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1 Introduction
The propagation properties of very low-frequency/extremely low-frequency (VLF/ELF) 
electromagnetic waves, operating in the 3 Hz to 30 kHz frequency range, yield low prop-
agation loss when traversing diverse media such as seawater, rocks, and soil. These waves 
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Keywords: Very low-frequency/extremely low-frequency (VLF/ELF), Nonlinear 
channel, Strong pulse noise, Fractional low-order moment (FLOM), Sigmoid function

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Hu et al. 
EURASIP Journal on Advances in Signal Processing          (2024) 2024:8  
https://doi.org/10.1186/s13634-023-01102-2

EURASIP Journal on Advances
in Signal Processing

*Correspondence:   
0909031059@nue.edu.cn

1 College of Electronic 
Engineering, Naval University 
of Engineering, Wuhan 430033, 
Hubei, People’s Republic of China
2 Yangtze River Wuhan Waterway 
Bureau, Wuhan 430033, Hubei, 
People’s Republic of China
3 College of Communication 
Engineering, Xidian University, 
Xi’an 710071, Shanxi, People’s 
Republic of China

http://orcid.org/0000-0001-6684-4781
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-023-01102-2&domain=pdf


Page 2 of 15Hu et al. EURASIP Journal on Advances in Signal Processing          (2024) 2024:8 

also demonstrate consistent amplitude and phase, facilitating deep penetration into sea-
water. Consequently, VLF/ELF electromagnetic waves play a crucial role in various engi-
neering domains, encompassing wireless communication, submarine communication, 
underwater navigation, and seabed exploration [1–5].

In existing VLF/ELF nonlinear receivers, atmospheric noise poses a significant chal-
lenge due to its non-Gaussian pulse characteristics, characterized by suddenness, impul-
siveness, and instantness. This noise serves as the primary interference factor affecting 
low-frequency signals. Experimental studies have confirmed that atmospheric noise in 
low-frequency channels can be well approximated by an alpha stable distribution noise 
model [6]. However, in practical applications, channel noise processing algorithms often 
need to distinguish between a specified sequence of Gaussian distributions (α = 2) or 
fractional lower-order moment alpha stable distributions (α < 2). When dealing with a 
sequence following a Gaussian distribution, which has a finite second-order moment 
(variance), the statistics beyond the second order cannot be accurately calculated in the 
presence of alpha stable distribution noise. Consequently, the performance of channel 
noise algorithms is compromised or rendered invalid when applied to Gaussian distribu-
tion scenarios [7–9].

To address the challenges posed by alpha stable distributed noise in adaptive filter-
ing algorithms for linear time-invariant channel noise, Nikias and Shao [10] proposed 
the least mean p-norm (LMP) algorithm, which effectively suppresses alpha stable dis-
tributed noise. Building upon this work, several derivative algorithms have been pro-
posed, including the stochastic gradient equalization algorithm (SGE) [11], normalized 
variable step size least mean p-norm algorithm (NVSS-LMP) [12], and variable step size 
least mean p-norm algorithm (VSS-LMP) [13]. While these methods notably enhance 
the performance of adaptive filtering for linear channels under alpha stable distribution 
noise, they require knowledge of the signal-to-noise ratio (SNR). As a result, their com-
pensation ability for nonlinear channels under alpha stable distribution is limited, yield-
ing unsatisfactory results.

