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Abstract 

Integrated air–ground network enhances AIoT performance by improving spectral 
efficiency, achieving high-speed, stable network connectivity, and enabling sensing, 
learning, and decision-making. However, unmanned aerial vehicles (UAVs) can lead 
to local spectrum congestion and competition. To address this issue, intelligent signal 
processing techniques are employed to enhance AIoT system performance and stabil-
ity through intelligent multi-channel sensing and communication. A novel communi-
cation framework inspired by brain cognition for UAV communication in heterogene-
ous environments is introduced. This framework iteratively determines the importance 
of signals, effectively eliminating unimportant signals with interference characteristics, 
and reducing their transmission power. Simulation results demonstrate the superiority 
of this method in terms of communication performance.

Keywords:  AIoT, Unmanned aircraft, Space integrated network, Intelligent signal 
processing

1  Introduction
Wireless networks connect individuals, devices, and services, playing an indispensable 
role in modern society. The field of artificial intelligence of things (AIoT) leverages these 
networks by integrating artificial intelligence (AI) and Internet of things (IoT) technol-
ogy, enabling intelligent and autonomous communication among smart devices [1]. 
AIoT devices, equipped with sensors and control units, gather real-time environmen-
tal data and employ AI algorithms for tasks like pattern recognition, object detection, 
and behavior analysis. Machine learning and deep learning techniques further enhance 
performance and adaptability, facilitating intelligent decision-making and interactions, 
such as the autonomous adjustment of parameters in smart home systems based on user 
habits [2–4]. Despite these advancements, AIoT faces limitations due to the significant 
wireless access demands of large-scale intelligent applications. These limitations stem 
from factors such as wireless co-channel interference, spectrum competition, and the 
intricate management of interconnected devices, hampering scalability, efficiency, and 
overall performance. Moreover, the interconnected nature of AIoT exacerbates these 
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limitations as IoT devices collaborate, creating dependencies and shared resource usage. 
This intensifies interference and competition issues, impeding seamless operation in 
comprehensive intelligent applications [5–7]. One solution to address these limitations 
involves exploring new wireless access opportunities in spatial domains. Most AIoT 
devices operate in relatively low-altitude terrestrial spaces, leaving much of the upper 
three-dimensional (3D) space underutilized. Unmanned aerial vehicles (UAVs) can alle-
viate local spectrum congestion through air–ground integrated (AGI) networks, sup-
porting partial AIoT functionalities. UAVs offer several advantages, including enhanced 
spectral efficiency, stable network connections, relay capabilities for long-distance com-
munication, and signal acquisition for interference research [8]. Additionally, UAVs pos-
sess the ability to sense, learn, and make decisions, integrating seamlessly into the AIoT 
system. Their flexibility and maneuverability make them suitable for various environ-
ments, optimizing wireless spectrum utilization. Equipped with advanced sensors and 
AI algorithms, UAVs enable efficient data collection and intelligent monitoring, enhanc-
ing wireless spectrum utilization accuracy and efficiency. Their automated detection and 
analysis capabilities improve frequency resource allocation, boosting task efficiency and 
accuracy. UAV technology holds significant potential for driving digital and intelligent 
transformation across industries, particularly in cross-domain applications.

However, it is essential to acknowledge the limitations of UAV integration in AIoT. 
While they can make better use of spectrum in 3D space, their high degree of free-
dom can lead to local spectrum congestion and competition. Therefore, in future AGI 
networks, UAVs may still face challenges similar to those in current two-dimensional 
ground networks, as UAVs cannot entirely solve the issue of spectrum congestion caused 
by airborne and ground devices. Under the background of combining numerous multi-
media requests and AGI AIoT devices, multimodal sensation and communication face 
extremely challenge considering co-channel interference and access competition [9]. In 
this paper, we focus on the intelligent signal processing with novel cognitive approach to 
alleviate the uncontrolled interference and competition in large-scale AGI AIoT.

2 � Brain cognition‑enhanced AGI AIoT
In AGI AIoT, addressing wireless co-channel interference, spectrum competition, and 
management challenges for interconnected AGI devices is crucial to improve efficient 
communication protocols, network architectures, and high-bandwidth transmission 
technologies [10]. Real-time data analysis, edge computing, and intelligent algorithms 
significantly impact data traffic processing and decision-making.

