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1 Introduction
Drought, a natural segment of climate variability, is characterized by prolonged peri-
ods of reduced precipitation, affecting various aspects of life and natural resources, 
including water supplies, businesses, economic stability, social well-being, and the envi-
ronment [1–6]. The escalating trend of global warming has led to a more frequent occur-
rence of drought, presenting significant challenges to both humanity and society. This 
has a profound impact on people’s lives, property security, food security, and the avail-
ability of water resources [7]. Not only municipal water suppliers could be affected by 
drought, but also, businesses [1, 2], economic [1], social life and welfare implications [3], 
and environmental interests which are dependent on wildlife with essential need of pre-
cipitation and water [4], may be influenced by drought in the same way [1]. While the 
USA boasts a robust agricultural system that has historically protected its citizens from 
severe drought-related impacts, recent droughts have posed significant challenges for 
farmers across different regions [5].
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A typical drought inflicts significant economic losses on American farmers and busi-
nesses, ranging from 6 to 8 billion dollars annually. Surprisingly, these financial impacts 
surpass those incurred from floods and hurricanes. The consequences tend to be even 
more severe in regions where comprehensive planning for natural hazards is lacking 
and agriculture serves as the primary economic driver [8]. Various studies have been 
conducted to assess the relative effects of drought in different parts of the USA, reveal-
ing the increasingly apparent impact of drought on human life, wildlife, and agriculture 
[9–14]. According to these studies, during recent years, we can see clearly the impact 
of drought on human life, wildlife and agriculture. These studies on different part of 
the USA which experienced extreme drought discussed that it is likely unprecedented 
to know about when the next drought will happen. Some predictive models like linear 
regression have been used to determine the correlation between different factors and 
the effects of drought in different regions. Many studies have documented increasing 
the number of drought and severity during recent years in USA which have arisen many 
new concerns [5, 9, 15–23]. For example, agricultural economic in Nebraska is the first 
and the most common sector in economic which has been affected adversely by drought 
[16]. The problem of scarcity of water which happened in the agricultural and energy 
sectors in a multi-year drought in California (2007–2009) was a reaction to the mas-
sive gap between empirical research and the adaptive capacity of social and environmen-
tal systems to climate changes [17]. The unprecedented drought in Texas in 2011 led to 
very dried seasons and intensive wildfires and increasing hardship for ranchers [20, 21]. 
Climate change in the Pacific Northwest (PNW) of America has caused more frequent 
droughts, rising air temperature, reducing winter snowfall, increasing earlier snow-melt, 
reducing summer flows, and longer crop-growing season [23]. In North Carolina, for-
est ecosystem sectors such as clean water, wildlife habitat, and timber supplies are pro-
gressively affected by drought during recent years [9]. Based on these recent records of 
severe drought impacts in different parts of USA and many more, it is crucial to better 
understanding the drought features and patterns to decrease the environmental and eco-
nomical costs and damages.

To track drought conditions and their related environmental factors, resources such as 
the National Drought Mitigation Center (NDMC), National Oceanic and Atmospheric 
Administration (NOAA), and the United States Department of Agriculture (USDA) pro-
vide valuable information. Early detection of drought allows for proactive measures to 
reduce its impacts and economic losses. According to the US Drought Monitor (USDM) 
reports, there are different ways to recognize drought such as comparison between 
observed precipitation, soil moisture and crop conditions with their regular time and 
so on. The US Drought Monitor (USDM) is a collaborative effort started from 1999 
and produced by the National Drought Mitigation Center (NDMC) at the University of 
Nebraska-Lincoln, the National Oceanic and Atmospheric Administration (NOAA), and 
the US Department of Agriculture (USDA).

Drought experts regularly estimate precipitation levels, comparing them to long-
term averages, while considering various variables like temperature, soil moisture, 
water levels in streams and lakes, snow cover, and meltwater runoff. They also iden-
tify areas experiencing drought impacts, including water shortages and business dis-
ruptions. Experts use multiple indicators to assess regional-scale drought conditions 
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and consult with other specialists before releasing weekly drought maps known as the 
US Drought Monitor (USDM) maps, see Fig. 1 (Source(s): National Drought Mitiga-
tion Center (NDMC), National Oceanic and Atmospheric Administration (NOAA), 
United States Department of Agriculture (USDA)).

