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Abstract 

Object detection holds a crucial role in medical diagnostics. Tasks like organ segmenta-
tion and malignancy diagnosis typically necessitate preliminary localization of corre-
sponding anatomical structures. Precise positioning ensures that only pertinent regions 
require processing, leading to a potential reduction in computational and storage 
demands. Conventional image detection approaches necessitate numerous candidate 
boxes, resulting in redundant computations. Developing techniques capable of accu-
rately detecting medical image objects without reliance on candidate boxes holds 
substantial practical significance. This paper introduces a 2D method for detecting 
medical image objects, which leverages multi-agent deep Q-network reinforcement 
learning and a multi-scale image representation. The method constructs a collabora-
tive environment for multiple agents. These agents individually govern the upper-right 
corner and lower-left corner positions of the object detection frame, progressively 
converging toward the actual endpoint through iterative interactions. To expedite 
the detection process, a multi-scale image representation technique is employed. This 
method segments the process into three scales. Initially, within the coarse-scale space, 
the agent approximates the region containing the true endpoint, subsequently execut-
ing oscillatory movements. Progressively, it refines its approach within the fine-scale 
space, advancing toward the genuine endpoint with smaller iterative steps. The detec-
tion results demonstrate that collaborative detection among agents yields a 2.45% 
higher intersection over union compared to non-collaborative detection. Agents 
exhibit varying step sizes and fields of view in different scale spaces, leading to a reduc-
tion in detection time by 0.12 s compared to single-scale comparison. Experimental 
outcomes demonstrate the superiority of the medical image target detection method 
proposed in this study over prevailing mainstream detection algorithms.
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1 Introduction
In the context of advancing science and technology, the pace of information transmis-
sion is rapidly accelerating. In contrast to text, images possess the capability to convey 
a more vibrant array of information. Image-based data has transcended the confines 
of text, assuming an indispensable role in the realm of information dissemination-an 
aspect of utmost significance. Through the analysis of specific images, researchers can 
extract precise information, thereby furnishing corroborative substantiation for subse-
quent endeavors.

Image recognition has emerged as a highly prominent research avenue within the 
realms of computer vision and digital image processing in recent years. This field has 
captivated numerous scholars, inciting them to engage in its exploration. Concurrently, 
target detection technology has found widespread applications across various domains 
of daily life, such as autonomous road navigation and epidemic-induced mask recog-
nition. As a foundational task within computer vision, image recognition underpins a 
spectrum of other vision-centric objectives, including instance segmentation [1], image 
interpretation [2], and scene parsing [3]. By efficiently processing image data through 
computer algorithms, the dual objectives of accuracy and resource conservation are 
achieved. The ramifications of this endeavor are of substantial practical import, thus ele-
vating image detection technology to the focal point of scientific inquiry. Images, being 
of diverse typologies, can be broadly categorized into medical images employed for sup-
plementary medical diagnoses, remote sensing images for land resource assessment, and 
natural images capturing landscapes and individuals. Among these, medical images hold 
profound relevance to our daily existence. Medical imaging serves as a pivotal tool in 
contemporary medical research, constituting not only an integral facet of medical pro-
gress but also a highly promising avenue within digital imaging technology. Propelled by 
advancements in medical imaging equipment and the rapid evolution of image process-
ing techniques, the automated computer-based handling of medical images has garnered 
escalating attention.

The significance of medical images in individuals’ lives has been steadily on the rise [4]. 
Through the utilization of image processing technology, the analysis of medical image 
data facilitates lesion area detection and instance segmentation within medical images. 
Medical images assume a paramount role for all, vividly depicting each individual’s phys-
iological condition. Regardless of the scale of an issue, whether minor or severe, medi-
cal images serve as a conduit for relaying information. The scrutiny of medical image 
data yields a wealth of crucial insights. Within medical establishments, the detection of 
medical image targets expedites prompt identification of patient issues, enabling the for-
mulation of tailored treatment strategies, a role of irreplaceable significance in disease 
diagnosis. On a personal level, the acquisition of medical images during routine physical 
examinations, coupled with individual medical image reports, empowers individuals to 
gain foundational insights into their own physical well-being. Within the realm of medi-
cal image research, precise localization of target regions augments a multitude of medi-
cal image analysis applications. Accurate estimation of target region location and extent 
enriches subsequent tasks, such as organ segmentation [5, 6], lesion detection [7], and 
image registration [8], by enabling focus on regions of interest and thereby enhancing 
algorithm performance. In the context of image segmentation tasks, the pre-detection of 
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object regions not only elevates segmentation accuracy but also curtails computational 
demands. Medicine harbors a range of prevalent illnesses; one notable example is pros-
tate cancer, afflicting a considerable portion of male patients and inflicting significant 
suffering. Radiotherapy stands as the foremost treatment modality for prostate cancer, 
underscoring the pivotal role of medical image analysis in clinical management. How-
ever, the prostate organ’s location, dimensions, and contours can exhibit substantial vari-
ability across patients. Precisely identifying the prostate organ within medical images 
poses a formidable challenge, even for seasoned medical practitioners who require 
time to accurately pinpoint its location. Consequently, the development of an efficient 
method for object detection in medical images assumes utmost necessity.

Ever since the advent of deep learning, both domestic and international scholars have 
converged their efforts on this field. Krizhevsky et al. [9] introduced the AlexNet algo-
rithm on the ImageNet dataset in 2012, securing the foremost position across several 
competition metrics during that period. The progression from AlexNet to ResNet [10], 
and subsequently to DenseNet [11], underscores an unceasing trajectory of innovation 
in network architecture and hierarchy. Deep learning has transcended its nascent stages, 
evolving from rudimentary stacked networks to the inception of diverse high-perfor-
mance feature extraction modules. Presently, the momentum in deep learning research 
is intensifying. Domains such as autonomous driving, intelligent recommendations, and 
unmanned delivery are intricately intertwined with the advancement of deep learning. 
Remarkable strides have been realized in these domains through the application of deep 
learning techniques.