An initial approach to tackle the denoising problem in nonlinear channels is to cascade 
multiple linear adaptive filters, with the Hammerstein-Wiener model [14] being a clas-
sic example. However, this approach remains fundamentally linear processing of a single 
filter and lacks the ability to effectively track more general nonlinear systems. Gabor [15] 
introduced Volterra sequences to address the challenges faced by nonlinear filtering, and 
Coker et al. [16] first applied Volterra series in the nonlinear channel adaptive filtering 
algorithm. To enhance the anti-pulse interference of Volterra filtering algorithms, Weng 
[17] introduced the nonlinear Volterra filtering LMP algorithm, which outperforms tra-
ditional Volterra least mean square (Volterra LMS) algorithms. In subsequent decades, 
to reduce algorithm complexity, scholars have proposed improved filtering algorithms 
based on the structure of the Volterra filter and Volterra filtering algorithm. These 
include second-order, third-order, and variable-step Volterra series least mean p-norm 
(Volterra LMP) algorithms [18–20]. While these approaches simplify the structure of 
the Volterra filter to some extent and reduce the complexity of Volterra series filtering 
algorithms, the complexity of Volterra series filtering algorithms remains high, making 
it difficult to meet the transmission quality requirements of nonlinear channels under 
alpha stable distribution noise.
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Liu et  al. [21] successfully introduced the radial basis function (RBF) criterion [22] 
into the LMS algorithm, resulting in the kernel least mean square (KLMS) algorithm. 
This algorithm, with its simple structure and ease of implementation, outperforms linear 
adaptive filtering algorithms in solving practical nonlinear problems. Building upon this, 
Gao et  al. [23] proposed the kernel least mean p-norm (KLMP) algorithm, which has 
served as the foundation for subsequent research on improved algorithms. For instance, 
Dong  [24] proposed the kernel fractional lower power (KFLP) algorithm for mitigating 
non-Gaussian pulse noise, based on fractional low-order statistical error criteria [25]. 
However, the KFLP algorithm suffers from slow convergence speed. To address this, 
Huo [26] introduced the variable scaling factor sigmoid kernel fractional lower power 
adaptive filtering algorithm based on the Sigmoid function (VS-SKFLP). By successfully 
combining the cost function of the KFLP algorithm with the neural network Sigmoid 
activation function inspired by biology [27–29], this algorithm significantly improves 
convergence speed and steady-state error. It is worth noting that these algorithms are all 
nonlinear channel adaptive filtering algorithms based on the RBF criterion in a Gaussian 
distribution environment. In the presence of mixed Gaussian and non-Gaussian noise 
interference, the RBF criterion requires more computation and exhibits weaker noise 
suppression.

To address the challenge of channel noise processing under the mixed interference of 
Gaussian and non-Gaussian noise, Chambers and Avlonitis [30] proposed the robust 
mixed-norm (RMN) algorithm, which combines error first- and second-order moments 
through convex combination. This algorithm improves the performance of fractional 
lower order moment (FLOM) criterion-based algorithms to some extent by incorpo-
rating the first-order moment. However, the convergence speed and steady-state per-
formance remain insufficient. Papoulis and Stathaki [31] suggested adaptive changes 
to the fixed mixed parameters in the mixed-norm (MN) algorithm based on error and 
normalized step parameters in the weight coefficient update formula. These modifica-
tions significantly enhance the convergence speed and steady-state performance of the 
MN algorithm. Song and Zhao [32] proposed the reference signal filtered-x general MN 
(FxGMN) algorithm, which improves convergence speed through convex combination. 
The FxGMN algorithm’s ability to control impact noise under different parameter com-
binations is studied. Yang [33] introduced a cost function based on mixed even moments 
with 0 < p < α/2.

In summary, VLF/ELF nonlinear receivers are susceptible to intense pulse noise 
(0 < p < α < 2) in low-frequency signal noise. Many researchers have proposed various 
enhanced channel noise suppression algorithms based on FLOM or RBF criteria. How-
ever, in environments with high levels of pulse noise, the first-order moment (mean 
value, p = 1) and second-order moment statistics (variance, p = 2) of the channel noise 
become non-existent. This poses a significant challenge in effectively suppressing the 
noise, ultimately leading to failure or substantial performance degradation of the nonlin-
ear receiver. Building upon the variable step neural network’s Sigmoid activation func-
tion algorithm mentioned earlier, this paper introduces a variable step RMN algorithm 
based on the Sigmoid function (SVS-RMN). In this algorithm, the instantaneous error 
e[n] of VLF/ELF signal noise is treated as a variable step size factor, leveraging the non-
linear properties of the Sigmoid function under different intensities of pulse noise and 
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mixed Gaussian and non-Gaussian noise. Specifically, by adjusting the skew parameter η 
of the Sigmoid function, the instantaneous error e[n] of the RMN algorithm is adaptively 
controlled, enabling the acquisition of finite mean and variance of noise and effectively 
suppressing the discrete singularities caused by strong pulse noise in low-frequency sig-
nals. Compared to conventional RMN algorithms and other variable step-size p-order 
moment algorithms based on FLOM or RBF criteria, the SVS-RMN algorithm offers 
advantages such as a simple structure, low computation, fast convergence, and strong 
stability.