To overcome these challenges, it is essential to enhance the performance and appli-
cability of AGI AIoT in wireless communication networks, promoting its widespread 
application and development across various domains [10]. The complexity and het-
erogeneity of AGI AIoT devices require faster processing speeds and improved sig-
nal processing capabilities to mitigate interference and competition. Cognitive 
radio, based on AI and machine learning, enables wireless communication devices 
to autonomously sense, infer, and adapt to the radio environment [11]. Cognitive 
insight leverages brain cognitive concepts to automatically diagnose network issues 
and optimize system performance. The AGI AIoT system efficiently processes intri-
cate information patterns in four steps (as shown in Figs. 1 and 2), applying a brain 
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cognitive approach). Combining cognitive heuristics with massive complex informa-
tion processing capabilities, AGI AIoT systems adeptly manage complex information 
and interference patterns for multi-device connectivity and data storage.

Three cognitive heuristics (familiarity, cognitive, and propensity) can assist in path 
selection, information and device association, and problem-solving in AIoT networks. 
In the AIoT network, wireless communication, brain cognitive technology, and UAV 
technology are pivotal in advancing AIoT applications in smart homes and smart cit-
ies [12]. While wireless communication technology brings convenience to AGI AIoT, 
it also introduces challenges like self-multiplexing and complex interference control.

Conventional solutions often rely on wasting large amounts of spectrum resources, 
resulting in resource congestion and scarcity, creating new problems. [13] Problems 
in typical wireless communication methods include:

•	 Cellular networks, which struggle with signal coverage, infrastructure costs, and 
spectrum congestion [14].

•	 Wi-Fi networks, which require adjustments for limited signal strength, scalability, 
frequency interference, and data security.

•	 Bluetooth networks, tailored for short-range demands with low data rates and 
interoperability issues.

•	 Satellite communication, hindered by high costs, signal latency, and susceptibility 
to weather conditions [15].

•	 Infrared communication, with limited range, susceptibility to obstructions, and line-
of-sight requirements.

•	 RFID (Radio Frequency Identification), using antenna technology to extend trans-
mission distance but limited by data capacity and close-range receiver requirements.

Therefore, this paper advocates for brain cognitive multimodal computing, simulating 
human brain cognitive abilities and multimodal perception. It facilitates the understand-
ing, analysis, and processing of diverse data types and interference, enhancing system 
efficiency and performance. Implementing brain cognitive multimodal computing in 
AGI AIoT entails learning and reasoning with multimodal data, augmenting environ-
mental perception, and adaptability across diverse scenarios.

3 � Brain cognition‑based interference management for AGI AIoT
Interference is a common issue in wireless communication, stemming from non-ideal 
characteristics of devices like local oscillators, power amplifiers, mixers, and signal leak-
age. In the AGI AIoT system, diverse devices and applications necessitate different wire-
less resources, leading to additional heterogeneous interference that impairs wireless 
communication accuracy and efficiency.

In an ideal scenario, the AGI AIoT system experiences two types of interference: 1) 
isomorphic interference, resulting from imperfect wireless communication controlling 
and difficulties in large-scale adaptive protocols; 2) heterogeneous interference, stem-
ming from the diverse functions, protocols, and locations of devices within the AIoT 
system [2].
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In the presence of interference, a received signal in the AGI AIoT system is denoted as

where Pdi represents the power of intended/interference signal ( xis/xiint ) decayed at dis-
tance d, h is the corresponding channel coefficient, and n is additive noise with power 

Pn . In Eq. (1), the total interference power can be expressed as 
N

j=1

Pdj |h
j
int|

2 . In large-

scale networks, an increase in the number of devices N significantly reduces the signal-
to-interference plus noise ratio (see Eq. (2)) required for the desired signal, i.e., 
limN→+∞ SINR = +∞ , potentially impacting AGI AIoT networking efficiency and con-
trol accuracy.

To address interference in AGI AIoT, we present the AGI AIoT framework in Fig. 1, with 
the cognitive process central to interference management. Figure 2 illustrates the brain 
cognitive technology employed in this paper to mitigate interference issues in AIoT 
wireless communication, ultimately optimizing AGI AIoT performance.
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Fig. 1  The basic functions of AGI AIoT

Fig. 2  Overall framework of brain cognitive AGI AIoT



Page 5 of 14Ren et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:12 	

Building on the overall task cognition depicted in Fig. 3, we differentiate between iso-
morphic and heterogeneous interference and delve into solutions for multimodal prob-
lems through straightforward single-mode information transmission.

