsupervised learning algorithm, that 
directly evaluates and minimizes the negative log-likelihood function [15]. This is advan-
tageous for MI estimation using (10), which requires the computation of log-likelihood 
with respect to data samples in a mini-barch.

Given an observed data x, a latent variable z with simple prior distribution pZ , and a 
bijection f : X → Z , the log-likelihood is given by the change of variable formula [15],

A flexible bijective model can be built by composing simple bijections, 
f = f1 ◦ f2 ◦ · · · ◦ fK .

Let xT = [xT1 , x
T
2 ] and zT = [zT1 , z

T
2 ] , with x1, x2, z1, z2 ∈ R

n×1 . Then, the real NVP 
transformations are composed of simple bijective functions, where each function is 
referred to as an affine coupling layer modeled as follows, [15]

where ⊙ is the Hadamard product. sφ1 and tφ2 stand for scale and translation, which can 
be arbitrarily complex by employing deep neural networks. The inverse of the bijective 
function is x1 = z1, x2 = e−sφ1 (z1) ⊙

(

z2 − tφ2(z1)
)

 , and the Jacobian is exp
(

1
T sφ1(z1)

)

 , 
where 1 ∈ R

n×1 is vector of ones. The inverse and Jacobian remain numerically efficient. 
Since each later keeps the first half of the vector z1 unchanged, a permutation is per-
formed after every layer [15].

While the variational approaches in Sect. 2.1 optimize single critic fθ (x, y) which gives 
rise to a partition function, the flow-based generative model optimizes parameters of 
log pφ(x, y) , log pψ(x) , and log pξ (y) separately. In particular, the flow-based estimator 
requires samples from the joint data distribution p(x, y) only, while variational estima-
tors further require samples from the product of marginals p(x)p(y), except INCE , to eval-
uate the second terms on the right-hand sides of (5), (6) and (9) [14].

3  Experiments
In this section, we present experimental results quantifying the degree of the statistical 
relationship between a pair of random signal vectors by MI estimators. Due to the equiv-
alence of time and frequency domain representations of a signal, MI can be equivalently 
estimated with spectral features.

The advantage of using the spectral features is that the spectral coefficients tend to be 
mutually uncorrelated with an increasing analysis window length for a stationary signal. 
Additionally, they tend to be asymptotically complex Gaussian due to the central limit 
theorem [28]. Thus, utilizing spectral features alleviates the burden of capturing compli-
cated inter-dependency within the signal vector.

(11)log (pX (x)) = log (pZ(z))+ log

(∣

∣

∣

∣

det

(

∂f

∂xT

)∣

∣

∣

∣

)

.

(12)
[

z1
z2

]

= f

([

x1
x2

])

=
[

z1
esφ1 (z1) ⊙ z2

]

+
[

0
tφ2(z1)

]
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Based on asymptotic theory, the signal vectors are assumed to consist of elements that 
are exponentially distributed and element-wise correlated. Then, the joint distribution 
between the signal vectors reduces to the product of bivariate distributions,

with

in which I0 denotes the modified Bessel function of the first kind, r denotes the correla-
tion coefficient between the pair of the exponential random variables (Xi,Yi) and 2σ 2 is 
equal to the mean of the marginal exponential distribution [29].

The bivariate exponential distribution (14) is derived from transforming a pair of two-
dimensional zero-mean Gaussian random vectors, [Zi1 ,Zi2 ]T and [Zi3 ,Zi4 ]T , with ele-
ment-wise correlation coefficient of ρ and zero correlation elsewhere (see Eq. (119) in 
[29]). Through the transformations of Xi = Z2

i1
+ Z2

i2
 and Yi = Z2

i3
+ Z2

i4
 , the correlation 

coefficient r is evaluated to be r = ρ2 [29].
We calculate the true MI by two-dimensional numerical integration, substituting (14) 

into (1). Figure 1 shows the resulting MI between bivariate exponential variables versus 
correlation coefficient r, compared with MI between bivariate Gaussian variables versus 
correlation coefficient ρ , evaluated from the closed form expression of −0.5 log(1− ρ2) 
[16].

