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1 Introduction
Point cloud registration is a fundamental and critical technology in the field of com-
puter vision. It can be extensively applied in various domains, including 3D pose esti-
mation [1–3], 3D reconstruction [4–6], and simultaneous localization and mapping 
(SLAM) [7, 8]. In recent years, the remarkable achievements of deep learning have 
attracted numerous researchers to apply it to point cloud registration. Within the 
realm of registration problems, a significant amount of research has been dedicated 
to designing complex networks capable of accurately calculating robust rigid transfor-
mations. For instance, OMNet [9] incorporates a mask mechanism to counteract the 
detrimental effects of partial overlap in point clouds. RIEnet [10] introduces an inlier 
evaluation module to identify reliable correspondences. Predator [11] introduces 
an overlap attention block to facilitate the exchange of information between two 
point clouds. These methods exemplify the utilization of complex network designs 
to address specific challenges, such as handling partial overlap and exploring reliable 
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correspondences in point cloud registration. Undoubtedly, those works have achieved 
remarkable success in point cloud registration. However, they primarily concentrate 
on designing complex networks to achieve robust performance, often overlooking the 
simplification of the registration problem itself. In contrast, our approach focuses on 
simplifying the registration task to a correspondence pair search task. This simplifica-
tion enables us to address the problem using a simple network involving the stacking 
of a few convolution blocks [12] and a multiplication operation as the output layer. By 
simplifying the problem, we can achieve satisfactory results in point cloud registra-
tion without the need for intricate network architectures.

In this work, we introduce the soft-hard correspondence (SHC) framework to sim-
plify point cloud registration. SHC offers two modes: soft correspondences and hard 
correspondences. The hard correspondence mode simplifies registration by convert-
ing it into a correspondence pair search problem, which is then addressed using the 
soft mode. In the soft correspondence mode, represented by the Siamese network 
in Fig. 1, we use a simple architecture with a feature extractor and multiplication to 
explore point cloud pair relationships. The hard correspondence mode, represented 
by the full SHC framework in Fig. 1, includes additional components and processes 
beyond the Siamese network, transforming the registration task into a correspond-
ence pair search problem. By combining both modes, SHC provides a comprehensive 
and flexible solution for efficient point cloud registration.

To summarize, the proposed SHC trains a network in the soft correspondence mode 
to search for correspondence pairs between two point clouds. Subsequently, the hard 
correspondence mode, encompassing the complete SHC framework, is utilized to cal-
culate the final rigid transformation for registration. The main contributions of our 
work can be summarized as follows: 

Fig. 1 The overview of the SHC framework. SHC extracts the feature descriptor for point clouds. Then, SHC 
calculates correspondence score M and uses it to gather correspondence pairs. The correspondence pairs are 
filtered by SCV and sent to SVD to calculate rigid transformation. The coarse registration iterates a few times 
to get coarse rigid transformation and then uses fine registration to refine the final result. During the iteration, 
the source point cloud undergoes rotation and translation based on the calculated R and t, resulting in a new 
source point cloud
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1. Simplification of the point cloud registration problem: In this paper, SHC, which 
transforms the point cloud registration problem into a correspondence pair search 
problem, is introduced. We removed the optimization for R and t when calculating 
the loss because it would aggregate the errors from all points into the 3 × 3 rotation 
matrix and 3 × 1 translation vector.

2. Improves robustness: We have prior knowledge that the distance between two points 
on a rigid object does not change due to rotation. Based on this, we employ spatial 
consistency verification to let correspondence pairs mutually validate and assess their 
quality, removing pairs that do not support this prior knowledge. Our experiments 
demonstrate that accurate results can be achieved even if the found correspondence 
pairs contain fake correspondence pairs.

3. Reduction in the task complexity: SHC successfully simplifies the task, allowing for 
the utilization of a simple network architecture comprising only a few convolution 
blocks and an output layer to accomplish the new task. While complex networks may 
typically offer superior performance, our work demonstrates that by simplifying the 
task, a simple network can still achieve accurate results.