Figure 1 displays the US Drought Monitor (USDM) categorization, which classifies 
drought into five levels: (1) D0, indicating areas abnormally dry but not yet in drought 
or recovering from it; (2) D1, representing moderate drought, the least severe level; 
(3) D2, marking severe drought; (4) D3, signifying extreme drought; and (5) D4, the 
most severe level, exceptional drought. This classification is vital for risk assessment 
and drought management, aiding in the quantification and evaluation of potential 
issues [Source(s): National Drought Mitigation Center (NDMC), National Oceanic 
and Atmospheric Administration (NOAA), United States Department of Agriculture 
(USDA)].

Various indices are employed to assess drought severity and its impacts across dif-
ferent timescales, including widely recognized measures like the Standardized Precip-
itation Index (SPI) and the Palmer Drought Severity Index (PDSI). These indicators 
have been utilized in operational drought management for many years, and their 
characteristics and performance characteristics are well-documented and understood 
[24]. Another commonly used index for drought monitoring is the Normalized Differ-
ence Vegetation Index (NDVI) [25–27]. This index aids in assessing drought severity 
by tracking variations in vegetation cover within a specific region over a defined time 
frame. Satellite databases, including data from Advanced Very-High-Resolution Radi-
ometer (AVHRR), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), 
and Landsat sensors, record and quantify changes in vegetation coverage due to 
evolving climate conditions. Positive NDVI values indicate vegetated areas, while 
zero and negative values correspond to bare soil and water bodies [25]. Significant 
progress has been achieved in understanding the impact of drought on vegetation 
dynamics by examining the correlations within their response characteristics. Several 
scientists have assessed vegetation productivity in response to droughts at various 

Fig. 1 US Drought Monitor Category (left: 2010-08-24) and (right: 2021-08-24) taken from US Drought 
Monitor (USDM). The maps use five classifications: abnormally dry (D0), showing areas that may be going 
into or are coming out of drought, and four levels of drought: moderate (D1), severe (D2), extreme (D3), and 
exceptional (D4). Map of the USA painted with blobs of yellow, orange, and red, https:// droug htmon itor. unl. 
edu/ Curre ntMap/ State Droug htMon itor. aspx? conus. Source(s): National Drought Mitigation Center (NDMC), 
the US Department of Agriculture (USDA), and the National Oceanic and Atmospheric Administration (NOAA)

https://droughtmonitor.unl.edu/CurrentMap/StateDroughtMonitor.aspx?conus
https://droughtmonitor.unl.edu/CurrentMap/StateDroughtMonitor.aspx?conus
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timescales, employing measures such as the 3-, 6-, 12-, and 24-month Standardized 
Precipitation Evapotranspiration Index (SPEI) and Normalized Difference Vegetation 
Index (NDVI) [28].

Figure  2 displays the time series of the average NDVI for Arizona, encompassing 
regions with moderate to exceptional drought (D1–D4), over ten years (2010–2021) for 
each month. The NDVI data, sourced from the open-source Google Earth Enterprise 
and derived from Terra Moderate Resolution Imaging Spectroradiometer (MODIS), 
serves as a valuable resource for predicting future vegetation changes in Arizona.

Each state experiences a different set of impacts during a drought. We have also dem-
onstrated the table of reported impacts during past droughts in Arizona for each level of 
drought on the US Drought Monitor in Fig. 3 (Source(s): National Drought Mitigation 
Center (NDMC), National Oceanic and Atmospheric Administration (NOAA), United 
States Department of Agriculture (USDA)).

When studying real-world time series, one often encounters databases exhibiting non-
linear power-law properties, indicative of self-similar or fractal-like patterns across vari-
ous scales [6, 29–35]. ]. In mathematical terms, a fractal is a subset of Euclidean space 
characterized by a fractal dimension higher than its topological dimension, as intro-
duced by Mandelbrot in 1983 [29, 30, 36, 37]. Using fractal geometry, the self-similarity 
and space-filling properties of dynamical systems can be extracted [38]. Time-series data 
can be classified as fractal or mono-fractal if it can be characterized by a single scaling 
exponent or as a linear function of moments. The presence of these scale-free databases 
has been observed in various fields, including biology, geophysics, stock markets, and 
finance [30, 39–45]. To analyze the nonlinear structure of scale-free time-series data 
effectively, it is essential to employ analytical and computational tools that can character-
ize their complexity and self-similarity [41, 46]. Traditional time-series analysis methods 
may fail when dealing with datasets exhibiting a wide range of scaling features. For such 