The element-wise bivariate exponential model may be considered an oversimplifica-
tion compared to more realistic models with an underlying super-Gaussian distribution 
[30–32]. However, drawing samples from bivariate Gamma or Laplacian distribution 
based on the underlying super-Gaussian model in [30–32], given MI, is more compli-
cated to implement. Instead, a more practical approach is to leverage the data processing 
inequality [1],

where, the transformed data g1(X) and g2(Y ) create an alternative model of the 
power spectrum features. For instance, a simple element-wise transformation of the 

(13)p(x, y) =
D
∏

i=1

p(xi, yi), xi ≥ 0, yi ≥ 0

(14)p(xi, yi) =
1

4σ 4(1− r)
exp

(

−
xi + yi

2σ 2(1− r)

)

I0

( √
rxiyi

σ 2(1− r)

)

(15)I(X ,Y ) = I(g1(X), g2(Y )), for bijective g1 and g2,

Fig. 1 Mutual information versus correlation coefficient
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exponential model, i.e., g(X) = Xν with ν > 1 , results in a Weibull distribution derived 
from an underlying super-Gaussian model [33].

3.1  Tasks

In the literature, the signal vectors are assumed to be drawn from a 20-dimensional 
Gaussian distribution with element-wise correlation [13, 14, 22]. To assess performance 
with higher-dimensional data, we experimented with a signal dimension of 40 and com-
pare the result with the signal dimension of 20. Unlike previous works, each pair of ele-
ments is sampled from the bivariate exponential distribution of (13).

The true MI between the elements is varied from 0.2 to 1 nats, in steps of 0.2 nats, with 
5k iterations conducted in each step. Pairs of correlated complex Gaussian random vec-
tors are drawn, with a correlation coefficient ρ corresponding to the true MI. The vectors 
obtained by squaring the modulus of the complex Gaussian samples are fed into the neu-
ral networks. Then, the bias and variance of the estimators are analyzed and compared 
with each other.

Furthermore, to investigate the validity of the estimators upon data processing, we 
apply transformations, such as taking the element-wise logarithm, squaring, scaling, 
and shift rotation, which precede the input layer. The input data (x, y) is replaced with 
(x, g(y)), where g denotes the applied transformation. Taking logarithms results in com-
monly used log-spectra features. Squaring results in a heavy-tailed distribution which is 
based on a super-Gaussian model of power spectrum. Scaling implements a frequency-
dependent gain of a system. For the scaling, we multiply the data vector by a diagonal 
matrix, whose condition number is equal to 1e + 3 . Shift rotation is a frequency shifting 
operation, which is related to Doppler or harmonics. For the shift rotation, we circularly 
rotate the data by 10 bins.

3.2  Neural network architectures

For variational methods, the critic function fθ (x, y) is parameterized by a neural net-
work. Assuming a separable critic fθ (x, y) = hθ1(x)

T gθ2(y) where h and g are learned by 
two separate networks, only 2N forward passes are required for a batch size of N [13]. In 
the joint critic, x and y are concatenated and fed into the neural network. For an equal 
batch size of N, the combination of the input vectors leads to N 2 forward passes for the 
joint critic. In general, the joint critics tend to perform better than separable critics [13]. 
In this work, we consider the joint critic architecture only.

For all neural networks, we follow the setup in [13, 14]. We use the Adam optimizer 
with a learning rate of 5× 10−4 [34], and a batch size of 128. Rectified linear unit (ReLU) 
activations are used for each neuron. For the variational estimators, we use two-layer 
perceptrons with 256 neurons per layer in the case of 20-dimensional inputs. For the 
flow-based generative method, each of the log-likelihoods is estimated from 6 coupling 
layers, with each coupling layer implemented by two-layer perceptrons with 100 neurons 
per layer in the case of 20-dimensional inputs [15]. The usual Gaussian priors are used 
for the flow-based method. For 40-dimensional inputs, we experimented with various 
network parameters to examine the reliability of the architecture when the dimension 
increases.
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3.3  Experimental results

In Fig. 2, MI estimators between 20-dimensional vectors are presented, with the true MI 
stepping up every 5k iterations. The variational MI estimators exhibit large estimation 
errors at high MI due to the high variance of the partition function estimators or bias 
[10, 13, 14]. In particular, INWJ and IMINE show high variance, while INCE shows high bias 
due to the upper bound introduced by (7). ISMILE benefits from the bias-variance trade-
off but also degrades at high MI.

