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Abstract 

Text-to-speech synthesis plays an essential role in facilitating human-computer 
interaction. Currently, the predominant approach in Text-to-speech acoustic mod-
els selects only the Mel spectrum as an intermediate feature for converting text 
to speech. However, the Mel spectrograms obtained may exhibit ambiguity in some 
aspects owing to the limited capability of the Fourier transform to capture mutation 
signals during the acquisition of the Mel spectrograms. With the aim of improving 
the clarity of synthesized speech, this study proposes a multi-task learning optimiza-
tion method and conducts experiments on the Tacotron2 speech synthesis system 
to demonstrate the effectiveness of the proposed method. The method in the study 
introduces an additional task: wavelet spectrograms. The continuous wavelet transform 
has gained significant popularity in various applications, including speech enhance-
ment and speech recognition, which is primarily attributed to its capability to adap-
tively vary the time-frequency resolution and its excellent performance in capturing 
non-stationary signals. This study highlights that the clarity of Tacotron2 synthesized 
speech can be improved by introducing Wavelet-spectrogram as an auxiliary task 
through theoretical and experimental analysis: a feature extraction network is added, 
and Wavelet-spectrogram features are extracted from the Mel spectrum output gener-
ated by the decoder. Experimental findings indicate that the Mean Opinion Score 
achieved for the speech synthesized by the model using multi-task learning is 0.17 
higher compared to the baseline model. Furthermore, by analyzing the factors con-
tributing to the success of the continuous wavelet transform-based multi-task learning 
method in the Tacotron2 model, as well as the effectiveness of multi-task learning, 
the study conjectures that the proposed method has the potential to enhance the per-
formance of other acoustic models.
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1 Introduction
Research in the field of speech synthesis [1, 2] has its origins in the 17th and 18th centu-
ries, during which machine devices were employed to generate sounds that imitated the 
human vocal organs. Over an extended period of time, several approaches have emerged 
in the field of speech synthesis. These include resonance peak parameter-based speech 
synthesis, waveform concatenation-based speech synthesis, and statistical parameter-
based speech synthesis. However, parameter-based speech synthesis with resonant 
spikes necessitates a substantial volume of training data; otherwise, the effectiveness of 
synthesis is diminished. In addition, it is imperative to train separate models for different 
speakers in order to maintain the quality of the synthesized speech. Simultaneously, it 
also exhibits subpar performance in certain facets of speech intricacies. Waveform con-
catenation-based speech synthesis and statistical parameter-based speech synthesis are 
both associated with certain challenges. The former is known for difficulties in achieving 
smooth speech splicing and is prone to producing discontinuity or noise. On the other 
hand, the latter requires significant computational resources, exhibits poor generaliza-
tion ability, and has a low synthesis speed.

With the popularity of deep learning, text-to-speech synthesis models [3] based on 
deep neural networks have gradually become mainstream due to their superior speech 
synthesis performance and strong generalization ability. These models mainly con-
sist of three parts: a text frontend, an acoustic model, and a vocoder. Acoustic models 
play a crucial role in speech synthesis by converting text into the corresponding acous-
tic features. In recent years, there has been a surge in the development of neural net-
work-based acoustic models that have demonstrated superior performance and distinct 
characteristics. Examples of such models include Tacotron2 [4], Transformer TTS [5] 
and Fastspeech [6]. These models have significantly contributed to the advancement of 
speech synthesis.

Acoustic features can be obtained as intermediate features through various signal pro-
cessing methods, which play a crucial role in Text to speech. The most dominant signal 
processing methods are Fourier transform and wavelet transform. The wavelet transform 
[7] is extensively utilized in signal processing [8] and image analysis [9] due to its several 
variations, including the continuous wavelet transform(CWT), discrete wavelet trans-
form [10, 11], fractal-wavelet analysis [12, 13], Chebyshev wavelet analysis [14], among 
others, as per the algorithmic approach.