•	 Homogeneous interference problem in AGI AIoT:

	 Isomorphic interference arises when devices within wireless communication employ 
the same protocols or frequencies. This leads to terminals that should coordinate to 
avoid interference instead receiving unwanted signals on the same frequency. Conse-
quently, terminals experience interference they should have been spared from.

•	 Heterogeneous interference problem in AGI AIoT:
	 AIoT encompasses a vast array of devices, networks, and applications distributed 

across diverse geographical locations. Variations in features, protocols, and institu-
tions create a complex and heterogeneous environment. Interference and resource 
contention occur among various devices and applications, resulting in heterogene-
ous interference that detrimentally affects communication quality and availability.

3.1 � Homogeneous interference mitigation

In Fig.  4, interference occurs during transmission to the destination terminal due to the 
broadcast feature covering nodes that should not receive the information. Node 2, in addi-
tion to the destination terminal A, receives the broadcast signal, causing interference. The 
node that should receive the broadcast information, Terminal B, enhances its own signal 
transmission capability to improve the broadcast coverage. In AIoT networks, as the num-
ber of devices increases, congestion issues such as limited bandwidth and increased sources 
of disturbance may arise. These issues can degrade communication quality and rates. The 
total available bandwidth (B) is inversely affected by the number of interference sources (N). 
In frequency divisions, this leads to a reduction in the lowest available bandwidth, while in 
time slot-based divisions, it decreases the lowest achievable rate. Coordination of co-chan-
nel interference through homogeneous protocol consistency often results in competition. 

Fig. 3  The overview of designed architecture
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Assuming equal transmission probabilities for each device, the probability (P) of success-
fully transmitting data while competing determines the probability of failure (1− P) . The 
number of successfully transmitting devices (k), represented by a binomial distribution 
denoted as B(N, P), also indicates the communication rate. 

To address the interference problem caused by device density and bandwidth competi-
tion in homogeneous devices, we use the heuristic factor method shown in Fig. 3. We 
introduce a weight coefficient vector A and utilize current and historical information 
to optimize actions. The power weight (see Eq. (7)) selected through the reinforcement 
learning process is the most stable and reduces interference signal in the channel, ena-
bling optimal transmission efficiency [16].

We set the power weight value as ai ∈ {a1, a2, a3, · · · , ai} to adapt each devices’ trans-
mit power. In time slot t + 1 , a weight table is built up on a single independent link and 
is updated according to the transition function in Eq. (3) when a file transmission is fin-
ished. We have

where Qn and Qp are current and historical information. Rai is the current reward at 
action time slot t defined by

where Qai is an accumulation of historical rewards. The initial weight value Qai(0) is set 
to 0. Equation (3) can be rewritten as

By generalizing the Rai from action time 0 to t, the proportion of current information in 
Qai(t + 1) is
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Fig. 4  Broadcast channel and homogeneous interference
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In Eq. (6), the impact of Qn decreases at a rate of 1t  as the number actions t increases, 
which results in the weight value varying more during the initial stage, and thereafter 
gradually becoming stable as more actions are taken. With the increase of time, the 
power weight value ai tends to stabilize, and the channel quality when the weight value 
is stable is optimal for current signal transmission quality. Thus, the power weight can 
be adjusted using the heuristic weighting factor to adjust the signal transmission power 
of each AIoT device. This enables intelligent control of transmission power, selection of 
better channels for transmission, and reduction of interference while ensuring effective 
transmission.

Here, we add ai to achieve a channel selection strategy, where the probability of 
selecting a channel depends on its interference level. A lower selection probability 
will be allocated to those channels with higher interference levels, thus achieving 
low interference at terminals of the link.

where I is the interference level, and n is the noise. Based on Eqs. (5) and (7), the optimal 
signal received by the terminal is then given by

where the relative strength of information in the signal can be controlled by multiply-
ing itself with the power weight ai , and noise and channel interference are added to the 
signal.

With Eq. (7), the lower interference channels have higher probability to be 
selected, and vice versa.

In comparison with Eq. (1), the optimal signal form obtained in Eq. (8) increases 
the power weight in the interference part to adjust the weight value according to the 
change in channel quality described by Eq. (5). When the SINR exceeds a certain 
threshold, i.e., SINR > γth , the number of successful transmissions can increase and 
be added to the number of historical successes, and vice versa. This approach ena-
bles intelligent control of transmission power and the selection of better channels 
for transmission, ensuring effective transmission while reducing interference.