2  Related work
2.1  Correspondence‑based registration method

Correspondence-based methods typically involve two steps: first, using a feature extrac-
tion network [12–14] to establish correspondences between points, and then using 
methods such as SVD [10, 15, 16] or RANSAC [11, 17] to solve for the rigid transforma-
tion. Many researchers have made significant improvements on this basis. Deng et  al. 
[18] and Gojcic et al. [19] proposed to build better feature descriptors to search corre-
spondence pairs. Deng et al. [18] implemented PPFNet, which uses point pair features 
to improve the quality of the initial input features. Shen et al. [10], Qin et al. [15] and 
Li et al. [20] used a weighted method to reduce the influence of incorrect predictions. 
However, weighted methods still retain some errors and limit the learning of feature 
embedding networks. RIENet [10] uses an inlier evaluation module to compute the 
weight of correspondence pairs. IDAM [20] uses hybrid features to compute the weights. 
GeoTransformer [15] builds multiple weight SVDs to compute multiple transformations 
and select the best transformation as the result. RGM [16] adopts the Hungarian algo-
rithm to obtain hard correspondence pairs. However, using hard correspondence pairs 
without robust inlier evaluation modules will limit the registration performance. Wang 
and Solomon [21], Huang et al. [11] and Yew and Lee [22] used attention mechanisms 
to aggregate contextual information to extract discriminative feature extractors. DCP 
[21] utilizes attention mechanisms to extract more discriminative features. Predator [11] 
employs attention mechanisms to explore the overlapping regions. REGTR [22] uses 
attention mechanisms to predict whether a point belongs to the overlapping region and 
to find the corresponding points. Attention mechanisms are widely used in various net-
works, but their time and memory costs are not low. In addition, although embedding 
attention mechanisms in the network can improve the discriminative ability of the fea-
ture extractor, sometimes it provides no significant improvement. The other registration 
methods [23–25] also adopt correspondence pair searching methods.
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2.2  Learning‑based registration method

In the learning-based registration methods, a network is designed to compute the reg-
istration problem. PointLk [26, 27] integrates the Lucas and Kanada algorithm into 
deep learning for point cloud registration. FMR [28] aligns the global features of two 
point clouds to calculate the transformation parameter. OMNet [9] uses a mask mecha-
nism to reduce the influence of outliers for registering partial overlapping point clouds. 
3DSmoothNet [19] implements smoothed density value voxelization to process input 
data. 3DSmoothNet is robust for different sensor point clouds. FCGF [29] adopts a fully 
convolutional network to extract dense point cloud features. Regarding FMR, a new 
optimization goal for point cloud registration is proposed. Moreover, FMR computes 
transformations based on feature calculations and aligns the point clouds by matching 
their features. RPMNet [30] uses slack variables and weighted singular value decomposi-
tions (SVDs) to calculate transformation parameters and predicts annealing parameters 
to improve registration performance. In addition, Choy et  al. [31], Gao et  al. [32] and 
Zhu and Fang [33] also achieved remarkable performance in point cloud registration.

3  Methodology
In this section, we delineate the point cloud registration problem and elucidate how the 
SHC effectively addresses this challenge.

3.1  Problem description

The point cloud registration task involves determining a rigid transformation that aligns 
two point clouds. We will consider two point clouds, denoted as X and Y. Within these 
point clouds, there exist corresponding pairs (xi, yj) , where xi belongs to Point Cloud X, 
and yj belongs to Point Cloud Y. The relationship between the transformation param-
eters and the correspondence pairs can be described as follows:

where R and t denote the rotation matrix and translation vector, respectively. (xi, yj) 
denotes one of the correspondence pairs.