2  Alpha stable distribution noise properties
The alpha stable distribution is a significant model for representing non-Gaussian sig-
nals. In recent years, it has become evident that various types of noise, including ocean 
noise [34, 35], anthropogenic noise [36], clutter, and atmospheric noise in low-altitude 
environments [37–39], can be more accurately described by the alpha stable distribu-
tion. These types of noise display pronounced pulsating characteristics when compared 
to Gaussian noise.  The alpha stable distribution is capable of generating noise with a 
longer tail than Gaussian noise, making it particularly well-suited for modeling pulse 
noise.

2.1  Characteristic function

Alpha stable distribution is commonly used to model pulse noise. The probability den-
sity function is not typically used to describe the distribution, but rather its characteris-
tic function [40]. If a random variable X follows an alpha stable distribution, denoted as 
X ~ Sα(β, γ, δ), its characteristic function satisfies:

in Eq. (1),

In the above equations, α, β, γ, and δ uniquely determine the characteristic func-
tion of the alpha stable distribution. α represents the characteristic index, where 
α = 2 corresponds to a Gaussian distribution. As α decreases, the probability func-
tion of the alpha stable distribution becomes thicker, exhibiting stronger pulsing 
characteristics. This thick trailing property makes the alpha stable distribution suit-
able for describing actual noise with pulsing characteristics. β is a symmetric param-
eter indicating the symmetry of the distribution, with a range of − 1 ≤ β ≤ 1. A value 
of β = 0 indicates symmetry and is referred to as symmetric alpha stable distribution 
noise (SαS). γ is the dispersion coefficient, determining the extent of the probabil-
ity density function’s expansion. It is similar to the variance in Gaussian noise, with 

(1)ϕ(u) = exp jδu− γ |u|α[1+ jβsgn(u)ω(u,α)] ,

(2)ω(u,α) =

{

tan(πα
/

2), α �= 1
(2
/

π) log |u|, α = 1
,

(3)sgn(u) =







1, u > 0
0, u = 0
−1 u < 0

.
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γ ≥ 0. δ is a location parameter that represents the position of the probability density 
function on the x-axis, taking real number values. When 0 < α < 2, the non-gaussian 
stable distribution is referred to as the FLOA. Figures 1 and 2 illustrate the influence 
of the characteristic index α on the probability density function and alpha stable dis-
tributed noise signal, respectively, with varying intensity.

Fig. 1 The impact of characteristic index α on the probability density function of stable distribution

Fig. 2 Variations in noise signal intensity for different alpha stable distributions. a α = 1.8; b α = 1.5; c α = 1.2; 
d α = 0.5
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2.2  FLOM properties

The alpha stable distribution possesses several important properties, including its 
moment property. The statistical moments of noise provide valuable information about 
its characteristics [6, 7, 41]. The entire spectral distribution of statistical moments ranges 
from order 0 to infinite order, as depicted in Fig. 3. In general, the second moment of a 
random variable is usually defined as E|X|2.

For an alpha stable distribution, higher-order moment statistics, including the second-
order moment statistics, are non-existent. Consequently, the FLOM or lower-order dis-
tributed statistics play a crucial role. FLOM, represented as E|X|p, where 0 < p < α ≤ 2, are 
specifically defined for random variables following an alpha stable distribution. The con-
vergence properties of FLOM have been established through theorems [6, 7, 42], with 
proofs provided in [6]. Zolotareva [7] initially demonstrated these properties using the 
Mellin-Stieljes transformation, while Cambanis [43] offered a reproof based on charac-
teristic function characteristics. According to these theorems, when the characteristic 
index of the alpha stable distribution is 0 < α < 2, only moments of order less than α are 
finite [6, 7, 40]. Significantly, signal processing methods that assume finite variance or 
second-order statistics, such as the least squares algorithm and RMN algorithm, will 
experience significant degradation and may yield inaccurate results. This highlights the 
challenge faced by traditional nonlinear channel adaptive filters in handling pulse noise.