Fig. 2 Right up: Normalized Difference Vegetation Index (NDVI) Arizona versus time (2010–2021), Left up: 
Seasonal Land Surface Temperature (LST) Arizona versus time (2010–2021), Right down: the histogram of 
Normalized Difference Vegetation Index (NDVI) Arizona, Left down: the histogram of Seasonal Land Surface 
Temperature (LST) Arizona, https:// devel opers. google. com/ earth- engine/ datas ets/ catal og; Google Earth 
Enterprise Open Source

https://developers.google.com/earth-engine/datasets/catalog


Page 5 of 18Azizi and Azizi  EURASIP Journal on Advances in Signal Processing          (2024) 2024:3  

data, which may require multiple scaling exponents to describe their scaling structure, 
the scaling behavior follows a nonlinear function of moments (including vibration analy-
sis using scaling power law and power spectral density (PSD) and continues and discrete 
wavelet analysis) [47]. However, there exist other type processes which require a large 
number of scaling exponents to characterize their scaling structure. For this class of phe-
nomena, the scaling behavior follows a function which is nonlinear in the moments. For 
these processes which are called multi-fractal, the variability in data exhibits self-affine 
multi-fractal properties and multi-fractal analysis needs to be applied to determine the 
complexity of consecutive time intervals in time-series data. In multi-fractal analysis, we 
discover whether some type of power-law scaling exists for various statistical moments 
at different scales [48–51].

In this novel study, we leverage the concept of fractal geometry to classify drought 
severity in the USA from 2000 to the present, recognizing the significance of drought 
characterization for future forecasting. Multi-fractal analysis is employed to investi-
gate whether power-law scaling is present for various statistical moments at different 
scales in the dataset. By plotting multi-fractal spectra and applying quantitative anal-
ysis through the fractal dimension (FD) using the Higuchi algorithm, we illustrate the 

Fig. 3 Table of the reported impacts during past droughts in Arizona for each level of drought on the 
US Drought Monitor, https:// droug htmon itor. unl. edu/ About/ Whati stheU SDM. aspx; (Source(s): National 
Drought Mitigation Center (NDMC), National Oceanic and Atmospheric Administration (NOAA), United States 
Department of Agriculture (USDA))

https://droughtmonitor.unl.edu/About/WhatistheUSDM.aspx
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fractal complexity of drought severity. Our findings suggest that fractal geometry can 
serve as a mathematical framework for the analysis and characterization of drought 
severity at different levels, offering a computational tool for comparing the complex-
ity of each class of drought severity, ultimately aiding in predicting future drought 
occurrences.

2  Materials, methods, and results
2.1  Data

Here, data has been taken using ”Drought Monitor” from all US Drought Monitor cate-
gories for each week of the selected time period (January 2000 to Nov 2021) and location 
(contiguous USA), see Figs. 4 and 5. The US Drought Monitor which started from 1999, 
is a partnership between the National Drought Mitigation Center (NDMC) at the Uni-
versity of Nebraska-Lincoln, the United States Department of Agriculture (USDA), and 
the National Oceanic and Atmospheric Administration (NOAA). Each Thursday, the US 
Drought Monitor (USDM) will be updated to demonstrate the location and intensity of 
drought across the country. Using the experts’ assessments, drought categories display 
conditions related to dryness and drought such as observations of how much water is 
available in streams, lakes, and soils compared to usual time of year (Source(s): National 
Drought Mitigation Center (NDMC), National Oceanic and Atmospheric Administra-
tion (NOAA), United States Department of Agriculture (USDA)) [52].

Fig. 4 Continental US (CONUS) Percent Area in US Drought Monitor Categories database (2000–present), 
the drought status of areas represented by points; Source(s): National Drought Mitigation Center (NDMC), the 
US Department of Agriculture (USDA), and the National Oceanic and Atmospheric Administration (NOAA), 
https:// droug htmon itor. unl. edu/ DmData/ TimeS eries. aspx

https://droughtmonitor.unl.edu/DmData/TimeSeries.aspx
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2.2  Time–frequency analysis and continuous wavelet transform (CWT)

To represent non-stationary time-series databases, continuous wavelet transform 
(CWT) provides a clear visualization platform by computing a linear time–frequency 
called scalogram which breaks the dataset into scales by preserving time shifts and time 
scales. Therefore, when we are working with time-series data in different frequency 
ranges, the wavelet transform facilitates extracting useful information from the time 
intervals between consecutive waves of time series and makes analysis of data easier [53]. 
The continuous wavelet transform (CWT) of a dataset h(t) is given by (Mallat, 1998) [53]

where s is the scale, u is the displacement, � is the mother wavelet used, and ∗ means the 
complex conjugate. The CWT is therefore a convolution of the data with scaled version 
of the mother wavelet. Of course, the time coordinate t in Eq. (2.1) could equally well be 
the spatial coordinate x if profile data were being analyzed.