Within the realm of image processing, deep learning models exhibit the capability to 
autonomously extract features, concurrently enhancing the precision of image process-
ing tasks. This advancement significantly mitigates the manual workload associated with 
feature extraction, yielding notable reductions in costs. With the augmentation of hard-
ware capabilities and the relentless expansion of available data, the landscape of deep 
learning research in image processing has proliferated expansively. Both domestic and 
international researchers have contributed distinctive and profound perspectives to the 
domain of image detection.

In response to the ongoing evolution of reinforcement learning, a synergistic integra-
tion of reinforcement learning and deep learning has emerged, leading to significant 
advancements in diverse domains like gaming, recommendations, and autonomous driv-
ing. Capitalizing on the substantial potential showcased by deep reinforcement learning, 
several scholars have extended its application to the domain of image processing [12–
15]. Within medical image tasks, reinforcement learning is often harnessed to formulate 
image processing challenges as Markov decision-making scenarios. In the realm of deep 
reinforcement learning-based target detection, the designated agent’s vicinity entails 
image and contextual information encapsulated within a specified area of interest. This 
field of view serves as both the agent’s input into the network and a pivotal determi-
nant of the ultimate detection accuracy. Over successive interactions between the agent 
and its environment, the anticipated outcome incrementally materializes. Noteworthy 
contributions, such as those by Navarro et al. [16], underscore the efficacy of deep rein-
forcement learning in target detection tasks. These models acquire strategies for object 
detection through sequential manipulations of bounding boxes, resulting in performance 
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gains. This pursuit of an optimal strategy can be conceptualized as an agent employing a 
reinforcement learning algorithm to attain maximum rewards through a search process. 
Within this purview, methods generally yield commendable performance with a rela-
tively small number of iterations. For instance, Stember et al. [17] employed two distinct 
3D convolutional neural networks for target detection: one navigates coordinate move-
ments, while the other predicts detection frame dimensions, albeit at a higher compu-
tational resource cost. Maicas et al. [18] focused on thymic lesion area detection using 
deep reinforcement learning, while Kong et al. [19] introduced cooperative communica-
tion across Q-networks of different agents, harnessing contextual information for joint 
detection. Wang et al. [20], on the other hand, proposed an augmented deep neural net-
work for target detection tasks. Grounded in the policy gradient reinforcement learn-
ing approach, this method explores various regions within an image, thereby extracting 
target information during the exploration process.

In the past, most of the detection schemes in medical images were based on machine 
learning. In recent years, with the popularity of neural networks, the method of object 
detection through deep learning has become the mainstream. The technology using 
deep learning requires a large amount of data annotated by experts. A large amount of 
annotated data is relatively easy to implement in other fields, but in the medical field, 
data is very precious. On the one hand, the privacy of patients needs to be considered, 
and the problem of data theft needs to be considered. On the other hand, due to the 
difficulty of medical image labeling, experienced doctors are required to label, and the 
training model has high requirements for labeling accuracy. The idea of reinforcement 
learning can solve some problems. Once the agent interacts with the environment, it 
will generate a set of data (s, a, s′ , r) that can be used for training. It can generate a large 
number of data that can be used on limited medical images. The training data does not 
require too much labeling information. It only needs to design a reasonable Markov 
decision-making process in the algorithm, and then the idea of Markov decision-making 
can be effectively used to solve the problem.

In practical application, the same organ may have varying requirements for the detec-
tion frames in terms of size, and an excessive number of candidate frames can also lead 
to increased consumption of computational resources. In recent years, object detection 
methods without candidate boxes have emerged [21–25]. In this study, based on the 
concept of multi-agent deep Q-network (DQN) [26] reinforcement learning, an active 
exploration method for image detection without candidate frames is proposed. This 
method is designed to automatically detect target regions in medical images. The model 
doesn’t require candidate frames; instead, it employs two intelligent agents to dynami-
cally detect the coordinates of the lower-left and upper-right corners of the target frame. 
Through the collaborative efforts of these agents, the target area of the medical image is 
detected within just a few dozen steps, without the occurrence of redundant candidate 
boxes. Importantly, this method doesn’t necessitate a substantial amount of annotated 
data during experimentation. The intelligent agents generate a substantial volume of 
sample data for network updates through continuous interaction with the environment. 
This approach effectively addresses the limitations of scarce and valuable medical data.

In response to the intricate challenges encountered in current medical image tar-
get detection, this paper addresses these issues by delving into the realm of deep 
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reinforcement learning. Specifically, the research delves into the domain of organ detec-
tion in medical images and introduces a method tailored for precise medical image tar-
get detection. This methodology establishes an intricate environment that facilitates 
multi-agent collaboration and communication. Within this framework, two agents are 
assigned distinct roles—managing the upper-right corner and lower-left corner posi-
tions of the object detection frame, progressively converging upon the actual endpoint 
through multiple iterative interactions. In order to expedite the detection process, a 
multi-scale image representation technique is additionally integrated. This strategy par-
titions the detection procedure into three discernible scales. In the coarser scale space, 
the agent initially approximates the region encompassing the actual endpoint. Subse-
quently, oscillatory movements are employed before gradually zeroing in on the genuine 
endpoint through more refined steps within the finer scale space.

2  Methods
2.1  2D medical image target detection method based on multi‑agent DQN

This section presents an adaptive detection method based on multi-agent collaborative 
active exploration, which effectively addresses the limitations of preset candidate boxes 
in deep learning. It has been validated in the detection tasks of 2D medical images. This 
method ingeniously combines the ideas of deep learning and reinforcement learning, 
utilizing two agents to detect the coordinates of the lower-left and upper-right vertices 
of the real bounding box of the target area in 2D medical image. The position and shape 
of the detection box are delineated by two points on the diagonal, eliminating the need 
for candidate box design. Through the sharing of convolutional layer parameters, the 
two agents achieve implicit communication, enabling mutual collaboration and infor-
mation exchange between agents. This ensures the stability of the environment and the 
convergence of the network.