On the other hand, the performance of the flow-based generative estimator, IFLOW , 
is maintained even at high MI. In the experiment, the marginal distributions obtained 
from (14) are exponential with mean 2σ 2 irrelevant to the MI, whereas the joint distribu-
tion changes according to the MI. Empirically, the sample variance of the joint entropy 
estimator, −Ep(x,y)

[

log pφ(X ,Y )
]

 in (10), is not significantly influenced by increasing MI. 
However, the flow-based estimator is generally more biased than the variational estima-
tors at low MI.

Figure 3 shows the MI estimators obtained by doubling the dimension of the vectors to 
D = 40 . The results of Fig. 2 for D = 20 are duplicated in the leftmost column of Fig. 3 
for comparison. The combined estimator in the last row, a heuristic algorithm combin-
ing the variational and flow-based estimator, will be explained later. The four columns, 
except the leftmost one, depict the MI estimators for D = 40 . Each column is obtained 
by changing neural network parameters, where the number of neurons per layer and the 
batch size are either unchanged or doubled in line with the increased dimension.

The variational MI estimators for D = 40 in Fig.  3 exhibit a more severe deviation 
from the true value than D = 20 , regardless of the changes in the network parameters. 
Particularly in the case 2 of Fig. 3, INWJ tends to negative values at high MI. In general, 
the architecture of the variational estimators is difficult to scale up with the data dimen-
sion. Under the current architecture, it is conceivably necessary to divide frequency bins 
into disjoint subbands and estimate MI separately, resorting to asymptotic statistical 
independence between the subbands assuming a stationary signal.

In contrast, the architecture for the flow-based estimator appears to be more reliable 
for D = 40 . At high MI, the performance of the estimator for D = 40 is comparable to 
D = 20 when both the number of neurons per layer and the batch size increase twofold. 
However, at the intermediate MI region, the convergence of the estimator tends to be 
more unstable when the dimension increases to D = 40.

Figure  4 shows MI estimators between 20-dimensional input vectors transformed 
by element-wise logarithm, squaring, scaling, and shift rotation. Overall, the perfor-
mance of ISMILE at low MI and IFLOW at high MI appears to be more robust against 

Fig. 2 MI estimators between 20-dimensional input vectors. (Light color: estimates in each iteration using a 
single mini-batch, dark color: estimates exponentially moving averaged across mini-batches, black color: true 
MI)
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transformations, exhibiting smaller performance degradations relative to other esti-
mators. Except for INCE , which exhibits high bias, the bias or variance of the estima-
tors is more negatively affected by squaring or scaling transformations than by taking 
the logarithm or shift rotation. Expanding the range of input data by squaring or scal-
ing seems to have a detrimental effect on the estimators.

Since bijective transformations preserve MI, shrinking the range of the input data 
by applying a bijective transformation may help improve the estimator. For example, 
we can apply a linear transformation normalizing each frequency bin to unit variance 
[35], which is the inverse transformation of the scaling transformation, thus mitigat-
ing the bias induced by scaling shown in the fourth column of Fig.  4. Similarly, the 
heavy-tailed spectrum shown in the third column of Fig. 4 is inverse transformed by 
the square root function, resulting in a nonlinear transformation for input regulariza-
tion. However, for this heavy-tailed white spectrum, a linear transformation such as 

Fig. 3 MI estimators obtained by increasing the dimension D of input vectors. (Light color: estimates in each 
iteration from a mini-batch, dark color: estimates exponentially moving averaged across mini-batches, black 
color: true MI) Left column D = 20 . Second column (case 1) D = 40 , with the architecture of the network 
unchanged. Third column (case 2) D = 40 , with the number of neurons per layer doubled. Fourth column 
(case 3) D = 40 , with the batch size doubled. Last column (case 4) D = 40 , with both the number of neurons 
per layer and the batch size doubled
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normalizing to unit variance is not successful in shrinking the data range and is thus 
not adequate for input regularization.