There is a propose a new classification method called wavelet transform-based smooth 
ordering (WTSO) which uses the WTSO wavelet transform to reduce the high dimen-
sionality, the computational cost, and also perform classification [54]. In [55], the 
authors introduced a framework which performs better in downsampling balance and 
signal compression. Their wavelet decomposition method has application in application 
on synthetic and real-world graph. Another wavelet called Chebyshev wavelet has been 
used in fractional calculus and fractal geometry [56]. Guariglia et al. further developed 
mother wavelet in Taylor series using the differential properties of Chebyshev wavelets. 
Mallat et al. offered the wavelet representation as an orthogonal multiresolution repre-
sentation which is defined between the spatial and Fourier domains [57]. In [58], the 
fractional derivative of the Gabor–Morlet wavelet has been used to obtain a charac-
terization of the complex fractional derivative through the distribution theory. Sparse 

(2.1)CWT(u, s) =
∞

−∞

h(t)
1

|s|0.5
�∗ t − u

s
dt

Fig. 5 Histogram of Continental US (CONUS) Percent Area in US Drought Monitor Categories database 
(2000–present). The histogram uses five classifications: abnormally dry (D0), showing areas that may be going 
into or are coming out of drought, and four levels of drought: moderate (D1), severe (D2), extreme (D3) and 
exceptional (D4); Source(s): National Drought Mitigation Center (NDMC), the US Department of Agriculture 
(USDA), and the National Oceanic and Atmospheric Administration (NOAA)
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representation by frames has shown promising results in signal analysis via a concise 
approach through practical numerical experiments [59].

2.3  Vibration frequency analysis using power spectral densities (PSD)

Discrete Fourier transform (DFT) or fast Fourier transform (FFT) is one of the most 
frequently used vibration frequency analysis algorithms in frequency analysis and com-
puting Fourier transform. This method works very well when we have a finite number 
of dominant frequency components; however, it fails when our data includes random 
vibrations. To solve this problem, one may apply power spectral densities (PSD) tech-
nique which is perfect to analyze the signal vibration. The spectral densities (PSD) 
acts by multiplying each frequency bin of FFT to its complex conjugate to derive the 
real spectrum, and next, it normalizes the results to frequency bin width. Because the 
drought monitor database displays nonlinearity and has non-stationary structure, the 
welch (PSD) method with overlapped segmentation, which is an averaging estimator 
technique, has been applied to study the complex fluctuations in drought time-series 
structures.

2.4  Multi‑fractal analysis and discrete wavelet transform (DWT)

There are different types of phenomena with scaling law behaviors which can be com-
pletely characterized using fractal theory. However, there exist some other processes 
which cannot be fully explained using fractal theory tools because they follow com-
plex scaling behaviors of many irregular objects. For this group of phenomena, we may 
need to perform multi-fractal analysis which gives a spectrum of singularity exponents 
to describe the complex scaling behaviors. In general, fractal dimension determines the 
complexity of a fractal object by measuring the changes of coverings relative to the scal-
ing factor. It also specifies the space-filling capacity of a fractal object with respect to its 
scaling properties in the space. The relationship between scaling and covering is often 
hard to be characterized. The variation in the number of coverings, N (ǫ) , with respect to 
the scaling factor ǫ , can be written as

where D is the fractal dimension. Relation (2.2) is called scaling law that has been used 
to demonstrate the size distribution of many objects in nature. The box-counting for-
mula which has been widely applied to approximate the fractal dimension of an irregular 
object is defined as

However, this mono-fractal dimension is not able to fully characterize complex scal-
ing behaviors of many irregular objects in the real world. That is why to study irregular 
objects like ECG signals one may need to apply the multi-fractal algorithm. The multi-
fractal analysis used a spectrum of singularity exponents to provide a detailed and local 
description of complex scaling behaviors. In order to quantify local densities of the frac-
tal set, we approximate the mass probability using the following formula