The procedural framework of the 2D medical image detection method utilizing the 
multi-agent reinforcement learning algorithm proposed in this paper is visually depicted 
in Fig.  1. The two agents share identical convolutional layer network architectures 
and parameters. The network’s input comprises a continuous concatenation of four 

Fig. 1 The schematic diagram depicting the image detection process using a multi-agent DQN
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consecutive agent state frames, while the output corresponds to the Q-values aligned 
with the established action set of up, down, left, and right movements. By virtue of inter-
actions between the agent and its environment, experiential data represented as snt  , ant  , 
rnt  , snt+1 (where ‘n’ signifies the nth agent) is accrued. The current network’s Q-value pre-
diction, combined with the target network’s Q-value prediction, is factored in alongside 
the reward ‘r’ for gradient update computation. The pseudocode outlining the DQN 
algorithm for this multi-agent context is outlined in Fig. 2.

The main idea of this section is deep reinforcement learning. Reinforcement learn-
ing truly captured the attention of scholars in 2015 due to the ingenious fusion of deep 
learning and reinforcement learning [26]. Prior to this, Q-learning was the predomi-
nant algorithm in reinforcement learning [27], where the mapping relationship between 

Fig. 2 The pseudocode representation of the multi-agent DQN algorithm
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states and actions is the primary content recorded in the Q-table. However, due to the 
limited capacity of the Q-table and the immense volume and complexity of today’s data, 
the Q-table is no longer efficient in accommodating various scenarios. The concept of 
using neural networks to approximate the Q-table was introduced, and the inception of 
DQN revolutionized the entire field of reinforcement learning [26]. Addressing the issue 
that experience data generated by reinforcement learning is serialized and not conducive 
to network learning, this algorithm introduced the idea of experience replay, enabling 
independent distribution of data. This algorithm also introduced the notion of a target 
network corresponding to the current network. The values of the target network are not 
updated in real time but are periodically copied from the current network, enhancing 
the stability of the algorithm to some extent.

This paper presents a 2D medical image object detection method grounded in multi-
agent deep reinforcement learning. Distinguishing itself from single-agent detection 
strategies, this approach adopts a unique methodology that constructs a cooperative 
communication framework for multi-agent interaction. This is achieved by permitting 
the exchange of convolutional layer parameters among all agents. This design is strategi-
cally devised to balance environmental stability and algorithmic convergence. Given that 
each agent is tasked with independently formulating action strategies, the method incor-
porates two distinct and independent fully connected layers—each agent possessing its 
own dedicated fully connected layer. The principal functional modules are delineated in 
“Network structure design based on multi-agent collaborative environment” section.

In reinforcement learning, the design of the Markov decision process is a key com-
ponent in problem-solving. For the purpose of image detection within the 2D medical 
environment, we has specifically crafted a Markov decision process, which will be elabo-
rated upon in “Markov decision process design” section. Furthermore, a coarse-to-fine 
multi-scale image representation method is proposed in this section, which enhances 
the speed of medical image detection while ensuring the accuracy of 2D medical image 
target region detection. Through the multi-scale image representation approach, the two 
agents within the method can roughly detect the area where the target point is located 
in coarser scale spaces, and then perform precise localization in the finest scale. This 
approach accelerates the entire detection process to some extent. In “Multi-scale image 
representation design” section will provide detailed explanations.

2.2  Network structure design based on multi‑agent collaborative environment

In single-agent reinforcement learning contexts, the model solely learns from experi-
ences generated by the actions of the individual agent. However, in the realm of multi-
agent reinforcement learning models, learning derives from experiences originating 
from the actions of multiple agents within a shared environment. In the framework 
of the two-agent reinforcement learning (TARL) model introduced in this paper, two 
agents interact with the environment. For each agent ( n = 0 or n = 1 ) in state snt  and 
taking action ant  , the environment elicits a reward signal denoted as rnt  . The collabora-
tive dynamic between these two agents is depicted in Fig.  3. Notably, when in state 0 
and an action is taken, the ensuing state doesn’t consistently yield the same outcome 
due to the influence of Agent 1’s interactions with the environment. This manifestation 
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of environmental instability contradicts the Markovian assumption underpinning rein-
forcement learning scenarios, which rely on the principles of Markov decision processes.

To resolve this dilemma, scholars have advocated for the establishment of inter-agent 
communication. Such communication entails the sharing of environmental information 
by any given agent. In the context of multiple agents, communication is often achieved 
through the implementation of a communication protocol [28]. Moreover, communi-
cation among agents can be implicitly accomplished by sharing information within the 
parameter space [29, 30]. The image detection method articulated in this paper relies 
on the implicit communication paradigm among agents, and augments the network 
architecture to facilitate inter-agent communication. The collaborative dynamic among 
agents centers around the minimization of collective losses, a concept expounded upon 
in Fig. 4.

The concept of implicit communication between the two agents is graphically rep-
resented in Fig.  4. In  situations where cooperative communication between agents is 
absent, each individual agent operates through its own distinct deep Q-network, execut-
ing tasks autonomously. Contrasting this, the method designed in this paper forges a 
novel approach by deploying two collaborating agents that share a convolutional neu-
ral network. Inter-agent information interchange is accomplished through the mutual 
sharing of convolutional layer parameters. The network architecture, rooted in ResNet 
18 [10], lays the foundation for an enhanced network model, as depicted in Fig. 5. This 
paper constitutes 17 convolutional layers and is supplemented by 2 fully connected lay-
ers. While the convolutional layer parameters are shared between the two agents, each 

Fig. 3 The interaction between two agents and the environment in a multi-agent setting

Fig. 4 The implicit communication diagram of two agents
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agent possesses an independent fully connected layer. This design choice is attributed to 
the distinct role of the fully connected layer in shaping the final action policy for each 
agent.