The majority of acoustic models choose Mel only as an intermediate text-to-speech 
feature because Mel better mimics the perceptual characteristics of the human ear. 
However, Mel is limited by Short-time Fourier transform [15], which employs a fixed-
width window, so the resolution at various frequencies remains constant, resulting in 
capturing the time-frequency characteristics of speech signals. In addition to this, the 
Short-time Fourier transforms exhibit a relatively moderate response to variations in 
the speech signal, necessitating the use of longer time windows to effectively capture 
these variations. Based on the aforementioned limitations of Short-time Fourier trans-
form, the dynamic window size of CWT [16] offers a more effective approach for ana-
lyzing instantaneous variations of speech signals. By employing a dynamic window size, 
the continuous wavelet transform is able to provide varying resolutions at different fre-
quencies, thereby capturing the time-frequency characteristics of speech signals more 
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accurately. In this study, we propose a novel approach that leverages multi-task learn-
ing [17] to integrate the spectrogram obtained by continuous wavelet transform and the 
Mel spectrogram obtained through Short-time Fourier transform as acoustic features 
[18]. Our objective is to establish the connection between text, Mel spectrogram, and 
wavelet spectrogram. The Mel is employed as the main training objective, while the 
wavelet spectrogram serves as an auxiliary objective. The objective of improving the per-
formance of the obtained Mel spectra is thus accomplished. Moreover, there have been 
subsequent improvements in the clarity of speech generated by Text-to-Speech systems 
and in their ability to capture mutation signals.

The paper includes the following sections. The first part introduces the techniques 
used to acquire Mel from different mainstream acoustic models, as well as the CWT 
introduced in Fastspeech2 [19] for extracting pitch spectra [20, 21]. Section II presents 
the definition of multi-task learning along with its core and auxiliary tasks. Section III 
provides a comprehensive explanation of the CWT and its application in processing 
the wav file to acquire the wavelet spectrum. Section IV introduces the model archi-
tecture of Tacotron2, incorporating CwtNet, along with the data processing techniques 
employed and the experimental results obtained during the conducted experiments. 
Section V provides an analysis of the strengths and weaknesses of the research method-
ology employed in this paper. Additionally, it explores future directions for enhancing 
the effectiveness of alternative acoustic models.

2  Related acoustic model
Since the hot research on deep learning-based speech synthesis [22], most mainstream 
acoustic models have completed text-to-Mel translation directly through neural net-
works. Work on per-acoustic models has been devoted to obtaining more accurate Mel 
correspondences with the text through different model architectures, which can be 
categorized into basic models such as CNN [23], RNN [24], and Transformer [25]. For 
example, Baidu’s Deepvoice [26–28] series uses a fully convolutional encoder–decoder 
architecture to transform text to Mel through causal convolutional blocks and attention 
blocks. The optimization objective of this paper, Tacotron2, mainly uses LSTM to gen-
erate Mel for each frame in a sequential manner. Transformer TTS uses a Transformer 
architecture whose output is processed by Post-net to obtain the Mel corresponding to 
the text.

Mel has been consistently used as the traditional training objective during the train-
ing of the aforementioned acoustic models [29], and CWT has not played a significant 
role in speech synthesis at this stage. However, in 2020, Fastspeech2, jointly published 
by Zhejiang University and Microsoft, considerably improved the performance of syn-
thesized speech by modeling duration, pitch, and energy, and its fundamental frequency 
predictor applied CWT, which obtained the fundamental frequency spectrogram by 
CWT on continuous fundamental frequency sequences and better predicted the con-
tour changes of the fundamental frequency. In inference, the fundamental frequency 
predictor predicts the fundamental frequency spectrogram and further converts it back 
to the fundamental frequency contour by using continuous wavelet inverse transform 
(iCWT).
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Fastspeech2 uses the characteristics of CWT to improve the performance of synthe-
sized speech, which also proves that the advantage of wavelet transforms over short-time 
Fourier transform (which will be discussed in detail in Part 3) can be used as a new direc-
tion to improve speech synthesis performance [30]. Inspired by this approach, the main 
work of this paper is to exploit the advantages of CWT from a different perspective.

3  Multi‑task learning
Definition: A highly useful machine learning strategy that aims to improve model gener-
alization and performance by jointly learning several different but related tasks [31]. The 
main task generally shares a part of the representation with additional auxiliary tasks, 
and auxiliary tasks can contribute to the model training of the corresponding main task 
by supplementing information, transferring knowledge, and increasing the amount of 
training data [31]. The model framework based on multi-task learning is shown in Fig. 1 
[32], and its Composite loss function is given below in Eq. (1).