Under isomorphic conditions, interference in the channel remains constant, mean-
ing that its amplitude and characteristics do not change. In this scenario, we can uti-
lize the aforementioned methods to choose communication channels and minimize 
the impact of interference on the signal.

However, under heterogeneous conditions, interference in channels becomes 
variable due to unstable channel states, variations in multipath effects, and interfer-
ence from other devices. In such cases, we combine the aforementioned approach 
with multimodal perception to enable adaptable signal processing and interference 
cancelation, allowing us to handle diverse interference situations more effectively.
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3.2 � Heterogeneous interference mitigation

The same isomorphic protocol can be considered as single-modal communication, while 
heterogeneous protocols mostly involve multimodal communication. Single-modal 
communication is the simplest form of multimodal communication. Therefore, we 
address the issue of isomorphic and heterogeneous interference by transforming it into a 
multimodal problem [17].

Perception tasks differ from computational tasks, as computational tasks focus on 
processing and analyzing data for meaningful outcomes, while perception tasks aim to 
interpret and understand input signals to provide information about the environment or 
objects.

Moreover, when processing perception tasks in communication systems, it is impor-
tant to consider priority and resource allocation in conjunction with other tasks. Given 
that perception tasks require real-time and low latency, allocating sufficient bandwidth, 
computing resources, and energy to these tasks during communication system design is 
necessary to ensure reliable and timely perception results.

In conclusion, the specific requirements for perception tasks may vary in different 
application scenarios during communication system design.

To adapt to the multimodal scenario, we establish a multimodal matrix (Fig.  3 and 
Table 1) that selects channels with fewer interference signals to regulate interference.

In heterogeneous scenarios, we introduce the ability to maximize information retrieval 
by considering factors such as unit data ( ρ ), the amount of data in the event space (D), 
the attention mechanism ( −→A  ) (similar to ai in Eq. (5)), and the overall amount of infor-
mation generated by all events (I). Our goal is to obtain the highest proportion of effec-
tive information in heterogeneous environments, based on:

In summary, when designing communication systems, the specific requirements for 
perception tasks may vary depending on specific application scenarios.

The key is the generation of vector −→A  , which iterates and determines its importance, 
thereby removing unimportant signals with interference characteristics and reducing 

(9)
ρ =

max ||A⊗
m
∑

i=1

Ii||

D
.

Table 1  Multimodal matrix

Based on the 0-1 states in the matrix, suitable eigenvalues that can serve as normalization features in multimodal matrices 
can be obtained

1 indicates that the mode can be detected

0 indicates that the mode cannot be detected

Function Visual Speech Sensor Text

Camera 1 0 0 0

Identifying objects 1 1 1 1

Image 1 0 0 0

Sound 0 1 1 0

Emotion recognition 1 1 0 1

Status 1 1 1 1
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their transmission power. This process can be inspired by the brain cognition and sim-
plified as follows:

where α ∈ (0, 1) determines the proportion of ‘old’ experience in the next information 
acquisition. α helps determine the deviation caused by shortcuts and decide whether our 
−→
A  needs improvement and update �(n) . The flowchart of the adaptive function design is 
shown in Fig. 5.

Compared to the problem of isomorphic interference, heterogeneity introduces more 
complex dynamic tasks. Before creating a multimodal matrix, we need to address the 
process of semantic feature extraction, as shown in Fig. 6.

In order to solve the problem of protocol inoperability between heterogeneous 
devices, we need to organize and align the original data of received multimodal informa-
tion, extract and fuse features, and perform normalization to convert scores from differ-
ent models into a common scale. In the following, Z-score normalization is used, where 
the mean and standard deviation are calculated for each feature. The normalized value, 
denoted as x′ , is computed as follows:

where x is the original value, mean is the mean of is the mean obtained for each feature 
value, and std is the standard deviation. By recording the information within the range 
of mean 0 and standard deviation 1 as the successful state and adding one, we obtain the 
information processed by normalization [18]. Finally, the normalized values are multi-
plied, and the larger the value, the better the link with the best performance.

(10)−→
A (n) = α

−→
A (n− 1)+�(n),

(11)x
′

=
x −mean

std
,

Fig. 5  Flowchart of the adaptive function design

Fig. 6  Multimodal weighting mechanism design



Page 10 of 14Ren et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:12 

Each row of the matrix represents a function that can be carried out by a certain 
mode, and each column represents the modes that can complete the task. Among them, 
the object recognition function is common to multiple modes, which makes it the com-
mon mode. As a function after classifier classification, it participates in normalization 
processing and subsequent brain cognition (Fig. 7).