The convolutional layer’s role in the network is twofold-it facilitates the learning of 
underlying features while accommodating the concurrent processing of two inputs. 
In contrast, the fully connected layer is adept at capturing advanced features, with the 
retention of target point information. A pivotal outcome of sharing parameters among 
convolutional layers is the reduction in the total number of parameters, streamlin-
ing computations and preserving crucial contextual information. This parameter shar-
ing strategy also enables agents to indirectly communicate their experiences within the 
parameter space.

2.3  Markov decision process design

Reinforcement learning constitutes a dynamic process where an agent assumes the 
role of a decision-maker, continuously interacting with a specific environment to make 
sequential decisions. Prior to constructing the detection method, it is essential to formu-
late a Markov decision process tailored to the task scenario. The design of this Markov 
decision process encompasses four key elements: the state set, action set, reward func-
tion, and conditions for detection termination. 

(1) State Set S: The framework assumes the agent operates within a 2D medical image 
environment. Within the state set S, each state s corresponds to pixels encom-
passed by the detection frame b = [bx1, by1, bx2, by2] . This involves the coordinates 
of the upper-right corner (bx1, by1) and lower-left corner (bx2, by2) of the detection 
frame. To ensure stability within the agent’s detection process, the input state for 
the network is crafted by concatenating the current state with its three nearest 
states across channels.

(2) Action Set A: The section outlines a collection of discrete actions 
A = {a+x , a

−
x , a

+
y , a

−
y } ∈ R4 . In this context, each agent can undertake positive and 

negative movements along the x or y axis, manifesting as four actions: right, left, 
up, and down. These four actions align with the outputs of the previously men-
tioned fully connected layer of the network. The network designed within this 
paper yields a four-dimensional output, corresponding to the four actions outlined 
above. As illustrated in Fig. 6, the blue dot signifies the agent’s position, while the 

Fig. 5 The ResNet 18 network structure diagram
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yellow border delineates the agent’s state. By executing these four distinct actions, 
the agent attains the capability to navigate every position within the environment.

In the proposed multi-agent DQN reinforcement learning approach for medical image 
object detection, the actions of each agent corresponds to the movement of one of the 
four possible directions on the two corner points, influencing the size and position of 
the detection frame and facilitating precise localization of the object.

Here’s a more detailed explanation of how each agent’s action affects the detection 
frame: 

(a) Up and down movements:

• Up movement: When an agent chooses to move up, it shifts the detection frame’s 
upper edge upwards, effectively reducing the frame’s height. This action can be 
seen as focusing on the region higher in the image.

• Down movement: Conversely, when an agent moves down, it shifts the detection 
frame’s lower edge downward, increasing the frame’s height. This action concen-
trates on the region lower in the image.

(b) Left and right movements:

• Left movement: Moving left shifts the left edge of the detection frame to the left, 
decreasing its width. This action can be thought of as focusing on the region to the 
left of the image.

• Right movement: Moving right shifts the right edge of the detection frame to the 
right, increasing its width. This action concentrates on the region to the right of 
the image.

Fig. 6 An example of actions taken by agents in a multi-agent setting
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(c) Combination of movements:
• The agents can also perform combinations of these movements in multiple steps. 

For example, an agent can simultaneously move up and left, leading to a diago-
nal shift in the detection frame. This allows for more fine-grained adjustments of 
the frame’s size and position to accurately match the object’s location within the 
medical image. These movements provide a flexible mechanism for dynamically 
sizing and positioning the detection frame, ultimately leading to precise and effi-
cient object localization. The collaborative nature of the multi-agent system ensures 
that both agents work together to gradually refine the detection frame’s position 
and dimensions until it accurately encompasses the object. This dynamic approach 
eliminates the need for predefined candidate boxes, resulting in a more efficient 
and precise detection process.

(d) Reward Functions: The formulation of reward functions is a pivotal aspect aimed at 
maximizing cumulative rewards across sequential interactions. Reward functions 
play a pivotal role in motivating agents to perform specific actions as directed by 
the policy, thereby moving in desired directions. Given that this paper’s method 
revolves around detecting target areas based on key points, a comprehensive 
approach to designing reward functions is adopted. To facilitate effective medical 
image target detection, the design considers multiple aspects including the Euclid-
ean distance between the current agent’s represented detection point and the tar-
get point, as well as the centroid points of both the detection frame and the target 
frame. Additionally, variations in the cross-merge ratio are factored in. Three dis-
tinct reward functions are introduced, as depicted in Eq. (1). 

 At time step ‘t’, the Euclidean distance between the current agent’s represented 
detection point and the target point is denoted as ‘ Ot ’. The detection points repre-
sented by both agents form a detection box, with the intersection ratio of the detec-
tion frame and the target frame being ‘ IoUt ’. The Euclidean distance between the 
coordinates of the center point of the detection frame and the center point of the 
target frame is designated as ‘ BOt’.

(e) Detection termination conditions: The proposed method employs distinct termi-
nation conditions for detection during training and testing phases. In the training 
process, if the distance between the detection points represented by the two agents 
and the target point equals or falls below a predefined threshold, the ongoing detec-
tion sequence concludes, resulting in a successful detection. Alternatively, if the 
maximum number of steps has been reached and yet the Euclidean distance value 
between the agent’s detection point and the target point remains above the thresh-
old, the detection is considered unsuccessful. During the testing process, oscillation 
detection serves as the termination criterion. If the agent’s represented coordinate 
point appears in the smallest scale space more than three times, it indicates oscil-
latory behavior during the agent’s detection process. Subsequently, the detection is 
halted, with the current oscillation point serving as the final detection outcome.

