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1 Introduction
Human object detection has become a crucial and fundamental technology in the field 
of computer vision in recent years. Its ultimate goal is to obtain the positions and quan-
tities of humans from images or videos. Object detection serves as the foundation for 
many other computer vision tasks, such as instance segmentation [1–4], image caption-
ing [5–7], and object tracking [8].
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Traditional methods for human detection include segmentation-based and match-
ing-based methods, gradient-based methods, and statistical learning-based methods. 
Segmentation-based methods for human object detection accurately determine the 
position of the target human object by employing background subtraction or establish-
ing statistical models. For instance, Rother et  al. [9] proposed the GrabCut algorithm 
based on improved Graph-cuts, which converts target segmentation into energy mini-
mization problems for human object detection in static images. To enhance the speed 
and accuracy of target segmentation detection, Han et al. [10] combined the GrabCut 
algorithm with a fusion of local linear estimation in a multi-scale framework. Gradient-
based methods for object detection primarily utilize the gradient variations in images 
to detect the target objects. Dalal et al. [11] introduced the Histogram of Oriented Gra-
dients (HOG), which focuses on the gradient direction changes in the image to detect 
the target objects. Statistical learning-based methods mostly employ support vector 
machines (SVMs). Ronfard et al. [12] performed segmentation and annotation of human 
body parts in images and utilized SVM and correlation vector machines for classification 
learning of the segmented body parts. This approach resulted in a body part classifica-
tion model that accurately classifies body parts and provides their position information. 
These traditional methods for human detection have laid the foundation for this field. 
However, most of them face challenges such as slow detection speed, poor real-time per-
formance, and subpar performance in complex scenes. They have not fully utilized the 
advantages of big data and exhibit limited robustness in handling variations in human 
scales.

The development of deep learning techniques has brought revolutionary progress to 
object detection. In the field of human object detection, deep learning-based methods 
outperform traditional approaches, as they can autonomously learn features at differ-
ent levels from the training dataset. These methods can be mainly categorized into two 
types. The first type is two-stage object detection algorithms based on region propos-
als. Representative examples include the region-based convolutional neural network 
(R-CNN) framework proposed in 2014 [13], along with its improved versions, such as 
Fast R-CNN [14] and Faster R-CNN [15]. Although two-stage object detection methods 
achieve higher accuracy, they suffer from slow detection speeds, making it challenging 
to meet real-time requirements. The second type is one-stage object detection algo-
rithms based on regression. Examples of such methods include YOLO [16], RetinaNet 
[17], and SSD [18]. These methods eliminate the need for region proposal networks and 
formulate object detection as a regression problem. They achieve faster detection speed 
while ensuring detection accuracy and improving robustness. Among the YOLO series 
algorithms, YOLOv4 [19], as a classic model in the YOLO series of algorithms, has been 
optimized in many aspects to achieve a compromise between speed and accuracy [20]. It 
has a simple structure, low requirements on basic equipment, and is easy to deploy.

Since YOLOv4 is a universal target detector, it is necessary to adjust the network in 
order to make it suitable for the single-class detection task of human target detection. 
This paper focuses on addressing the issues of low detection accuracy and significant 
missed detections of small- and medium-sized human targets in complex real-world vis-
ual scenes and proposes improvements to the original YOLOv4 algorithm.

The contributions of this work can be summarized as follows:
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(1) To enhance the perception of multi-scale targets, this paper intends to replace the 
original SPP (spatial pyramid pooling) [21] module with the ASPP (Atrous Spatial 
Pyramid Pooling) [22] module, which increases the receptive field hierarchy of the 
network.

(2) To enhance the feature representation capability of the network for small- and 
medium-sized targets, a custom-built two-layer Bi-FPN (Bidirectional Feature Pyr-
amid Network) [23] is employed to replace the original PANet (path aggregation 
network) [24] multi-scale fusion module. Additionally, a new feature input is intro-
duced to reuse mid–low-level features and reduce the missed detection rate.

(3) To achieve a balance between accuracy and parameter efficiency, the standard 
convolutions in Bi-FPN are replaced with depth-wise separable convolutions [25], 
resulting in a complete ABYOLOv4 algorithm. Finally, the performance of the 
two different improved algorithms proposed in this paper is evaluated using the 
VOC2012 test set. The improved YOLOv4 algorithm shows a 0.5% increase in aver-
age precision (AP) compared to the original algorithm, while reducing the model’s 
weight file size by 45.3  M, achieving a balance between accuracy and parameter 
efficiency.

The structure of the following sections is as follows: In the Method section of Chap-
ter  2, a brief overview of the overall structure of YOLOv4 will be provided, followed 
by detailed explanations of the improvements made to the single-category YOLOv4 
human detection model, including the introduction of the ASPP module and the con-
struction of the two-layer Bi-FPN module. In the Experimental Results and Analysis 
section of Chapter 3, the proposed ABYOLOv4 algorithm will be validated, compared, 
and analyzed on the publicly available VOC2007 and VOC2012 datasets. The Conclu-
sion section of Chapter 4 will provide a summary of the proposed algorithm and present 
prospects for future research.