In practical scenarios, the input point clouds may not have a straightforward corre-
spondence based on their indices alone. Therefore, we need a correspondence matrix 
M to establish a relationship between the two point clouds. The above equation can be 
described as follows:

where X denotes the source point cloud, Y denotes the target point cloud, and M denotes 
the correspondence matrix, which describes the correspondence situation of two arbi-
trary points between X and Y. When M is known, the above equation has an analyti-
cal solution [34]. In contrast to fractal-wavelet analysis [35, 36], which decomposes the 
function into multiple functions, it merges multiple functions to ultimately obtain R and 
t. R and T are calculated from multiple correspondence pairs from the two point clouds, 

(1)R, t = arg min
R,t

||Rxi + t − yj||

(2)R, t = arg min
R,t

(RX + t − YM)



Page 5 of 16Chen et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:13  

and SVD combines the specific errors in the correspondence pairs, making it difficult for 
us to identify which specific pair is problematic. To address this issue, SHC employs a 
soft-hard correspondence framework, which abandons the direct search for the optimal 
R and t and instead focuses on finding matching point pairs.

Although deep learning methods have shown remarkable performance, it is challeng-
ing to achieve a 100% precision rate in identifying correspondence pairs. As a result, 
the utilization of the SHC method becomes crucial for achieving accurate registration 
performance, even in the presence of potential false correspondence pairs. While frac-
tal-wavelet analysis [37–39] has many applications in the field of image processing, in 
registration, we have some prior knowledge that can be leveraged. For instance, the dis-
tance between two points will not change due to rotation, allowing SHC to employ sim-
pler and more effective methods for outlier removal. We leverage the invariant property 
that the distance between two points does not change with rotation to discriminate the 
reliability of point pairs. However, it carries certain risks. When dealing with fractals, 
this property becomes ineffective due to the presence of self-similar geometric shapes 
within the fractal structure. Due to the lack of a fractal dataset, this paper did not delve 
further into the registration of fractal geometry. However, recent research on fractals 
[40] can offer new theoretical references for the registration of fractal geometry. Fur-
thermore, the reconstruction of Shannon wavelet formula [41] also provides theoretical 
insights for point cloud decomposition.

3.2  SHC frame

The SHC is proposed to simplify the registration problem by translating it into a cor-
respondence pair searching problem. After simplification, the difficulty of the task is 
reduced. On the one hand, for the registration problem, it is desirable for the results to 
be as close to the ground truth as possible, while for the correspondence pairs search 
problem, it is sufficient for the majority of the results to be accurate. On the other hand, 
the correspondence pairs search problem allows for the direct propagation of error gra-
dients and feature extraction networks, avoiding the merging and offsetting of errors.

Regarding traditional deep learning methods [15, 42, 43], carefully designed networks 
are typically utilized to effectively address registration problems. In contrast, the net-
work of SHC focuses on learning to differentiate correspondence pairs instead of learn-
ing the registration process itself. During the training step, the SHC method employs a 
soft correspondence mode, where a simple network is trained to discriminate between 
true and fake correspondence pairs. It is important to note that this mode alone is insuf-
ficient to solve the registration problem effectively. Therefore, during the evaluation 
step, the SHC method switches to a hard correspondence mode, utilizing the entire SHC 
framework to achieve precise and accurate registration results.

The complete SHC comprises two main components: coarse registration and fine reg-
istration. The objective of the coarse registration stage is to identify correspondence 
pairs on a global scale to estimate a coarse rigid transformation. The fine registration 
stage focuses on identifying correspondence pairs locally based on the estimated rigid 
transformation. Its purpose is to refine the registration outcome and reduce errors intro-
duced during the coarse registration step.
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3.2.1  Soft‑hard correspondence

As previously mentioned, SHC simplifies the registration problem. We only need to 
train a simple network to solve the new problem. It is important to note that a simple 
network does not necessarily imply better performance. It is merely used to demonstrate 
that our method has indeed simplified the problem. Therefore, the structure of the net-
work is very simple. The network consists of a few convolution blocks and a multiplica-
tion operation as the output layer. It can be described as follows:

The convolution blocks extract the features of xi in Point Cloud X and yj in Point Cloud 
Y. Then, they are multiplied to obtain the similarity Sij of two points ( xi and yj ). The con-
volutional blocks are responsible for extracting the features of xi in Point Cloud X and yj 
in Point Cloud Y. These features are then multiplied together to calculate their similarity, 
denoted as Sij . During the training stage, the softmax function is utilized to convert the 
calculated similarity into similarity scores.