(1)
R1 = Ot+1 − Ot

R2 = IoUt+1 − IoUt

R3 = BOt+1 − BOt
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2.4  Multi‑scale image representation design

Inspired by relevant work [12], the method of multi-scale image representation is used 
in this paper to further improve the speed of image detection while ensuring the detec-
tion accuracy of medical image target regions.

The concept of multi-scale image representation encompasses two aspects. Firstly, the 
agent’s step size operates across multiple scales. Within the design, when the two agents 
are in the coarsest scale space (M scale space), their movement step is set to 9 voxels. In 
the M-1 scale space, the agent’s movement step becomes 3 voxels, and in the smallest 
scale space (M-2 scale space), the agent’s movement step is reduced to 1 voxel. Secondly, 
the agent’s field of view extends across multiple scales. This field of view, centered on the 
agent’s current position, is represented by pixels within a specified size area surround-
ing the agent. The formula for visual field transformation across multiple scale spaces is 
given by Eq. (2):

where (xmin, ymin) and (xmax, ymax) represent the coordinates of the two endpoints on 
the diagonal of the agent’s field of view frame, (xloc, yloc) represents the current position 
coordinates of the agent, w and h are hyperparameters, both set to 225, and xs and ys 
represent the scales along the x and y axes. In the three-scale spaces, xs and ys maintain 
consistent values: 3, 2, and 1.

As depicted in Fig.  7, the agent 0 (Agent 0) is the investigation subject. The yellow 
border signifies the agent’s field of view across different scale spaces, while the red dot 

(2)
xmin =xloc −

w ∗ xs

2
, xmax = xloc +

w ∗ xs

2

ymin =yloc −
h ∗ ys

2
, ymax = yloc +

h ∗ ys

2

Fig. 7 Multi-scale oscillation detection diagram
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denotes the target point. The blue dot represents the agent’s current position (current 
detection point). The color of the “Error” label in the lower-left corner serves as an 
indicator-green implies the agent moved closer to the target point after the last action, 
while red signifies a greater distance. If the agent occupies a certain position in a particu-
lar scale space three times, the model concludes that oscillation transpired during the 
agent’s detection process.

Refer to Fig. 8 for visual representations, subgraphs (a) and (b) depict the detection 
process of the two agents across different scale spaces. In the same scale space, the left 
and right panels visualize the detection of agent 0 and agent 1, respectively.

Distinct oscillation detection models are tailored for each scale space level, catering to 
the diverse demands of different scales. The detection process initiates from the coars-
est scale level, denoted as M. Within this level, the agent’s field of view is expansive, 

Fig. 8 Illustration of collaborative detection by two intelligent agents
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facilitating the acquisition of extensive global context information that ensures efficient 
navigation. Concurrently, the agent’s movement step is substantial. Upon the agent’s 
arrival at the target point or when oscillation manifests within the vicinity of the target 
point, it is deduced that the agent has achieved convergence within the current scale 
space. As a result, the scale space transitions to M-1. Continuing the detection process, 
exploration recommences from the convergence point within the preceding scale space. 
Simultaneously, the agent’s field of view is reduced along with a decrease in the step 
size. This adjustment prevents scenarios where a large step size might cause the agent to 
overshoot the target point, enabling more accurate target point localization. This itera-
tive process repeats across subsequent scales. Should oscillations become apparent even 
in the finest scale, the agent’s detection endeavor culminates.

3  Experiments and analysis
3.1  Dataset and evaluation criteria

The experimental phase encompassed a quantitative assessment of the proposed detec-
tion method, conducted across two distinct 2D medical image datasets: the amalga-
mated collection of prostate medical images [31] and the REFUGE fundus dataset [32]. A 
series of experiments were performed, including ablation and comparison analyses. The 
hybrid dataset employed for prostate medical imaging consisted of 3795 slices, amalga-
mated from three distinct prostate MR datasets. Notably, the training dataset comprised 
3371 slices originating from the ISBI2013, PROMISE12, and Emory datasets. For testing 
purposes, 424 slices from the PROMISE12 test dataset were employed. All images were 
meticulously annotated by proficient radiologists, rendering this test set a widely rec-
ognized benchmark extensively employed for evaluating diverse algorithms within the 
medical community. The REFUGE fundus dataset, akin to PROMISE, was sourced from 
an open-access competition dataset, further underpinning its established prominence.

The results presented in “Experiment and analysis” section are the average outcomes 
derived from multiple experiment repetitions. The experiments were conducted with 
diverse training and testing image sets to ensure the robustness of the proposed method. 
Each experiment iteration involved training the model on a distinct dataset and evaluat-
ing its performance on another dataset. This process was repeated more than ten times 
to ensure statistical robustness and account for potential variations in the datasets. The 
choice of the number of repetitions was determined based on considerations of model 
complexity and the desire for reliable and representative results.

As for the choice of using only the prostate images from the PROMISE12 dataset as 
the testing set, there are specific reasons for this decision: 

(1) Focus on specific task: We have designed our method with a particular focus on 
prostate image detection. By concentrating the testing set on prostate images, we 
can better evaluate the method’s effectiveness for this specific task.

(2) Comparison with existing approaches: It is common in research to compare a new 
method’s performance against existing approaches. By using the same testing set 
that previous methods used, we can directly compare their results to those of oth-
ers, providing a basis for assessing the method’s competitiveness.
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(3) Availability of ground truth: The PROMISE12 dataset may provide high-quality 
ground truth annotations for prostate images, which are crucial for training and 
evaluating object detection methods. If this dataset offers comprehensive annota-
tions for the task at hand, it becomes a valuable resource for testing the proposed 
method.

(4) Standardization: Using a standardized testing dataset can make it easier for other 
researchers to replicate the experiments and compare their methods with the pro-
posed one, contributing to the reproducibility of research.