(2.2)N (ǫ) ∝ ǫ−D

(2.3)DB = lim
a→0

ln(N (a))

ln(1/a)



Page 9 of 18Azizi and Azizi  EURASIP Journal on Advances in Signal Processing          (2024) 2024:3  

where Ni(a) is the number of mass in the ith subset of measure a and N is the total mass 
of the set. When we scale the mass probability Pi(a) with measure a of a multi-fractal 
set, it also demonstrates the power-law behavior:

where αi is the singularity exponent characterizing the local scaling in the ith subset. The 
multi-fractal spectrum f (α) provides a statistical distribution of singularity exponents 
αi . In general, f (α) may be estimated using the Legendre transformation

where q is the moment and τ (q) is the mass exponent of the qth order moment. In addi-
tion, the multi-fractal measures may be specified by scaling of qth moments of Pi(a) as

 where Dq =
τ (q)

(q − 1)
 is the generalized fractal dimension. For q = 0 , Eq. (2.4) becomes

which is similar to formula (2.2).
To approximate the multi-fractal spectrum, wavelet analysis has been used exten-

sively with promising results for noisy time-series data [60–65]. This method utilizes 
discrete wavelet transform (DWT) technique which is robust enough to character-
ize the distribution of scaling exponents and provides a good approximation of the 
changes in regularity of data. The wavelet leader multi-fractal (WLM) analysis corre-
sponds to the dimension of fractal sets to Holder exponent H(τ ) to quantify the spec-
trum of singularity of the point-wise regular function F [64]. The Holder exponent of 
a fractal process F(τ ) is defined as follows:

Definition 2.1 [65] A fractal process F(τ ) satisfies a Holder condition, when there 
exist H(τ ) > 0 , such that

We can find H(τ ) for constant F from the coarse Holder exponents as

The following sets have been introduced to discover the geometry of time-series 
data

(2.4)Pi(a) =
Ni(a)

N

(2.5)Pi(a) ∝ aαi

(2.6)f (α) = q α − τ (q)

(2.7)α(q) =
d τ (q)

d q

(2.8)
N (a)
∑

i=1

P
q(a)
i ∝ aτ(q) = a(q−1)Dq

(2.9)N (a) ∝ a−D0

(2.10)|F(τ1)− F(τ2)| ≃ |τ1 − τ2|
H(τ )

(2.11)hξ (τ ) =
1

log ξ
log sup

|τ1−τ2|<ξ

|F(τ1)− F(τ2)|
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With varying d, these sets describe the local regularity of data. Next, we define the map

as the multi-fractal spectrum of F which is a compact form of the singularity structure 
of the fractal process [65]. To describe the complexity of time-series data in a global set-
ting, we may need to count the intervals over which the fractal process F evolves with 
Holder exponent H(τ ) and it provides an estimation of dim(E [d]) . Then, we introduce 
the grain exponent which is a discrete approximation to hξ (τ ) [65]:

Thus, the grain multi-fractal spectrum has the following form [66–69]

where

2.5  Higuchi fractal dimension algorithm

Many different methods have been developed to measure the self-similarity of a frac-
tal process. In fractal geometry, the Minkowski dimension or box-counting dimension 
is one of the most common used techniques to approximate the fractal dimension of 
a fractal set in any metric space [70]. However, this method cannot catch the sudden 
changes happen in the irregular time-series datasets [71]. To explore the complexity of 
scale-free time-series data, a variety of different nonlinear techniques such as Higuchi 
algorithm, power spectrum analysis, and Katz algorithm have been highlighted in dif-
ferent areas [72–77]. To approximate the complexity index of Drought Monitor Catego-
ries database, we utilize the Higuchi Algorithm [72]. We start with a finite time series 
Y1, Y2, Y3, . . . ,YN . Then, we build k new time series Y k

m of the form

where A = (N −m)/k . For each time interval k and the initial time m such that 
m = 1, 2, . . . , k , we calculate the length of Y k

m using

where R = (N − 1)/[A]k is the curve length normalization factor. Then, we estimate the 
mean of Lkm for m = 1, 2, . . . , k to find the average of curve length for each k. After find-
ing the average values for k = 1, . . . , kmax , we plot log(Lkm) versus log(1/k) for different 
time interval k. At the end, we calculate the slope of each regressed line. To find the 

(2.12)E
[d]

h = {τ : H(τ ) = d}

(2.13)d  → dim(E [d])