MTL methods can be easily deployed on stochastic neural networks by sharing cer-
tain hidden layers between different tasks. MTL has made great achievements in sev-
eral speech signal processing fields such as speech synthesis [31, 33, 34] and automatic 
speech recognition [35]. Whereas speech-related tasks typically involve various complex 
metrics, multi-task learning can consider multiple objective functions simultaneously 
and solve the problem by finding a set of optimal solutions that balance these multi-
tasks. In the field of speech recognition and speech enhancement, numerous studies 
use multi-objective optimization to improve the performance of their models. Peng 
et al. [36] proposed a multi-objective speech enhancement model based on perceptual 
features. By modeling the speaker, pitch, and energy separately, it extends the original 
MSE loss for individual LPS features to an objective loss for pitch and speaker identity 
and obtains a composite loss function. After the experimental validation, the evaluation 
metrics of the models using the composite loss function are compared with the original 
ones. There is a certain amount of improvement.

(1)ǫMTL =

K

k=1

wkǫk

Fig. 1 Basic framework for multi-task learning
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In the field of speech synthesis, there is the famous one-to-many problem [37], that is, a 
text can correspond to multiple speech expressions. In Fastspeech2, a variance adaptor is 
used to predict pitch, energy, and duration separately, which partially solves this problem. 
It is fundamentally similar to multi-task learning, which relies on auxiliary tasks to comple-
ment information and transfer knowledge. The application framework of multi-task learn-
ing in the field of speech synthesis is shown in Fig. 2 [38] below. How to provide additional 
prior knowledge to our model so that it can generate speech that is more in line with our 
expectations in a myriad of one-to-many problems is a mainstream direction in the field of 
speech synthesis.

3.1  Core and auxiliary tasks: Mel spectrogram and wavelet spectrogram

Several studies have shown that humans are extra sensitive to nonlinear sounds. The Mel 
spectrogram represents the frequency distribution of the sound signal in the Mel scale, a 
nonlinear scale [39] that better models the perceptual properties of the human ear. As a 
result, the Mel spectrogram better reflects the perceptual properties of the human auditory 
system and is more consistent with human auditory characteristics. This is why most main-
stream acoustic models choose Mel as the acoustic feature for synthesizing speech wave-
forms. The Mel spectrum is obtained by applying operations such as the short-time Fourier 
transform to the speech waveform [40], and both CWT and short-time Fourier transform 
are signal processing methods with their own advantages and disadvantages.

As mentioned earlier, the short-time Fourier transform is limited by its fixed window 
length and cannot balance time and frequency. In contrast, the CWT can provide time-
frequency analysis [41] with arbitrary time and frequency resolution, thus better captur-
ing local features such as non-stationary parts in the signal (a more detailed explanation of 
CWT will be given in Section IV). Therefore, we use the efficient capturing ability of the 
CWT for non-stationary signals [42] in speech to reduce the error in time-frequency analy-
sis caused by obtaining the Mel spectrum from short-time Fourier transform(STFT) and to 
enhance the comprehensiveness of Tacotron2.

In summary, we believe that joint training [43] of Mel and continuous wavelet transform-
based spectrograms can help neural network models to more comprehensively capture 
both global and local features of stationary signals, leading to a Mel that is more consistent 
with our expectations.

Fig. 2 Deep learning acoustic models with multi-task learning
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4  Continuous wavelet transform
CWT is a signal processing [44] method that provides a more interpretable visual represen-
tation of signals. It performs a time-frequency analysis on a signal by scaling and shifting a 
wavelet-generating function. For a signal f(t), its CWT result is shown in Eq. (2):

where a represents the scale factor, b represents the time shift factor, f(t) is the original 
speech signal, and ψa, b(t) is the wavelet mother function.

Taking the Morlet wavelet as an example, the mathematical expression is as in Eq. (3) 
(note that CWT has multiple wavelet bases, and the appropriate wavelet basis should be 
selected based on the characteristics of the processed signal for better results).

The steps of the continuous wavelet transform are as follows. 

1. Compare the starting part of the wavelet w(t) and the original function f(t) (essen-
tially taking the inner product) and calculate the coefficient C. The coefficient C rep-
resents the similarity between the part of the function and the wavelet.

2. Shift the wavelet to the right by k units to obtain the wavelet w(t − k) and repeat step 
1. Repeat this step until the function f(t) is complete.