3.3.1  A heuristically combined estimator

In practice, it is worthwhile to evaluate both ISMILE and IFLOW and choose one by 
inspecting the sample mean and variance of the estimators. When the sample mean of 
IFLOW is smaller than that of ISMILE , we expect more bias from IFLOW , as the variational 
ISMILE tends to exhibit negative bias resulting from the estimates of lower bounds. On 
the contrary, a large sample variance of ISMILE indicates that ISMILE is not a reliable esti-
mator. We observe that the sample variance of IFLOW is relatively insensitive the true MI 
and thus is not a useful indicator of the confidence of IFLOW as shown in Fig. 3.

Consequently, in cases where the sample variance of ISMILE is small while the sample 
mean of IFLOW is relatively smaller than ISMILE , we presume that ISMILE is more reliable. 
On the other hand, when the sample mean of IFLOW is larger than ISMILE while the sam-
ple variance of ISMILE is large, we choose IFLOW as a better alternative. Otherwise, when 
it is not evident that one estimator is preferable to the other and in case we lack further 
evidence, a simple average of the estimators may be used.

Fig. 4 MI estimators between 20-dimensional input vectors transformed by element-wise logarithm, 
squaring, scaling, and shift rotation. (Light color: estimates in each iteration from a mini-batch, dark color: 
estimates exponentially moving averaged across mini-batches, black color: true MI)
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Algorithm 1 Heuristic algorithm for combining MI estimators

The proposed heuristic algorithm is detailed in the Algorithm 1, combining the two 
estimators, ISMILE and IFLOW , based on the sample mean and variance of the estimators. 
This algorithm employs a recursive form of the weighted incremental update formula 
from [36]. The constants used in the algorithm are α = 0.99, T1 = 0.5, T2 = 1 , and 
T3 = 0.5 nats. The MI estimates obtained using the heuristic algorithm are shown in the 
last row of Figs. 3 and 4.

The algorithm successfully combines ISMILE at low MI and IFLOW at high MI. In the 
intermediate MI region, the algorithm switches between the individual estimators and 
the simple average of the estimators. The behavior is affected by the threshold param-
eters T1, T2 , and T3 used. In general, higher T1 and T2 give more confidence to ISMILE and 
lower T3 gives more confidence to IFLOW . Simultaneously lowering T2 and increasing T3 
in the opposite direction results in less confidence in the individual estimators and thus 
leads to simple averaging. The adjustment of the parameters is ineffective when both 
individual estimators are biased. As shown in Fig. 3, the combined estimator still suf-
fers from bias when both individual estimators are biased in the intermediate MI region, 
especially for high-dimensional inputs(D = 40 ). For D = 40 , doubling both the number 
of neurons and the batch size reduces the bias of IFLOW and of the resulting combined 
estimator.

Tables 1 and 2 quantify the bias and standard deviation estimated from the last 1k 
iterations at each step shown in Fig. 4.  Again, except for INCE , the squaring and scal-
ing transformations result in increased bias of the variational estimators and a signifi-
cant increase in the bias of IFLOW at low MI. The standard deviations of the estimates 
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are not significantly affected by the transformations. The heuristically combined esti-
mator, taking advantage of the individual estimators, exhibits relatively smaller bias. 