It is not uncommon for research papers to use specific datasets for evaluation, as long as 
the choice is well-justified and aligns with the research objectives.

To assess the experimental outcomes, this study employs three predominant evalua-
tion metrics commonly applied in medical image target detection [33, 34]: the IoU ratio, 
wall distance (WD), and centroid distance (CD) between the detection frame and the 
target frame. 

(1) The formula for calculating the IoU metric is shown as Equation (3): 

 where SA denotes the area of the target frame, SB signifies the area of the detec-
tion frame, SA ∩ SB corresponds to the intersection area of the target frame and the 
detection frame, and SA ∪ SB signifies the union area of the target frame and the 
detection frame.

(2) The average WD signifies the mean absolute distance between the four sides of the 
detection frame and the corresponding sides of the target frame. This metric offers 
a direct assessment of the alignment between the detection frame and the target 
frame in the approach. The calculation formula is presented in Equation (4): 

 where Dup , Ddown , Dpleft , and Dright symbolize the absolute distances of the four 
pairs of bounding boxes: the upper, lower, left, and right sides of the detection 
frame and the target frame, respectively.

(3) CD denotes the centroid distance between the detection frame and the target 
frame, which is the Euclidean distance between the centroid coordinates of the two 
frames, quantifying the disparity in the central region. The calculation formula is 
illustrated in Eq. (5): 

 where (x1, y1) represents the coordinates of the upper-right corner of the target 
frame, while (x2, y2) signifies the coordinates of the lower-left corner of the tar-
get frame. Similarly, (x′

1, y
′
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detection frame, and (x′

2, y
′

2) represents the coordinates of the lower-left corner of 
the detection frame.

3.2  Experimental parameters

All code implementations of the proposed detection method in this paper have been 
successfully executed in Python, and all experiments were conducted using a GPU 
with 11 GB of memory. In the initial 10 epochs, the agent’s exploration rate decreases 
from 1 to 0.1. Additionally, the reward discount factor γ is set to 0.9. During the train-
ing process, for each 2D medical image, in order to augment the sample size, the agent 
can initiate from multiple starting points. Furthermore, to ensure the initial point 
remains within the image boundaries, the positional coordinates for each initial point 
can only be selected within a fixed area at the center of the image. The network out-
puts consist of four values, corresponding to the four actions of the agent. The pro-
posed method employs the ε-Greedy strategy, wherein if the generated random number 
surpasses the exploration rate ε , the action corresponding to the maximum Q-value is 
taken; otherwise, a random action is chosen. Once the agent enters an oscillatory state, 
the scale space diminishes. If the minimum scale space is reached, the detection process 
terminates.

3.3  Result visualization

Throughout the training process, the experiment’s images are evenly partitioned into 
nine sections, with the initial detection points for both agents being selected at the cen-
troid positions of the upper, lower, left, right, and middle sections of the 2D medical 
image. This is illustrated in Fig.  9, subfigure (a). This approach not only enhances the 
training dataset but also mitigates the occurrence of agent initial points situated near 
the image’s boundaries, thus reducing the likelihood of moving out of the image. Dur-
ing testing, as depicted in Fig. 9, subfigure (b), the centroid coordinates of the entire 2D 
medical image serve as the sole initial point for the agent. The visualization of detection 
results across distinct datasets is presented in Fig. 10.

Fig. 9 Agent initial point selection graph: a Training initial point selection illustration, and b Test initial point 
selection illustration
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In Fig. 10, the visual representations are demonstrated for both the prostate dataset 
and the fundus dataset, respectively, where the detected bounding boxes are in close 
proximity to the target bounding boxes. The green bounding boxes depict the ground 
truth bounding boxes, while the red bounding boxes indicate the detected bounding 
boxes. For subfigure (a), showcasing the REFUGE fundus dataset, the smaller optic disk 
area is magnified and displayed. The preliminary assessment of the detection results 
through visual representation suggests that the multi-agent-based 2D medical image tar-
get detection approach utilizing the DQN reinforcement learning algorithm holds prac-
tical significance and feasibility. The method proposed in this paper will receive further 
validation through ablation experiments and comparative analyses leveraging experi-
mental data.

3.4  Ablation experiment

The subsequent ablation experiments were conducted exclusively on the mixed prostate 
dataset. Scale ablation experiments were carried out, comparing across various scales. 
In the single-scale experiment, setting the agent’s step size too large could result in the 
agent crossing the target point during movement. Hence, in this experiment, a step size 
of one pixel was employed, with the entire image serving as the agent’s field of view. The 
comprehensive explanation of the multi-scale design has been previously presented and 
will not be reiterated here. Within the specific experimental process, ablation experi-
ments were also performed across a range of multi-scale scenarios, encompassing two-
scale exploration, three-scale exploration, and four-scale exploration.

The comparative outcomes of both multi-scale and single-scale experiments are out-
lined in Table 1. In the single-scale experiment, the complete 2D medical images were 
adopted as the agent’s field of view. This approach, however, resulted in overly sparse 
input information for the network, thereby adversely impacting the detection perfor-
mance, with an IoU of only 63.15% . Furthermore, the agent’s step size remained fixed 
at one pixel, leading to a relatively slower detection speed. In the two-scale experiment, 
the rapid alteration in the scale space rendered the two-scale exploration methodology 

Fig. 10 Visualization of detection results on different datasets: a REFUGE fundus dataset, and b Prostate 
dataset
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ineffective in capitalizing on contextual information, thus yielding suboptimal detection 
outcomes. Nevertheless, this approach contributed to a certain degree of acceleration in 
the detection process. The performance of the four-scale exploration approach mirrored 
that of the three-scale counterpart, although detection time started to increase due to 
the impact of the shock detection strategy applied in the experiment. As the number of 
scale spaces gradually increased, the agent’s need to undertake oscillation detection in 
each scale space led to a rise in detection time.