3  Design and implementation of SVS‑RMN algorithm
3.1  System identification model

The SVS-RMN algorithm for channel adaptive filtering aims to simultaneously input 
minimum shift keying (MSK) [44] signals corrupted by alpha stable distribution noise 
into both an unknown Hammerstein-type system [45–47] and an adaptive filter. The 
SVS-RMN algorithm is then employed to process the nonlinear data at the filter’s out-
put to obtain the optimal output signal. The block diagram of the system identification 
model for the nonlinear channel adaptive filter is shown in Fig. 4.

For an M-order finite impulse response (FIR) adaptive filter, the output at time n is 
given [45]:

where S = [S(0), S(1), …, S(n-1)]T and Wopt = [Wopt(0), Wopt(1), …, Wopt(n-1)]T represent 
the filter input signal vector and the optimal weight vector, respectively. The instantane-
ous error of the system’s output is then calculated as:

(4)y[n] = STWopt

Fig. 3 Diagram of moment distribution
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where d[n] = STWopt + e[n] represents the output signal of the unknown Hammerstein-
type system, and Wopt is the optimal weight coefficient vector. The noise term v[n] fol-
lows the FLOA.

The SVS-RMN channel adaptive filter proposed in this study employs a power function 
class Hammerstein nonlinear model, as shown in Fig. 5. The Hammerstein model consists 
of a nonlinear subsystem followed by a linear subsystem. The input signal S and the output 
power function X serve as the power functions of the Hammerstein nonlinear model.

Where c1, c2, …, cp are the nonlinear coefficients, h0, h1, …, hq are linear coefficients, p 
represents the nonlinear order, q is the linear memory depth. f(·) and h(·) represent the 
transmission function of the nonlinear subsystem and the impulse response of the linear 
subsystem respectively. Take the power function as an example, fm(‧) = (‧)m. S is a formal 
intermediate signal.

In this case, the Hammerstein nonlinear model of the power function class can be 
expressed as:

(5)e[n] = d[n]− y[n] = d[n]− STWopt

(6)X =

q
∑

k=0

h(k)

(

p
∑

m=1

cmS
m(n− k)

)

.

Fig. 4 Block diagram of the system identification model for the SVS-RMN algorithm

Fig. 5 Block diagram of the Hammerstein nonlinear model of the power function class. a Subsystem 
structure; b System structure
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The SVS-RMN algorithm, derived in this study, adaptively adjusts the Hammerstein 
filter until the responses of the two systems (as shown in Fig. 4) are equal to minimize 
the mean square error (MSE), as expressed in Eq. (7).

where L is the length of the input data.

3.2  Implementation of SVS‑RMN algorithm

The conventional RMN algorithm has strong robustness to non-Gaussian pulse noise 
suppression. The cost function can be expressed as:

where λ(n) is the mixed parameter. E|e[n]| and E|e[n]|2 represent the first- and second-
order moments of the instantaneous error, respectively. The adaptive iteration formula is 
expressed as:

where µ is the step factor used to control the convergence speed. Since the first-order 
moments E|X| and second-order moments E|X|2 of random variable X are not finite 
under the condition of FLOA, we consider the variable-step method to improve the 
effectiveness of the algorithm.

The variable step size adaptive filtering algorithm, based on the Sigmoid function, 
operates on the principle that the instantaneous error can be considered as a variable 
factor influencing the step size through a nonlinear functional relationship. By adjusting 
the skew parameter η, the algorithm can adaptively modify the change in the instantane-
ous error e[n] to achieve different convergence rates at different stages. In this section, 
the principle of variable step size adjustment will be introduced into the RMN algorithm 
based on the Sigmoid function, denoted as:

where the parameter η is the skew parameter, which is used to adjust the attenuation 
scale for different e[n].