The trained network serves as a feature extraction network, enabling the generation of 
soft or hard correspondence pairs. During the training phase, to ensure differentiability, 
SHC applies the softmax() function to the similarity matrix S, producing the similarity 
scores matrix M. This matrix is then employed to compute the loss used for training the 
network. By multiplying the target point cloud with the matrix M, soft correspondence 
pairs are established to compute the rigid transformation. During the evaluation phase, 
since the trained model remains fixed, the differentiability of each operator no longer 
needs to be considered in the SHC framework. Consequently, the argmax() function is 
directly applied to each column of the similarity matrix S to identify the index of the 
maximum value in each column. These indices are then used to construct hard corre-
spondence pairs. By utilizing these correspondence pairs, the SHC framework can accu-
rately compute the rigid transformation.

We demonstrate the distinction between soft and hard correspondence modes by 
employing a base model with an appended SVD solver in the soft correspondence mode. 
The experimental results are depicted in Fig.  2. As observed in the figure, the perfor-
mance of the trained model progressively improves throughout the training process. 
However, due to the robustness of SHC, it does not necessitate an impeccably precise 
feature embedding network. By the second epoch, the root mean square error of SHC is 
already below 1 degree, and by the third epoch, the performance of SHC exhibits no sig-
nificant disparity from the best achievable performance. In essence, the enhancement of 
the base model’s performance signifies that the network becomes more adept at search-
ing for correspondence pairs during training. The flat curve of SHC illustrates that our 
method can yield accurate results even when the correspondence pair search problem is 
not perfectly solved.

3.2.2  Coarse registration

The coarse registration stage utilizes a network trained in soft correspondence mode to 
perform a global search for correspondence pairs. It is important to note that achiev-
ing zero error in deep learning networks is highly unlikely. Moreover, as the network’s 

(3)Sij = Fxi ∗ F
T
yj
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training objective is not explicitly focused on solving the registration problem, these 
errors can potentially impact the overall registration performance.

To address this issue, we introduce the spatial consistency verification (SCV) module, 
which ensures self-consistency among the correspondence pairs, resulting in reliable 
correspondences. The operation of the SCV module is illustrated in Fig. 1. We employ a 
voting-based approach to determine the authenticity of a point pair (S, T) as a true cor-
respondence pair. Here, si represents the distance between Point S and the i-th point in 
the point cloud to which S belongs. Similarly, we obtain ti through a similar operation. 
Assuming that most of the other point pairs are true correspondence pairs, it should 
hold that most of si is equal to ti . By conducting a voting process and discarding cor-
respondence pairs that contradict this assumption, we are able to obtain a set of self-
consistent correspondence pairs. However, it is important to note that the effectiveness 
of the voting method depends on a sufficient number of reliable votes contributed by 
true correspondence pairs, as the votes provided by false correspondence pairs are con-
sidered unreliable.

To increase the number of accurate correspondence points, we adopt an iterative 
approach aimed at minimizing the initial pose differences between the two point clouds, 
thereby enhancing the reliability of the network. In contrast to the ICP algorithm [44], 
our approach limits the number of iterations to two or three. This is because the ini-
tial few iterations are notably effective in reducing the pose differences, while additional 
iterations do not yield substantial improvements in performance.