3. Expand the wavelet w(t) to obtain the wavelet w( t2 ) , and repeat steps one and 2.
4. Continuously expand the wavelet and repeat steps 1, 2 and 3.

As can be seen from Definition and Eq. (2), the essence of the CWT is to decompose 
the signal into a sequence of primitive signals with excellent time-frequency localiza-
tion. The two ends of the basis function decay rapidly to zero and can move in the whole 
time domain, and the basis function can be changed by transformations of the expansion 
factors; therefore, the CWT is a time-frequency analysis method with variable resolu-
tion in both time and frequency domains. It can use long time intervals to obtain more 
accurate low-frequency information and short-time intervals to obtain high-frequency 
information. This is in line with the characteristics that the low-frequency part of the 
signal changes slowly and the high-frequency part changes rapidly, so it is known as the 
”microscope of signal analysis”. At the same time, the wavelet transform also has the fol-
lowing differences from the short-time Fourier transform: 

1. Wavelet transform does not perform Fourier transform on the windowed signal, and 
the transformed signal behaves differently.

2. In the process of wavelet transform, the width of the ”window function” can be 
changed for each spectrum calculation, which is the most significant difference 
between the two.

(2)

�f (a, b) =

∫ +∞

−∞

f (t)ψa,b(t)dt =

∫ +∞

−∞

f (t) exp

(

−iω0
(t − b)

a

)

exp

(

−
(t − b)2

2a2

)

dt

(3)ψ(t) = exp(iω0t) exp

(

−
t2

2

)
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3. From the filter point of view, the bandwidth of the bandpass filter is independent of 
the center frequency for the short-time Fourier transform but proportional to the 
center frequency for the wavelet transform.

4.1  Gibbs effect [45]

Definition The Fourier transform has to be fitted with a large number of triangular wave 
functions for a signal with a sudden and violent transformation, even for a short period 
of time. As shown in Fig. 3, it illustrates the case of the Fourier transform when fitting a 
non-stationary signal.

Because its basis functions are trigonometric functions of infinite length, the Fourier 
transform has a poor ability to capture non-stationary signals. For a mutation signal, 
its spectrum usually contains more high-frequency components, so high-frequency 
resolution is needed to accurately represent its spectrum characteristics. Because of its 
fixed window length, Fourier transform cannot have good performance in both time 
resolution and frequency resolution, so it cannot capture the details of mutation in the 
spectrum.

The basis function of CWT is a finite and decaying wavelet function, which fits the 
signal by scaling and translating the wavelet function. According to its mathematical 
formula, the coefficient of the wavelet function is not equal to 0 only when it over-
laps with the mutation signal, so that the mutation signal can be accurately captured. 
Through the CWT of a speech signal, the signal can be accurately divided into differ-
ent timescales, so that the high-frequency components of the mutation signal can be 
better captured, so as to obtain a more accurate spectrum. Related papers show that 
CWT has been successfully applied to speech synthesis, voice conversion and other 
research [46].

4.2  Time‑frequency resolution [47]

The short-time Fourier transform has a clear physical meaning and can give a time-fre-
quency structure that matches our intuitive perception structure. However, due to the 
restriction of the uncertainty principle on the time-frequency resolution of the window 
function, that is, when the window length is overly long, its time resolution is poor, and 
when the window length is too short, its frequency domain resolution is poor. Therefore, 
short-time Fourier transform cannot obtain great resolution in both the time domain and 

Fig. 3 Fourier transform fitting non-stationary signals
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frequency domain [48]. Compared with wavelet transform, wavelet transform is a more 
powerful signal analysis method, which is presented in Fig.  4, and its variable time-fre-
quency resolution can meet the requirements of “seeing the forest for the trees” in signal 
processing. According to the characteristics of the signal, the time-frequency resolution can 
be adjusted adaptively to better capture the details in the signal spectrum, so as to obtain 
a more accurate spectrum. Compared with STFT, wavelet transform has multi-resolution 
characteristics [49].

5  Experiments and results
5.1  Dataset and preprocessing

The experiments in this paper use the English speech dataset LJspeech [50], which con-
tains audio files of 13,100 sentences with a total of about 24 h of speech data with a sam-
pling rate of 22,050 Hz.