In the adaptive filtering algorithm, the instantaneous error function e[n] is subject to 
FLOA, and its expression can be simplified as:

As can be seen from Fig.  4, X = STW in Eq.  (11) represents the output signal of an 
unknown system of Hammerstein type. The weight coefficient error vector is denoted as 
U = W-Wopt, and the system is optimized when the output U is minimized. Based on the 

(7)MSE(k) = 10 log10

(

1

L+ 1

k+L
∑

n=k

|e[n]|2

)

(8)J (n) = �(n)E|e[n]|2 + [1− �(n)]E|e[n]|

(9)
W (n+ 1) = W (n)+ µ

{

�(n)2e[n] + [1− �(n)]sgn(e[n])
}

(−2η exp(−ηe[n])S)/(1+ exp(−ηe[n]))2

(10)Sgm(e[n]) =
2

1+ exp(−ηe[n])
− 1, η > 0

(11)
e[n] = d[n] − STWopt = X + v[n] − STWopt

= ST
(

W −Wopt

)

+ v[n] = STU + v[n].
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analysis conducted above, it is inferred that in the conventional RMN algorithm, when the 
channel noise v[n] is FLOA, the second-order moment E|e[n]|2 of the instantaneous error 
e[n] becomes infinite when α < 2, and the first-order moment E|e[n]| of the instantaneous 
error e[n] becomes infinite when α < 1 [6, 7, 40, 42]. Therefore, the nonlinear property of the 
neural network Sigmoid function [29] is being considered for approximating these singular 
values.

The instantaneous error function e[n] outputted by the RMN algorithm is transformed, 
and its expression can be given as follows:

By substituting Eq.  (11) into Eq.  (12), the instantaneous error function after Sigmoid 
transformation yields finite values for E|e[n]| and E|e[n]|2. This information, along with the 
cost of the RMN algorithm, allows for the construction of a new cost function:

The impact of different sizes of the skew parameter η on the cost function J(n) is depicted 
in Fig. 6.

To minimize the cost function J(n), the conjugate gradient with respect to the filter tap 
coefficient is computed, and the instantaneous gradient is used as a substitute for the true 
gradient, resulting in the following equation 

The updated formula for the filter weight coefficient can be obtained by employing the 
steepest descent method.

(12)ê[n] = Sgm(e[n]) =
2

1+ e−η(e[n])
− 1, η > 0.

(13)J (n) = �(n)E
∣

∣ê[n]
∣

∣

2
+ [1− �(n)]E

∣

∣ê[n]
∣

∣.

(14)

∇̂W J (n) =
{

�(n)2ê[n] + [1− �(n)]sgn(ê[n])
}

∂ ê[n]/∂W

=
{

�(n)2ê[n] + [1− �(n)]sgn(ê[n])
}

∂(2/(1+ exp(ηe[n]))− 1)/∂W

=
{

�(n)2ê[n] + [1− �(n)]sgn(ê[n])
}

(−2η exp(−ηe[n]S)/(1+ exp(−ηe[n]))2

.

(15)W (n+ 1) = W (n)+ µ∇̂W J (n).

Fig. 6 The impact of different sizes of the skew parameter η on the cost function J(n)
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By substituting Eq.  (14) into Eq.  (15), the adaptive iterative update formula can be 
obtained: 

Let the initialization W(0) = 0, after k iterations, give the adaptive filter a new input 
signal S can get the output signal of the filter.

By substituting Eq.  (16) into the output signal y[n] = STWopt, we derive the adaptive 
iterative equation for the SVS-RMN algorithm. In this paper, the selected Sigmoid func-
tion shares similarities with the RBF, enabling it to approximate any curve indefinitely 
and mitigate the impact of noise variations in low-frequency channels. The introduced 
Sigmoid function effectively approximates and transforms the signal singularity caused 
by pulse noise, and its inhibitory ability strengthens with increasing pulse noise inten-
sity. This improvement addresses the issue of insufficient steady state or even failure of 
the RMN algorithm in FLOA environments, bringing the steady state error of the RMN 
algorithm closer to the actual value. Consequently, the anti-pulse interference capability 
of the RMN algorithm is significantly enhanced.