3.2.3  Fine registration

Since the coarse registration stage identifies correspondence pairs globally, there may be 
cases where points with similar feature descriptors are positioned far apart. Although 
the SCV module extracts a self-consistent subset of correspondence pairs, effectively 

Fig. 2 The figure presented illustrates the performance of the trained model on the ICL-NUIM dataset 
throughout the training process. The horizontal axis depicts the number of epochs, while the vertical axis 
represents the root mean square error (RMSE) of rotation. The dotted line corresponds to the performance of 
the base model, which utilizes the soft correspondence mode concatenated with an SVD solver. The solid line 
represents the performance of the SHC framework
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handling self-consistent yet similar local patches, such as two identical balls in the same 
scene, remains challenging. To address this issue, we incorporate fine registration to 
further refine the registration results. Among various deep learning approaches [21, 
45], ICP is a widely used fine registration method. However, the iterative nature of ICP 
necessitates multiple iterations to approximate the optimal solution, leading to potential 
time consumption. In the fine registration stage of SHC, instead of relying on the itera-
tive approximation approach of ICP, we leverage the SCV module to establish a self-con-
sistent subset of correspondence pairs. This approach eliminates the need for multiple 
iterations and enables us to achieve optimized results through a single fine registration 
step.

Similar to ICP, we employ the closest point map (CPM) method to establish initial cor-
respondence pairs. Subsequently, SHC utilizes the SCV module to obtain reliable cor-
respondence pairs, which are essential for computing the final results. To align the point 
clouds based on the obtained correspondence pairs, we employ the SVD solver to solve 
for the rigid transformation. Another option for estimating the rigid transformation is 
RANSAC (random sample consensus), which is a robust algorithm capable of handling 
outliers and noisy data. RANSAC achieves this by iteratively selecting random sub-
sets of correspondence pairs and estimating the transformation that best fits the pairs. 
However, RANSAC’s reliance on random sampling makes it unreliable and necessitates 
hundreds or thousands of iterations, which contradicts our objective of simplifying the 
point cloud registration problem. Most importantly, the utilization of the SCV module 
to obtain reliable correspondence pairs enables us to employ the simpler SVD method.

3.3  Loss functions

Under ideal conditions, the problems of point cloud registration and correspondence 
pair search are mathematically equivalent. Knowledge of the correspondence pairs 
between two point clouds reveals their rigid transformation, and vice versa. However, 
in practice, the quality of the correspondence pairs does not always exhibit a strictly 
positive correlation with the performance of the point cloud registration. Figure 3 illus-
trates the relationship between correspondence loss and registration performance. 
Notably, the figure demonstrates that a lower correspondence loss does not necessarily 
lead to a lower registration error. In fact, in certain cases, a lower correspondence loss 
can even result in a higher registration error. Due to this inherent imperfection, many 
existing works [10, 21, 46] prioritize optimizing the final registration result. However, 
this approach can give rise to new problems. Achieving a lower registration error does 
not necessarily indicate that the trained network has learned a more effective feature 
descriptor. This is because the errors introduced during the feature extraction step are 
counteracted when calculating the final result. The feature error does not influence the 
registration errors in the same direction. For example, certain errors may lead to an 
overestimation of the computed angle compared to the ground truth, while other errors 
may result in an underestimation of the computed angle. If these errors reach an equi-
librium state, it is possible to have correspondence pairs with errors yet still produce 
results that are close to the ground truth. Fortunately, SHC transforms the registration 
problem into a correspondence pair search problem, eliminating the reliance on error 
balancing to achieve accurate registration results. In SHC, our objective is to solve 
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the correspondence pair search problem by minimizing the errors in correspondence. 
Hence, the loss function of SHC is formulated to minimize the correspondence loss. The 
loss function can be expressed as follows:

where Mij denotes the similarity score of Point xi and Point yj , I(·) is the indicator func-
tion that returns 1 if true, ǫ is the correspondence threshold, and R̂ and t̂ are the ground 
truth rotation matrix and translation vector, respectively.