(2.14)h
(n)
k := −

1

n
log2 sup{|F(η)− F(τ )| : (k − 1) 2−n ≤ η ≤ τ ≤ (k + 2) 2−n}

(2.15)F (d) = lim
ξ→0

lim
n→∞

log N
n(d, ξ)

n log 2

(2.16)N
n(d, ξ) = #{k : |h

(n)
k − d| < ξ}

(2.17)Ym, Ym+k , Ym+2k , . . . ,Y[m+Ak]

(2.18)Lkm =

∑[A]
i=1 |Ym+i k − Ym+(i−1)k |

k
R
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slope, we use the least squares approximation technique for an optimal value of time 
interval k = 500 when there is no change in fractal dimension after this value.

3  Discussion of results
Scalogram visualizes the dataset which is a function of time and frequency, by taking 
several steps: At first, it splits the data into overlapping segments, then computes the 
absolute value of the continuous wavelet transform coefficients for each segment, and 
finally plots it. We have demonstrated the continuous wavelet transform (CWT) plots 
of all drought categories database in Figs. 6, 7, and 8.

Fig. 6 Continuous wavelet transform (CWT) of Drought Monitor Categories database (2000–present) in 
time–wavelength space

Fig. 7 Time–frequency representations of Drought Monitor Categories database (2000–present) using 
continuous wavelet transform (CWT) in two-dimensional time–frequency space
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Here, we can see the nonlinear features of the time-series data are encoded in the fre-
quency domain of the vibrations.

To find whether for various statistical moments, power-law scaling behavior gov-
erns on the structure of the drought time-series data at different scales, we compute 
the power spectral density of each drought category time-series data using welch 
(PSD) technique, and then, we use least square method to fit linear regression to 
the logarithm of power spectral density results. In Fig. 9, we can see the fitted least 
squares approximation to the logarithm of power spectral density of different drought 
categories. In fractal processes, there exists a scaling relationship between power and 

Fig. 8 Time–frequency representations of Drought Monitor Categories database (2000–present) using 
continuous wavelet transform (CWT) in three-dimensional time–frequency–magnitude space

Fig. 9 Fitted least squares approximation to the logarithm of power spectral density of Drought Monitor 
Categories database (2000–present) obtained by wavelet techniques
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frequency f in the spectral domain. These graphical representations in Fig.  9 reveal 
the fractal processes by a linear, negative slope of fitted least square lines, which 
means that the series cannot be generated by one or a finite set of subsystems, but 
for these processes different components act at different time scales. The results of 
power spectral density revealed the presence of long-range self-similar correlations 
extending over steps in a scale-free (fractal) power-law fashion. However, power spec-
tral density fails to classify these five drought categories, and it may require to test 
this method with more databases.

Scaling exponent graphs are useful tools to demonstrate whether self-similar pro-
cess is mono-fractal or multi-fractal. We also plot the scaling exponents of Drought 
Monitor Categories (2000–present) in Fig. 10. The nonlinear exponents for these sig-
nals may exhibit the multi-fractal structure of them; however, we need to apply multi-
fractal analysis to check if this is a confirmed conclusion.

However, scaling exponent of Drought Monitor Categories does not give enough 
information to classify different drought categories for this limited database.

From multi-fractal analysis results (see Fig.  11), we can easily see that we have a 
wide range of exponents for extreme drought D4 , which is a sign of multi-fractal 
structure of this drought level. This multi-fractal time-series data needs to be indexed 
by different exponents as we decompose it into different subsets and also requires 
much more exponents to characterize its scaling properties. In addition, we can find 
a clear loss of multi-fractality for abnormally dry to extreme drought D0 − D3 , which 
means they are homogeneous and mono-fractal since their spectrum displays a nar-
row width of scaling exponent. Using multi-fractal analysis of drought time-series 
data, we can explore when moderate to extreme drought ( D1 or D3 ) and exceptional 
drought ( D4 ) are present. Although multi-fractal analysis could well separate moder-
ate to extreme drought from extreme drought and we could monitor the complexity 
of each drought category dataset in terms of mono-fractal and multi-fractality, these 
results do not give us a clear framework to differentiate D0 , D1 , D2 , and D3 from each 
other, and we need to find other tools and techniques to successfully classify different 
drought categories.

Fig. 10 Scaling exponent of power spectral density for Drought Monitor Categories database (2000–present)
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We have approximated the fractal dimension of Drought Monitor Categories data-
base and plotted their regression models for each time series in Fig. 12.