4  Simulation and analysis
4.1  Comparison of various pulse intensities

To evaluate the performance of the proposed SVS-RMN channel adaptive filtering algo-
rithm, we conducted simulation experiments using a minimum frequency shift keying 
(MSK) modulation signal in a low-frequency communication system. The simulation 
experiments were conducted in nonlinear channels using a power function Hammer-
stein model, where the relationship between input and output is described by Eq.  (6). 
The values of the nonlinear coefficient c were set as 1, 0.25, and 0.125, respectively, and 
the values of the linear coefficient h were set as 0.75, 0.035, and − 0.15, respectively [45, 
47]. We compared the performance of the SVS-RMN algorithm with that of the RMN, 
Volterra LMP, and VS-SKFLP algorithms under different noise pulse intensities. The 
MSE was used as a criterion to evaluate the performance of these algorithms, consider-
ing that the noise in the output signal of the filter has been suppressed. The MSE and 
mixed signal-to-noise ratio (MSNR) [45] are defined in Eqs. (7) and (17), respectively:

Here δs
2 represents the variance of the signal S, and γν is the dispersion coefficient of 

the alpha stable distribution noise. For the simulation, we assume the alpha stable distri-
bution noise to be FLOA, without loss of generality.

To assess the adaptability of the proposed algorithm to alpha stable distributed noise, 
we conducted simulation experiments on the RMN, Volterra LMP, VS-SKFLP, and SVS-
RMN algorithms under different noise pulse intensities, with MSNR set to 25 dB. We 
set α to 1.8, 1.5, and 1.2, respectively, and simulated the channel noise processing of the 
three algorithms using MATLAB software. The simulation parameters for each algo-
rithm can be found in Table 1. The data in Table 1 represents the results of 200 inde-
pendent runs, and a simulation diagram is provided in Fig. 7.

(16)
W (n+ 1) = W (n)+ µ

{

�(n)2ê[n] + [1− �(n)]sgn(ê[n])
}

(−2η exp(−ηe[n])S)/(1+ exp(−ηe[n]))2
.

(17)MSNR = 10 log10(δ
2
s /γv).
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In the table, the symbols µ, N and σ represent step factor, filter length and kernel 
parameter respectively, η is the skew parameter of Sigmoid function; µ1 and µ2 repre-
sent the linear and nonlinear step sizes of the Volterra LMP, respectively. N1 and N2 
represent the lengths of linear and nonlinear filters in the Volterra series adaptive filter, 
respectively.

As shown in Fig.  7, the SVS-RMN algorithm proposed in this study demonstrated 
robustness to the interference intensity of pulse noise, maintaining good performance 
even when the MSNR is 25 dB and α is 1.8, 1.5, and 1.2.  It exhibited superior conver-
gence speed and steady-state error compared to the RMN, Volterra LMP, and VS-SKFLP 
algorithms. The proposed algorithm outperformed traditional RMN and Volterra LMP 
algorithms based on the FLOM criterion, reducing the steady-state error by an average 
of 6 dB and 12 dB, respectively, while also improving convergence speed and steady-state 
error performance. The proposed algorithm exhibited stronger resistance to pulse inter-
ference. It is important to note that MSE results do not necessarily mean an increase in 
either symbol- or bit-error rates. Additionally, it was observed that for iterations greater 
than 10,000, the proposed algorithm overlapped with the VS-SKFLP algorithm based on 
the RBF criterion in certain areas. This consistency in the MSE change curve validates 
the correctness of the proposed method.

The reasons can be explained as follows:

1. The proposed SVS-RMN method effectively resolves the failure issue encountered by 
RMN, Volterra LMP, and VS-SKFLP algorithms in the presence of FLOA pulse inter-
ference. As the intensity of pulse interference increases, the performance of RMN, 
Volterra LMP, and VS-SKFLP algorithms is adversely affected. However, SVS-RMN 
demonstrates minimal susceptibility to pulse intensity and achieves superior balanc-
ing effects.