4  Experiment
In this section, the SHC is implemented in multiple datasets to prove its performance 
(FIg. 4). Additionally, a few experiments are conducted to validate the rationality of its 
structural design. In these experiments, we compare classical traditional ICP [44] and 
Go-ICP [47], deep learning methods DCP [21], IDAM [20], CEMNet [48], and RIENet 

(4)L =

n∑

i=1

n∑

j=1

(1−Mij)I(||R̂xi + t̂ − yj|| < ǫ)

Fig. 3 This figure shows the loss and root mean square error of rotation during training. It is tested in dataset 
ICL-NUIM

Fig. 4 Visualization results on ModelNet40, 7Scene and ICL-NUIM datasets
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[10]. The results of ICP, Go-ICP, IDAM and CEMNet are obtained from CEMNet [48], 
and DCP and RIENet are reproduced in the same environment as SHC. The experi-
mental hardware environments include an NVIDIA GeForce RTX 2080 Ti and Intel(R) 
Core(TM) i7-9700k CPU.

4.1  Implement details

The SHC is implemented in PyTorch, and an ADAM optimizer is used for optimization. 
The initial learning rate is set to 0.001 and is multiplied by 0.1 at epochs of 20, 35, and 
45. The total number of epochs is 50. During the training step, the batch sizes of train-
ing and testing are set to 16 and 4, respectively. In the evaluation step, the batch size for 
evaluation is set to 1. The correspondence threshold ǫ is set to 0.001.

4.2  Comparison evaluation on ModelNet40

To assess the performance of SHC, the experiment employs mean absolute error (MAE) 
and root mean square error (RMSE) metrics to quantify the rotation and translation 
errors. Both MAE and RMSE are utilized to evaluate the accuracy of the registration 
process, but RMSE is particularly sensitive to larger errors. Ideally, in a robust model, 
the values of RMSE and MAE should be relatively close. If there is a substantial differ-
ence between the RMSE and MAE values, it suggests that the registration performance 
varies significantly across different samples.

4.2.1  Dataset setting

The ModelNet40 dataset [49] is widely employed for point cloud registration tasks. It 
comprises 12,308 CAD models belonging to 40 different categories. In this experiment, a 
subset of 5,112 CAD models from the first 20 categories is used to train the SHC model. 
The experiment adopts the preprocessing approach introduced in RIENet [10], which 
involves removing 25% of the points from each point cloud to simulate partial overlap-
ping. For the registration task, random rigid transformations are generated for each 
point cloud. The range of Euler angles is set to [0, 45], and the translation range is set to 
[ − 0.5, 0.5].

4.2.2  Clean point cloud

SHC first undergoes evaluation using clean point clouds consisting of 2468 CAD mod-
els. These clean point clouds do not contain Gaussian noise but exhibit partial over-
lapping. Moreover, the correspondence pairs in the clean point clouds are considered 
perfect correspondences, where the distance between these pairs becomes zero after 
applying the transformation to the source point cloud. This experiment demonstrates 
the upper limit performance of SHC under ideal conditions. It is important to note that 
deep learning methods inherently possess biases in the output of continuous values, 
making it nearly impossible to achieve a zero error. Conversely, traditional methods, 
while having the potential to attain zero error under ideal conditions, often struggle to 
achieve such ideal performance across the entire dataset. SHC addresses the registra-
tion problem by not directly utilizing the continuous values output by the deep network 
model for registration. It employs a soft correspondence mode to provide more ideal 
states and a hard correspondence mode to eliminate the bias in the network’s output. As 
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shown in Table 1, SHC outperforms the runner-up approach significantly in all metrics. 
The near-zero error indicates that SHC possesses the capability to achieve zero error in 
most of the samples.

4.2.3  Unseen categories

To assess the generalization ability of SHC, we include the last 20 categories of CAD 
models that are distinct from the training set in this experiment. The trained SHC model 
is then tested on unseen class objects and compared with other methods. As shown in 
Table 2, the performance of SHC on unseen point clouds exhibits no significant differ-
ence compared to the clean point cloud scenario. These results demonstrate that SHC 
can achieve robust performance when dealing with point clouds from unseen classes.