Table 1 Bias estimates (in nats) with respect to data processing

Best results are indicated in bold

Estimators true MI Raw Logarithm Squaring Scaling Shift

NWJ 4 − 0.72 − 0.93 − 1.41 − 1.60 − 0.72

12 − 5.39 − 6.69 − 8.16 − 7.17 − 4.75

20 − 15.39 − 10.79 − 15.00 − 22.29 − 22.89

NCE 4 − 0.84 − 0.97 − 1.26 − 1.29 − 0.86

12 − 7.19 − 7.19 − 7.21 − 7.21 − 7.19

20 − 15.15 − 15.15 − 15.15 − 15.15 − 15.15

MINE 4 − 0.57 − 0.73 − 1.20 − 1.50 − 0.65

12 − 2.92 − 3.20 − 4.55 − 4.64 − 3.11

20 − 6.12 − 5.81 − 10.67 − 11.28 − 5.72

SMILE 4 − 0.14 − 0.39 − 0.83 − 1.19 − 0.14
12 − 1.51 − 1.67 − 2.34 − 2.85 − 1.32

20 − 4.39 − 3.99 − 5.29 − 6.55 − 4.23

FLOW 4 − 1.72 − 0.70 − 3.40 − 3.83 − 1.83

12 − 0.92 − 0.81 − 0.26 − 2.07 − 1.06
20 − 0.63 − 0.76 0.61 − 1.32 − 0.71

Combined 4 − 0.14 − 0.39 − 0.83 − 1.19 − 0.14
12 − 0.94 − 1.10 − 0.28 − 2.07 − 1.32

20 − 0.63 − 0.76  0.61 − 1.32 − 0.71

Table 2 Standard deviation estimates (in nats) with respect to data processing

Best results are indicated in bold, except for the standard deviation of the NCE estimator (indicated in italics), which restricts 
the deviation at the cost of upper bounding the estimator

Estimators true MI Raw Logarithm Squaring Scaling Shift

NWJ 4 0.34 0.23 0.24 0.21 0.27
12 4.93 21.60 7.20 3.53 3.21

20 17.86 8.06 5.26 29.52 29.68

NCE 4 0.16 0.15 0.16 0.16 0.15

12 0.03 0.03 0.04 0.04 0.03

20 0.01 0.01 0.01 0.01 0.01

MINE 4 0.25 0.24 0.22 0.20 0.31

12 1.08 1.02 0.96 1.07 1.34

20 2.44 2.30 2.45 2.72 2.32

SMILE 4 0.29 0.23 0.27 0.26 0.28

12 0.71 0.49 0.63 0.71 0.64

20 1.34 1.04 1.34 1.13 1.47

FLOW 4 0.33 0.24 0.79 0.43 0.32

12 0.38 0.32 0.85 0.44 0.37
20 0.38 0.36 0.85 0.44 0.40

Combined 4 0.29 0.23 0.27 0.26 0.28

12 0.45 0.37 0.84 0.44 0.64

20 0.38 0.36 0.85 0.44 0.40
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The estimated standard deviation of the combined estimator is also relatively small, 
resulting from the sample variance of individual estimators.

4  Conclusion
In this study, we evaluated several neural estimators of mutual information (MI) 
between random vectors, which model power spectrum features. Firstly, the variational 
estimators exhibited significant bias or variance in the estimated value at high MI, lead-
ing to a substantial estimation error. However, these estimators demonstrated relatively 
greater reliability at low MI. Conversely, the flow-based generative estimator showed 
reduced bias and variance at high MI but suffered from slow convergence at low MI. 
These empirical results indicate that each MI estimator possesses inherent limitations, 
emphasizing the necessity of a complementary use of these estimators to mitigate their 
respective drawbacks. In response to this, we propose a heuristic algorithm that com-
bines the strengths of individual estimators.

However, the selection of parameters in the algorithm appears somewhat arbitrary and 
should be tailored based on the specific characteristics of the utilized data. Addition-
ally, the algorithm still suffers from bias when both the estimators combined are biased. 
In particular, variational estimators tend to display more negative bias at high MI, 
underscoring bias a significant concern. Moreover, although the generative flow-based 
estimator demonstrates relatively strong performance at high MI, there is a need for a 
theoretical explanation of its statistical characteristics to justify its application at high 
MI. Beyond this, it is necessary to explore alternative generative models for MI estima-
tion, aside from the flow-based estimator discussed in this study. Lastly, to validate the 
practical applicability of the neural estimators, future work should include experiments 
with real-world data.
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