Table 1 Simulation parameters for the four algorithms with α = 1.8, 1.5, and 1.2

α = 1.8 α = 1.5 α = 1.2

SVS-RMN μ = 0.035, η = 1 μ = 0.035, η = 1 μ = 0.035, η = 1

Volterra LMP [16] N1 = 5, N2 = 25
μ = 3e−3, μ = 5e−5

N1 = 5, N2 = 25
μ = 3e−3, μ = 5e−5

N1 = 5, N2 = 25
μ = 3e−4, μ = 5e−5

VS-SKLMP [26] σ = 5, η = 1 σ = 4, η = 1 σ = 4, η = 1

RMN [30] μ = 0.0015 μ = 0.0015 μ = 0.0015

Fig. 7 When MSNR= 25 dB, the MSE curves of the SVS-RMN algorithm and RMN, Volterra LMP and VS-SKFLP 
algorithms in this paper. a α = 1.8; b α = 1.5; c α = 1.2
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2. In contrast to the traditional RMN algorithm, the method proposed in this paper 
resolves the issue of non-existent statistics of the first- and second-order moments in 
the RMN algorithm’s solution for FLOA. The proposed method allows for adaptive 
adjustment of the step size factor to accommodate varying intensity levels of pulse 
noise in different channel noise environments, thereby significantly enhancing the 
tracking performance of the RMN algorithm.

3. When compared to VS-SKFLP and Volterra LMP, the VS-SKFLP system based on 
RBF criteria exhibits a complex structure and requires more than two multiplica-
tions. Additionally, the step factor updating in Volterra LMP necessitates multiple 
operations, and the operations of Volterra sequence increase exponentially. On the 
other hand, the proposed SVS-RMN algorithm only requires a single multiplication 
operation, resulting in a simpler system, faster computation speed, and accelerated 
convergence.

4.2  Comparison of MSNR at different intensities

To further verify the effectiveness of the proposed algorithm in multipath weakened 
channels with different MSNR, the power function class Hammerstein model nonlin-
ear channel was considered. The performance of the SVS-RMN algorithm was com-
pared with the RMN, Volterra LMP, and VS-SKFLP algorithms, with the MSNR set to 
15 dB and 0 dB, as shown in Fig. 8.

The results showed that the SVS-RMN algorithm effectively mitigates the influence 
of MSNR changes in the channel, accelerating the convergence speed while main-
taining a low steady-state error. In contrast, the RMN, Volterra LMP, and VS-SKFLP 
algorithms were more susceptible to MSNR changes, with the MSE curve of the Vol-
terra LMP and RMN algorithms exhibiting the most significant changes. This may be 
attributed to the inability of these algorithms to effectively extract useful signals and 
suppress noisy signals in complex noise environments.

Fig. 8 When α = 1.5 and MSNR are 15 dB and 0 dB respectively, the performance of the proposed algorithm 
is compared with RMN, Volterra LMP and VS-SKFLP algorithms. a MSNR = 15 dB; b MSNR = 0 dB
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5  Conclusion
In this research, we have proposed the SVS-RMN nonlinear channel adaptive filtering 
algorithm based on the power function Hammerstein model. The introduction of the 
Sigmoid function optimizes the traditional RMN algorithm, resulting in derived cost 
functions and adaptive iteration formulas for the SVS-RMN algorithm. Experimental 
comparisons with the traditional RMN, Volterra LMP, and VS-SKFLP algorithms vali-
date the superiority of the proposed algorithm.  The simulation results demonstrate 
the following: (1) The proposed algorithm outperforms other RMN algorithms based 
on the FLOM criterion, Volterra LMP algorithm, and VS-SKFLP algorithm based on 
RBF criterion in terms of convergence speed, stability error performance, and com-
putational efficiency under different intensities of pulse noise and mixed noise inter-
ference.  (2)  Compared to the traditional RMN algorithm, the proposed algorithm 
achieves a reduction in steady-state error by approximately 6 dB, significantly improv-
ing the signal tracking performance of the original RMN algorithm in the presence of 
strong pulse noise. Thus, the proposed algorithm provides a new approach for sup-
pressing noise in nonlinear receivers operating in VLF/ELF channels.
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