4.2.4  Gaussian noise

In line with the settings of RIENet, we introduce Gaussian noise to the point cloud to 
simulate a noisy environment. As mentioned earlier, SHC simplifies the registration 
problem by transforming it into a correspondence pair search problem. This search 
problem does not necessitate a perfect resolution and allows for a certain tolerance 
toward errors. Consequently, SHC exhibits resilience toward additional errors intro-
duced by noise. As depicted in Table 3, while the performance of some other methods 

Table 1 The registration performance on partial overlapping clean point cloud

Bold indicates that it has the best performance

Model Clean

RMSE(R) RMSE(t) MAE(R) MAE(t)

ICP 13.7952 0.0391 4.4489 0.0196

Go-ICP 14.7223 0.0328 3.5112 0.0127

DCP 9.3036 0.0936 6.3455 0.0615

IDAM 2.3384 0.0102 0.4711 0.0025

CEM 1.5018 0.0009 0.1385 0.0001

RIE 0.0062 0.0000 0.0018 < 0.0001

Our < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 2 The registration performance on partial overlapping unseen categories point cloud

Bold indicates that it has the best performance

Model Unseen

RMSE(R) RMSE(t) MAE(R) MAE(t)

ICP 14.7732 0.0351 3.5938 0.0132

Go-ICP 13.8322 0.0321 3.1579 0.0121

DCP 8.5182 0.0755 6.2885 0.0532

IDAM 2.1566 0.0151 0.6135 0.0037

CEM 1.1013 0.0020 0.0804 0.0002

RIE 0.0020 < 0.0001 0.0011 < 0.0001

Our < 0.0001 < 0.0001 < 0.0001 < 0.0001
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significantly deteriorates, SHC continues to demonstrate robust performance in the 
presence of noise.

4.3  Comparison evaluation on 7Scene and ICL‑NUIM

To further validate the performance of SHC, we employ the 7Scene dataset [50] and 
the ICL-NUIM dataset [51] for evaluation. The 7Scene dataset consists of seven indoor 
scenes, namely chess boards, fires, heads, offices, pumpkins, red kitchens, and stairs. 
Due to the powerful generalization capability of SHC, the model trained on the Mod-
elNet40 dataset is able to successfully evaluate all 353 samples in the 7Scene dataset. 
The data processing for both the 7Scene and ICL-NUIM datasets follows the method-
ology outlined in RIENet [10], involving sampling 2048 points, removing 25% of the 
points, and applying random rigid transformations to the remaining points. Since the 
ICL-NUIM dataset does not provide perfect correspondence pairs, SHC cannot achieve 
zero registration error in this scenario. Nonetheless, SHC still achieves accurate results, 
and the small discrepancies between the RMSE and MAE indicate the stability of SHC’s 
performance (Table 4).

4.4  The loss choice of SHC

In this experiment, three different loss functions are compared using the clean Model-
Net40 dataset. For evaluating point correspondences, a point is considered an inlier if its 
closest distance to the corresponding point in another point cloud is less than 0.001. The 
correspondence loss is used to maximize the similarity score of inliers, the chamfer loss 
is used to minimize the nearest neighbor point distance between the transformed source 
point cloud and the target point cloud, and the transformation loss is used to mini-
mize the difference between the calculated rigid transformation and the ground truth 
transformation. The other two losses primarily prioritize registration performance, and 
although they may yield fewer inliers, they still produce reliable rigid transformations. 
On the other hand, the correspondence loss emphasizes the search for inliers, leading 
to a substantial increase in the number of identified inliers, but it may not necessarily 
result in a significant improvement in the registration performance. Figure 5 illustrates 
that the rotation angle errors of these three loss functions are correlated with the num-
ber of identified inlier points. Indeed, the correspondence loss function is the only one 
that exhibits the ability to identify over 70% of the inlier points, whereas the other loss 

Table 3 The registration performance on partial overlapping point cloud with Gaussian noise

Bold indicates that it has the best performance

Model Noise

RMSE(R) RMSE(t) MAE(R) MAE(t)