In the data preprocessing phase, we perform signal processing methods such as nor-
malization and short-time Fourier transform on each speech to obtain the true Mel 
spectrum corresponding to each speech as the core task of multi-task learning. At the 
same time, we also perform CWT on the speech and reduce the data dimension by 
Truncated SVD [51] and take the wavelet spectrum after dimension reduction as the 
auxiliary task of the multi-task learning.

Truncated Singular Value Decomposition (TSVD) is a dimension reduction method 
based on matrix decomposition. By performing Singular Value Decomposition (SVD) 
on the original data matrix, it obtains three essential components of the matrix: the left 
singular vector, the singular value, and the right singular vector. We can use these parts 
to reconstruct the original data matrix, but keep only the most salient parts, which are 
the first k singular values and the corresponding left and right singular vectors. This pro-
cedure is equivalent to the dimensionality reduction of the original data matrix, which 
reduces the dimensionality of the data while retaining the saliency information. In this 
paper, we use it to reduce the dimensionality of the sparse matrix after continuous wave-
let transform to obtain a fixed dimension and non-sparse matrix, which will be benefi-
cial for neural networks for feature learning.

Fig. 4 Wavelet basis function fitting non-stationary signals through translation and stretching
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5.2  Baseline Tacotron2

Tacotron2 consists of an encoder and a decoder with attention. The encoder transforms the 
character sequence into an implicit feature representation, which is used by the decoder to 
predict the spectrogram. Input characters are represented using learned 512-dimensional 
character em- beddings passed through a stack of three convolutional layers, each con-
taining 512 filters of shape 5 × 1, that is, each filter spanning five characters, followed by 
batch normalization [52] and ReLU activation. These convolutional layers model long-term 
context (e.g., N-grams) in the input character sequence. The output of the final convolu-
tional layer is passed into a single bidirectional [53] LSTM [54] layer with 512 units (256 in 
each direction) to generate the encoded features. Finally, the predicted Mel spectrogram is 
passed through a 5-layer post-convolutional network that adds a residual to the prediction 
to improve the overall reconstruction. Each postNetwork layer consists of 512 batch nor-
malized filters of shape 5 × 1 with tanh activations on all but the last layer.

5.3  Proposed model architecture

Figure  5 shows the model architecture of our proposed multi-task learning tacotron2. 
Based on the original Tacotron2, the CwtNet feature extraction network is added to the 
model. For the frame-by-frame Mel spectra output by the decoder, CNN and fully con-
nected neural networks are used to extract features to obtain wavelet spectra, that is, the 
frame-by-frame Mel spectra output by the decoder is required to perform multiple tasks. 
The core task is to use it as input to reconstruct and enhance the Mel spectrum through 
PostNet, and the auxiliary task is to use it as input to obtain the wavelet spectrum of the 
corresponding speech through CwtNet.

In the field of speech synthesis, numerous studies only minimize the mean square error 
between the predicted Mel and the true Mel. As shown in Eq. (4) below, in Tacotron2, its 

loss function consists of three parts, the decoder predicting the mean square error between 

Fig. 5 The proposed multi-task learning Tacotron2 model



Page 10 of 14Hu et al. EURASIP Journal on Advances in Signal Processing          (2024) 2024:4 

the merged Mel and the true Mel frame by frame, the mean square error between the Post-
Net reconstruction enhanced Mel and the true Mel, and the binary cross-entropy logic loss 
between the stopping probability and the true stopping probability of each frame.

where y represents the true Mel spectrum, y1 represents the Mel spectrum from the 
decoder output, y2 represents the Mel spectrum from the PostNet output, and Z repre-
sents the stop token.

In our opinion, it is not sufficient to use only the acoustic feature Mel as the loss. 
Although the nonlinear features of Mel can be well adapted to the human cochlea, the 
Fourier transform in obtaining Mel has certain drawbacks in capturing non-stationary 
signals. A better approach would be to jointly train Mel and Wavelet spectrogram and 
apply appropriate weights to the Wavelet spectrogram loss so that the model can dis-
tinguish between core and auxiliary tasks in multi-task learning. Thus, we not only keep 
the original Mel loss of Tacotron2, but we also add a fourth loss function to predict the 
mean squared error between the predicted and true Wavelet spectrogram. Finally, we 
can formulate the composite loss function in multi-task learning for Tacotron2 as pre-
sented in Eqs. (5) and (6).

where x represents the true wavelet spectrogram after TSVD, and x̂ represents the pre-
dicted wavelet spectrogram after TSVD.