Remarkably, medical image detection demanded merely 0.38 s. When juxtaposed with 
several alternative scale image representation techniques, the three-scale image repre-
sentation strategy not only ensured precision in medical image object detection but also 
enhanced the detection speed. Additionally, this study conducted a multi-agent experi-
ment concerning prostate region detection, devoid of collaborative communication. A 
comparison was drawn against multi-agent cooperative detection of the prostate region, 
facilitated by convolutional layer parameter sharing. In the multi-agent non-cooperative 
experiments, a unique depth was constructed for each of the two agents in the Q-net-
work. These agents, respectively, pinpointed the upper-right and lower-left corners of 
the target frame. Notably, these agents did not engage in cooperation or information 
exchange throughout the detection process. Conversely, the experiment involving multi-
agent cooperative communication detection involved two agents collaboratively detect-
ing the upper-right and lower-left corners of the target frame. In tandem with fulfilling 
their individual detection tasks, these agents exchanged information with each other, 
leading to more refined detection outcomes. The parameter sharing approach concur-
rently curtailed computational complexity. For specific experimental outcomes, please 
refer to Table 2.

The results of the experimental comparison between multi-agent cooperation and 
non-cooperation are presented in Table  4. The experimental findings underscored 
the efficacy of multi-agent collaboration in enhancing the accuracy of prostate region 

Table 1 Single-scale and multi-scale ablation experiments

The bold is used to highlight the best results in the comparisons

Scale Average IoU ( %)↑ Wall distance (mm)↓ Center of mass 
distance (mm)↓

Time (s)↓

Single-scale 63.15 11.70±12.35 9.63±8.99 0.50

Two-scale 75.64 6.87±6.53 6.45±6.32 0.41

Three-scale 80.70 4.39 ± 3.50 4.36 ± 4.15 0.38
Four-scale 80.15 4.94±4.76 4.67±5.07 0.43

Table 2 Multi-agent communication ablation experiments

The bold is used to highlight the best results in the comparisons

Average IoU ( %)↑ Wall distance (mm)↓ Center of 
mass distance 
(mm) ↓

Multi-agent 78.25 5.70 ± 6.15 5.16 ± 4.78

Multi-agent + implicit com-
munication

80.70 4.39 ± 3.50 4.36 ± 4.15
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detection. Moreover, as introduced earlier, both DenseNet and ResNet networks were 
subjected to testing and exploration in the course of this experimentation. The ultimate 
outcomes of these explorations are encapsulated in Table 3.

In summary, the comparison of the abovementioned ablation experiments allows us to 
deduce that the novel strategy embraced by the method advocated in this paper has the 
potential to enhance performance in intricate medical settings. This, in turn, can bolster 
the detection accuracy of 2D medical images.

3.5  Comparative experiments with existing methods

In this study, the proposed method is compared with several other mainstream image 
detection methods, including Faster R-CNN [35], SSD300 [36], YOLOv3 [37], DETR 
[38], DDPG [39], and YOLOv4 [40]. To assess the detection accuracy of the method pro-
posed in this paper, not only is the average IoU between the ground truth frame marked 
by experts and the detection frame calculated, but also the wall distance and centroid 
distance between the detection frame and the target frame are computed. Metrics for 
wall distance and centroid distance are presented as mean ± standard deviation. Table 4 
presents the average IoU, wall distance, and centroid distance metrics of different meth-
ods on the prostate dataset, showing that SSD and YOLOv3 have relatively poor detec-
tion performance. The experimental results demonstrate that the proposed method 
performs exceptionally well across multiple indicators, achieving the highest average 
IoU and the smallest error in wall distance and centroid distance.

Analysis of the data in Table 4 leads to the conclusion that the multi-agent DQN rein-
forcement learning detection method proposed in this paper excels in complex medi-
cal image environments, exhibiting superior results in terms of intersection ratio, wall 
distance, and centroid distance indicators. In comparison with other methods, DDPG 

Table 3 Multi-agent communication ablation experiments

The bold is used to highlight the best results in the comparisons

Network backbone Average IoU ( %)↑ Wall distance (mm)↓ Center of 
mass distance 
(mm) ↓

DenseNet [11] 80.46 4.52 ± 3.71 4.44 ± 4.55

ResNet 18 [10] 80.70 4.39 ± 3.50 4.36 ± 4.15

Table 4 Detection results of prostate dataset using different methods

The bold is used to highlight the best results in the comparisons

Methods Average IoU ( %)↑ Wall distance (mm)↓ Center of 
mass distance 
(mm) ↓

Faster R-CNN [35] 80.23 4.63 ± 3.98 4.43 ± 4.86

SSD300 [36] 70 12.24 ± 29.20 14.02 ± 40.86

YOLOv3 [37] 78.34 7.70 ± 21.50 8.95 ± 31.11

DETR [38] 80.36 4.53 ± 4.79 4.41 ± 4.92

DDPG [39] 65.75 9.60 ± 6.90 9.26 ± 6.11

YOLOv4 [40] 80.04 4.75 ± 4.12 4.46 ± 5.58

Our method 80.70 4.39 ± 3.50 4.36 ± 4.15
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demonstrates that its deterministic strategy algorithm does not perform as well as the 
DQN algorithm in discrete action scenarios, albeit with fewer discrete anomalies. Due 
to the limited availability of open-source resources for reinforcement learning in image 
processing, most comparison experiments in this paper rely on deep learning. Nota-
bly, SSD’s detection performance on the dataset is subpar, whereas DETR and Faster 
R-CNN algorithms achieve relatively favorable results. The proposed method achieves 
an intersection ratio of 80.07% , outperforming mainstream target detection algorithms 
particularly on the prostate dataset. The low standard deviation values demonstrate the 
method’s robustness. To visualize detection errors more intuitively, box plots depict wall 
distance and centroid distance data. Figure  11 displays a boxplot representing predic-
tion deviations, with discrete points indicating abnormal detection values. Notably, the 
proposed method exhibits fewer abnormal data points, aligning with expectations and 
highlighting the suitability of the multi-agent reinforcement learning approach for intri-
cate medical image environments and 2D medical image target detection, given its high 
robustness.