The above interference cancelation technology is based on resource allocation meth-
ods. By correctly planning and optimizing the spectrum, selecting power and time slot 
resources in the network, the system is able to find the links with the least interference 
between different networks. Through weighted iteration, the system is able to find the 
links with the lowest probability of information retransmission and the best channel 
quality. For example, in heterogeneous networks, interference caused by collisions is dis-
tributed through power weights to different networks within the same frequency band. 
Dynamic power control and time slots reduce the impact of interference signals Fig. 10.

4 � Numerical results
To evaluate vector −→A  generation accuracy in the AIoT system, the method of model 
classification can be adopted. By analyzing these classification results, the model accu-
racy can be evaluated and the performance of the AIoT system can be optimized. Higher 
values of −→A  indicate better classification accuracy for this deep learning model [14, 15].

where TP, TN, FP, and FN, respectively, represent correctly predicted positive cases, 
correctly predicted negative cases, incorrectly positive cases, and incorrectly predicted 
negative cases. By counting and analyzing classification results, we can evaluate the 
accuracy of the model and optimize the performance of the AIoT system. A higher value 
of A implies better classification accuracy for this deep learning model.

Using the above approach, the power of the interference signal in different channels 
is kept floating at a certain value until the simulation results shown in Fig. 8. The power 
of the interference signal decreases through several iterations of the heuristic weighting 
factor. Once a certain number of iterations is reached and the power of the interference 
signal no longer changes, the optimal transmission channel is found.

From Fig. 9, it can be observed that the probability of the base station selecting differ-
ent channels is nearly equal when no learning is involved. There are approximately six 
highly popular channels.. Therefore, it is recommended to avoid using these six channels 
since adjacent links between transmitters and receivers on the same base station cannot 
effectively reuse channels.

(12)O =
TP + TN

TP + TN + FP + FN
,

Fig. 7  Process of cognition processing
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The heuristic weighting factor used in this paper for reinforcement learning is a delayed 
process. The base station needs to learn from experience by taking actions. The conver-
gence rate, which reflects the time required for the base station to learn the preferred chan-
nel, is an important parameter to measure learning efficiency. Slow convergent learning 
in the initial phase can have harmful effects in terms of excessive interference at the base 
station. Figure  10 provides the time performance over an average of 10 simulation runs 
to represent the speed of the learning scheme. After reinforcement learning, the channel 
retransmission probability is minimized, and it can further reduce the retransmission prob-
ability through time accumulation.

5 � Conclusion
By utilizing cognitive heuristics and deep learning in AGI AIoT brain cognition, this 
study proposes a comprehensive multimodal communication technology and weight-
ing factor method to solve the separation of interference signals and improve commu-
nication quality in multimodal AGI AIoT communication. First, we utilized cognitive 
heuristics and deep learning techniques to extract relevant features between multiple 
perceptual modalities in AGI AIoT brain cognition. This allowed us to successfully 
separate interference signals and improve communication quality in multimodal AGI 
AIoT communication. The multimodal communication technology combines differ-
ent modes of communication, such as audio, visual, and tactile, to enhance the com-
munication capabilities of AGI AIoT systems. This allows for more robust and reliable 
communication, as multiple modalities can be used simultaneously to transmit infor-
mation. Furthermore, we introduced a weighting factor method to optimize the com-
munication quality. By assigning different weights to different modalities or channels, 
the system can dynamically adjust the allocation of resources based on the impor-
tance and reliability of each modality. This ensures that the most reliable and relevant 
information is given priority in the communication process.

The proposed multimodal communication technology and weighting factor method 
offer a promising solution to improve communication quality in AGI AIoT systems. 

Fig. 8  Graph of iterative change of weighting factor
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The comprehensive utilization of AGI AIoT brain cognition and deep learning pro-
vide an effective solution to the interference problem in multimodal communication. 
These research findings contribute to the advancement of cognitive heuristics and 
deep learning in the field of AGI AIoT and have practical implications for the design 
and optimization of such systems. We encourage further research to delve into and 
optimize multimodal communication technologies, creatively employ cognitive heu-
ristics and deep learning algorithms, and consider additional factors such as energy 
efficiency and security. These efforts will enhance the performance and practicality of 
AGI AIoT systems.
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