5.4  Experimental setting

The official training configuration for the Tacotron2 is a V100 configuration with eight 
graphics cards. Due to the limited computational power, the experimental part of this 
paper will use the official public statedict of Baseline Tacotron2 after 500 epochs of 
training as the initial parameters. The training starts with default initial parameters. 
During training, we use CwtNet to fine-tune the model parameters in Tacotron2, while 
most of the training parameters are the same as in Tacotron2, except that we use 16 as 
the batch size. In addition, due to the large size of the wavelet spectrogram data, in order 
to prevent it from too much influence on the model’s learning of Mel, away from its orig-
inal purpose as an auxiliary task to help the model learn Mel, we apply 0.004 weight to 
its loss function (this parameter can be adjusted as needed), so as to ensure that it is 
numerically equivalent to initial Melloss . During training, models with partially shared 
parameters are optimized for training on Melloss.

(4)LossTacotron2 =
1

n

n
∑

i=1

(y1 − y)2 +
1

n

n
∑

i=1

(y2 − y)2 + LBCEwithlogitsloss(Ẑ,Z)

(5)Losswavelet =
1

n

n
∑

i=1

(x̂ − x)2

(6)LossMTL−Tacotron2 = LossTacotron2 + Losswavelet
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5.5  Problems in Tacotron2

Tacotron2 is the first end-to-end speech synthesis model, but there are still some audio 
quality problems to be solved. We tested partial speech synthesis using Tacotron2 and 
found that it suffers from problems such as ambiguous articulation at the beginning and 
end, inaccurate intonation, ambiguous words near the sound, overly quick speech speed, 
and unnatural intonation. Moreover, our proposed Tacotron2 based on multi-task learn-
ing improves the model’s learning of non-stationary signals in the speech by applying an 
auxiliary task wavelet spectrogram, which partially solves the aforementioned problems 
of Tacotron2 synthesized speech and improves the clarity of the synthesized speech. 
The corresponding test audio has been used for audio test experiments (please refer to 
experimental results for details).

5.6  Experimental result

We aim to evaluate the audio quality of the speech synthesized by each of the two mod-
els from the test set as well as from outside the dataset. We keep the content of the 
text input accepted by Tacotron2 and our proposed model consistent, thus excluding 
additional interference factors to focus on audio quality. For each audio, we invited at 
least 30 normal esthetic testers to listen to it, including foreigners, English major stu-
dents, who have normal foreign listening ability in English. Experimental subjects are 
20 English audio clips synthesized by Tacotron2 and our proposed Tacotron2 based on 
multi-task learning. We selected MOS(Mean Opinion Score), the Mainstream evalua-
tion metric for speech, as the subjective evaluation metric, and respondents were asked 
to rate each audio segment on a scale of 0–5, with higher scores indicating better quality 
of the corresponding speech.

The experimental results are shown in Table 1, from which we can find that Tacotron2 
based on multi-task learning evidently gains extra preferences from listeners. Compared 
to Tacotron2, its MOS is improved by 0.17, indicating that multi-task learning helps the 
speech synthesis model to improve the quality of its synthesized audio.

6  Discussion and future work
In this paper, we first propose a Tacotron2 speech synthesis model based on a multi-task 
learning optimization method. By adding an auxiliary task (model learning for wavelet 
spectrogram), we improve its learning effect compared with the baseline model on its 
core task (model learning for Mel spectrum). In the previous section, our experimen-
tal results have demonstrated the success of our proposed auxiliary task using CWT on 
Tacotron2. However, the key to the success of the proposed model is that the CWT com-
pensates for the shortcomings of STFT’s low sensitivity to abrupt signals and fixed time-
frequency resolution, so for other mainstream acoustic models, such as Transformer 
TTS, which also has PostNet, we can also try to improve its effectiveness by adopting the 

Table 1 Comparison of evaluated MOS for Tacotron2 versus MTL-Tacotron2

Model MOS

Baseline 3.70

MTL-Tacotron2 3.87
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idea of multi-task learning optimization. This is also the direction of our future research. 
However, it consumes a lot of computational resources due to the high computational 
complexity of the CWT. How to reduce the use of computational resources or use wave-
let transform with lower time complexity is one of the optimization ideas for the pro-
posed model.
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