From fractal dimension results in Fig. 12, we can compare the fractal dimension of 
different drought levels as

Although fractal dimension using the Higuchi algorithm is a good index for compar-
ing the self-similarity and power-law structures of different drought categories, it fails 
to separate these five groups of datasets, and also, we need to try different drought data-
bases to find a threshold for classification of different levels of drought.

(3.1)FDD4 < FDD2 < FDD1 < FDD3 < FDD0

Fig. 11 The multi-fractal spectrum analysis of Drought Monitor Categories database (2000–present) shows 
the occurrence of multi-fractality with a broad range of exponents in data structure of D4 and presence of 
mono-fractal behavior with a narrow range of exponent for D0 − D3

Fig. 12 Plots of log(Lkm) versus log(k) for time interval k = 500 , the logarithmic scale and the corresponding 
slope of fitted regression line (the Higuchi fractal dimension) for Drought Monitor Categories database 
(2000–present)
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4  Conclusion
Drought, often perceived as a gradual and inconspicuous climatic phenomenon, has his-
torically been underestimated in terms of its environmental and economic ramifications. 
However, once its profound impacts on the environment and the economy are recog-
nized, it becomes evident that drought is as significant as fast-moving natural disasters 
like tornadoes and hurricanes. Therefore, efforts to comprehend and predict drought are 
of great importance and should be supported by relevant organizations.

In the USA, the National Integrated Drought Information System (NIDIS), a multi-
agency partnership, is dedicated to enhancing drought monitoring, prediction, risk 
management, and planning at the national level. Given the substantial consequences of 
drought on agriculture, water supply, energy production, public health, and wildlife, our 
research aimed to identify analytical and computational techniques capable of classify-
ing different drought severity levels using data from the US Drought Monitor database. 
Since this database displays irregular data structures, we opted for nonlinear techniques, 
such as vibration analysis and wavelet methods, specifically designed for this type of 
data. Our objective was to determine whether these techniques could effectively classify 
drought levels, ranging from moderate drought (D1) to exceptional drought (D4).

Our time–frequency analysis method, the continuous wavelet transform (CWT), suc-
cessfully visualized the nonlinear structure of five distinct drought severity levels in the 
frequency domain of data oscillation. Utilizing the well-established vibration analysis 
techniques of power-law exponent and power spectral density, we uncovered power-
law and self-similarity behaviors in the structure of the drought database. This discovery 
prompted us to proceed with fractal geometry techniques to further analyze the com-
plexity of the various drought levels.

The nonlinear scaling exponents of the drought database suggested the presence of 
multi-fractality. Consequently, we conducted multi-fractal analysis using the discrete 
wavelet transform (DWT), a reputable method in time-series data analysis. The results 
showed a broad range of scaling exponents for exceptional drought (D4) and a narrower 
range for abnormally dry (D0) to severe drought (D3). This effectively differentiated 
the mono-fractal dynamics of these levels from the multi-fractal nature of exceptional 
drought (D4).

As a result, the wavelet leader multi-fractal (WLM) analysis can serve as a classi-
fier method for distinguishing exceptional drought (D4) from other levels. However, it 
fails to differentiate between moderate drought (D1), severe drought (D2), and extreme 
drought (D3). To achieve a comprehensive understanding of complexity in drought time-
series data, we conducted a fractal dimension analysis using the Higuchi algorithm, an 
appropriate technique for determining the fractal dimension of irregular, scale-free data-
bases. The Higuchi fractal dimension revealed that abnormally dry (D0) had the highest 
fractal dimension, while exceptional drought (D4) had the lowest. Although it helped 
compare the self-similarity of different drought levels, this complexity index did not pro-
vide clear differentiation between the groups. Further analysis and effort are required to 
establish a specific threshold at which the fractal dimension can be considered a classifi-
cation tool in such studies.

While the proposed algorithms have shown promising performance in various litera-
ture and evidence, a significant limitation lies in the limited amount of data available 
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from the existing online database. Moreover, understanding the mechanisms behind 
the long-range correlations in the complex fluctuations of drought data remains a chal-
lenge. Developing an appropriate mathematical model, whether deterministic or sto-
chastic, to describe the complex dynamics of drought time-series data is essential. This 
endeavor calls for collaborative research between experimental and theoretical scientists 
to uncover effective strategies for forecasting drought and mitigating its impacts on the 
environment, wildlife, and the economy.
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