ICP 12.5413 0.0398 4.2826 0.0184

Go-ICP 14.5225 0.0329 3.4252 0.0114

DCP 9.9544 0.0906 7.3685 0.0635

IDAM 3.5701 0.0206 1.0642 0.0066

CEM 2.2722 0.0014 0.3799 0.0008

RIE 0.0244 0.0001 0.0103 < 0.0001

Our < 0.0001 < 0.0001 < 0.0001 < 0.0001
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functions only manage to find less than 3% of the inlier points. While error counterac-
tion can contribute to robust registration performance, it may also impede the learning 
of feature extraction capabilities.

4.5  Ablation study

In this section, ablation experiments are conducted to evaluate the effectiveness of the 
coarse and fine registration pipeline in SHC. The base model directly utilizes the built 
soft correspondences from the soft correspondence mode and applies an SVD solver 
to calculate the rigid transformation. As indicated in Table 5, incorporating the coarse 
registration pipeline leads to a significant improvement in performance. This outcome 
validates the efficacy of the SHC framework in transforming the point cloud registra-
tion problem into a correspondence pair search problem. Without leveraging the SHC 
framework, it would be challenging to achieve satisfactory results in point cloud reg-
istration. In detail, the trained model demonstrates the ability to robustly identify 
correspondence pairs, but achieving 100% accuracy can be challenging. The coarse reg-
istration process addresses the potential negative impact of these errors by translating 

Table 4 The registration performance on 7Scene and ICL-NUIM

Bold indicates that it has the best performance

Model RMSE(R) RMSE(t) MAE(R) MAE(t)

ICL-NUIM

ICP 10.1247 0.3006 2.1484 0.0693

Go-ICP 1.5515 0.0601 0.6333 0.0241

DCP 6.7184 0.1516 4.7844 0.1096

IDAM 9.4539 0.3040 4.4153 0.1385

CEM 0.0821 0.0002 0.0211 0.0001
RIE 0.0654 0.0026 0.0440 0.0019

Our 0.0563 0.0021 0.0434 0.0016

7Scene

ICP 19.9166 0.1127 7.5760 0.0310

Go-ICP 24.2743 0.0360 7.1068 0.0137

DCP 10.3565 0.0538 7.5818 0.0401

IDAM 10.5306 0.0539 5.6727 0.0303

CEM 0.1768 0.0012 0.0434 0.0002

RIE 0.0144 < 0.0001 0.0063 < 0.0001

Our < 0.0001 < 0.0001 < 0.0001 < 0.0001

Fig. 5 This picture shows three loss functions performance during training. The full line is RMSE of rotation; 
the dotted line is the number of found inlier points
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the soft correspondence relationship into a hard correspondence relationship and build-
ing self-consistency correspondence pairs. Despite the coarse registration already pro-
ducing a robust result, the fine registration process further enhances the registration 
performance. This finding suggests that the fine registration step can effectively refine 
the results.

5  Conclusion and future work
In this paper, we propose SHC, which simplifies the problem of point cloud registration 
by redefining it as a correspondence pair search problem. Through this simplification, 
the problem no longer requires perfect solutions and can be addressed using a simple 
network composed of a few convolution blocks and a multiplication operation. SHC 
offers two modes: soft correspondence mode and hard correspondence mode. In the 
hard correspondence mode, the registration problem is transformed into a correspond-
ence pair search problem, while the soft correspondence mode trains a network to solve 
this new problem. The experimental results demonstrate that SHC successfully simpli-
fies the registration problem. A simple network can achieve performance comparable 
to that of complex registration networks, and it has the ability to achieve zero error on 
ideal datasets. While SHC simplifies the registration problem and achieves comparable 
results with an extremely simple feature extractor network architecture, it is important 
to acknowledge that the feature extractor still plays a critical role, particularly for more 
complex point cloud registration tasks. In future work, we plan to design feature extrac-
tors that are more suitable for SHC to further enhance the registration performance.
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