To further validate the proposed method’s robustness, the REFUGE dataset [32] is 
used for comparative experiments, focusing on the optic disk area in the fundus data-
set. The optic disk region’s detection employs the exact parameters used for the pros-
tate dataset, and training is conducted on the same server. As detailed in Table 5, the 
detection results for the optic disk area in the REFUGE fundus dataset underscore the 
superior performance of the proposed method. It achieves optimal metrics across all 
indicators, with an average intersection ratio of 79.94% . The wall distance and centroid 
distance indicators are also better than those of the DETR algorithm, exhibiting a lower 
margin of approximately 0.3 mm. The experimental findings underscore the high appli-
cability of the proposed image detection method on 2D medical image datasets.

The primary focus of our study lies in the introduction and evaluation of a novel col-
laborative multi-agent DQN model for medical image object detection. While the 

Fig. 11 Boxplot of the detection results of the prostate dataset



Page 21 of 24Wang et al. EURASIP Journal on Advances in Signal Processing        (2023) 2023:132  

integration of various deep reinforcement learning (DRL) methods could indeed con-
tribute to a broader comparative analysis, several considerations guided our decision to 
specifically exclude certain DRL methods, including the work by Ghesu et al. [12]. 

(1) Methodological coherence: Our study aimed for methodological coherence and 
depth rather than breadth. Including multiple DRL methods could introduce sig-
nificant variations in architectures, training strategies, and hyperparameters, com-
plicating the interpretation of results. By concentrating on a single DRL model, we 
sought to provide a clear and detailed understanding of its performance in the con-
text of medical image detection.

(2) Unique contribution: The proposed multi-agent DQN model represents a unique 
contribution to the field, emphasizing collaborative detection in medical images. 
Introducing too many comparative methods might dilute the focus on our novel 
approach. We believe that an in-depth analysis of the proposed model’s perfor-
mance, both quantitatively and qualitatively, provides valuable insights for the tar-
geted application.

(3) Resource limitations: Given the constraints on resources, including space limita-
tions in the manuscript and computational resources required for extensive experi-
ments, a strategic choice was made to ensure a comprehensive yet manageable 
evaluation. This allowed us to delve deeply into the proposed model’s capabilities 
and limitations.

(4) Experimental stability: Maintaining experimental stability is crucial for drawing 
meaningful conclusions. Focusing on a specific DRL model, along with YOLOv3 
and YOLOv4, provided a stable and controlled environment for evaluation.

In essence, our rationale for not including other works based on DRL methods was to 
prioritize depth, clarity, and coherence in the evaluation of the proposed multi-agent 
DQN model in the specific domain of medical image object detection.

While our proposed method exhibits great potential, it does come with inherent limi-
tations. These include computational demands, sensitivity to hyperparameters, con-
straints related to data quality and diversity, as well as challenges concerning overfitting 
and interpretability. Efforts are required to address these limitations in future research. 
Optimization strategies for computational efficiency, adaptive algorithms, enhanced 
data diversity and quality, applicability expansion across various medical tasks, measures 

Table 5 Detection results of REFUGE fundus dataset using different methods

The bold is used to highlight the best results in the comparisons

Methods Average IoU ( %)↑ Wall distance (mm)↓ Center of 
mass distance 
(mm) ↓

Faster R-CNN [35] 78.63 6.16 7.74

YOLOv3 [37] 75.26 9.23 9.67

DETR [38] 79.35 5.68 6.29

DDPG [39] 64.47 10.89 10.76

YOLOv4 [40] 76.89 8.59 8.20

Our method 79.94 5.37 6.59
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against overfitting, and improved model interpretability will be explored. These endeav-
ors aim to refine and advance our innovative approach, making it a valuable asset for 
practical medical applications.

4  Conclusion
This paper introduces a novel image detection methodology that capitalizes on the 
multi-agent DQN reinforcement learning algorithm and multi-scale image representa-
tion. This approach operates on the premise of target detection sans candidate bound-
ing boxes, achieving this by pinpointing two pivotal locations. However, it necessitates 
cooperative communication between agents, each representing one of these key loca-
tions. This technique introduces several innovations and contributions. Firstly, it advo-
cates for the utilization of two agents to collaboratively identify two key points along 
the diagonal of the target region within 2D medical images. These points subsequently 
define the detection frame, eliminating the need to regress the entire frame. Conse-
quently, this obviates redundant candidate frame computations. Secondly, by facilitating 
parameter sharing among agents’ convolutional layers, an interactive communication 
environment is cultivated, fostering multi-agent collaboration. This cooperative setting 
enables agents to mutually benefit from shared experiences, yielding superior detection 
outcomes. Notably, cooperative detection surpasses non-cooperative detection by 2.45% 
based on the results. Thirdly, a progressive multi-scale image representation technique is 
introduced. When an agent encounters oscillations in a coarser scale space, the conver-
gence criteria are applied within that scale space before transitioning to the next phase of 
training. Agents exhibit varying step sizes and field of view across different scale spaces, 
yielding a reduction of 0.12  s in detection time compared to single-scale approaches. 
Lastly, the proposed method attains the highest intersection-over-union ratio, alongside 
the lowest wall distance and centroid distance results in the prostate hybrid dataset and 
fundus dataset. The method, while commendable, bears prospects for enhancement. 
Enhancements can be pursued through network structure refinements, incorporating 
the convolutional layer parameter sharing technique to facilitate implicit communica-
tion between agents. In future endeavors, the fully connected layer might benefit from 
an average parameter approach to foster communication, while the last fully connected 
layer could retain a degree of independence.
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