2  Materials and methods
2.1  YOLOv4 object detection algorithm

YOLOv4 is a one-stage object detector that can determine the positions of the target 
objects in given images or videos, which incorporates numerous optimization tech-
niques based on previous algorithms, including improvements in backbone networks, 
activation functions, loss functions, network training, and data processing. YOLOv4 
consists of three main components: the backbone network (CSPDarkNet53) for feature 
extraction, the Spatial Pyramid Pooling (SPP) module to enhance high-level seman-
tic features, a Path Aggregation Network (PANet) for multi-scale feature fusion, and a 
YOLO Head for predicting object positions. The detection process of YOLOv4 is illus-
trated in Fig. 1.

The backbone network used in YOLOv4 is CSPDarkNet53, which is an improvement 
based on DarkNet53. It incorporates residual connections to accelerate the training 
process and employs the Mish activation function. Compared to the traditional ReLU 
with hard zero boundaries, the Mish function enhances the network’s generalization 
and accuracy. For feature aggregation, YOLOv4 adopts the PANet, a path aggregation 
network, at its neck. It introduces a bottom-up feature pyramid, aggregating different 
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features from various layers of the backbone network to enhance feature extraction 
capabilities. Additionally, YOLOv4 incorporates the SPP (Spatial Pyramid Pooling) as 
an additional module to enlarge the network’s receptive field, enabling the extraction of 
important contextual feature information. The network structure is illustrated in Fig. 2.

The head of the YOLOv4 network remains the same as YOLOv3. However, in terms of 
the loss function, YOLOv4 no longer utilizes mean square error (MSE) as the regression 
box prediction error. Instead, it adopts the CIOU (complete intersection over union) 
error. The CIOU error takes into account the distance, overlap ratio, and scaling between 
the target and anchor boxes. Compared to the IOU loss, the CIOU loss provides a more 
stable regression for the bounding boxes. The specific formulas for calculating the CIOU 
error are given by Eqs. (1–3):

(1)LCIOU = 1− IOU(a,b) +
ρ2(actr, bctr)

d2
+ αv

(2)α =
v

1− IOU(a,b) + v

(3)v =
4

π2

(
arctanwgt

hgt
− arctan

w

h

)2

Fig. 1 Flow chart of YOLOv4 object recognition
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In this context, IOU(a,b) refers to the intersection of union between the ground truth 
box and the predicted box. ρ2(actr, bctr) represents the Euclidean distance between the 
centers of the ground truth box and the predicted box, while d denotes the diagonal 
distance of the minimum bounding box that encloses both boxes. wgt , hgt , w, h are the 
width and height of the real box and the predicted box, respectively.

2.2  Category adjustment for detection

The original YOLOv4 is a multi-class universal detector. However, single-class detec-
tion is advantageous for saving computational resources and accelerating model infer-
ence speed. In the class adjustment for YOLOv4, a single-class object detection model 
is trained specifically for detecting human bodies. YOLOv4 employs a multi-scale pre-
diction approach, where it performs detection on three different scales: (52 × 52 × 64), 
(26 × 26 × 256), and (13 × 13 × 1024). Each scale is responsible for detecting large, 
medium, and small objects , respectively, and the total number of predicted pixels is the 
sum of the pixels across the three scales. The original YOLOv4 defines a set of anchor 
boxes with different sizes for each scale, resulting in a total number of anchor boxes of:

YOLOv4 obtained the size of the prediction box by predicting the horizontal and ver-
tical offset of each anchor box and the width–height difference t̂x, t̂y, t̂w , t̂h , and each 
prediction box contained predicted target confidence c to judge whether there were tar-
gets in the prediction box, and 20 target categories confidence p to predict the probabil-
ity of each category of the target number field in the box. Therefore, the total number of 
prediction parameters for YOLOv4 is:

(4)Nbox = NpixelNanchor = 52× 52+ 26× 25+ 13× 13× 3 = 10647

Fig. 2 YOLO4 framework
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To obtain a single-class human object detector, we can modify the 20 class confidence 
scores to only include the "person" class. According to Eq. (5), the total number of pre-
dicted parameters for a single-class human detector is:

By combining Eqs.  (5) and (6), we can conclude that the parameter count of the 
YOLOv4 human object detector, after adjusting the detection classes, accounts for only 
24% of the original YOLOv4 object detection algorithm. This undoubtedly reduces the 
computational burden and speeds up the model’s inference rate. Therefore, adjusting the 
detection classes is necessary.

2.3  ABYOLOv4 human object detection network

After adjusting the detection categories of YOLOv4, further modifications were made 
to the model’s structure to achieve faster and better human object detection. Firstly, to 
address the issue of low detection rate for small-scale human objects, the SPP module 
was replaced with the ASPP module to increase the network’s receptive field hierarchy 
and improve its ability to perceive multi-scale objects. Secondly, a custom-built dual-
layer Bi-FPN was introduced to replace the original PANet for multi-scale feature fusion, 
along with the addition of a new feature input to reuse middle and low-level features, 
enhancing the network’s feature representation for medium and small-scale objects. 
Lastly, to strike a balance between accuracy and parameter count, standard convolu-
tions in Bi-FPN were replaced with depth-wise separable convolutions, The improved 
network is named ABYOLOv4. The following is a detailed explanation of the improved 
module and the overall network structure of ABYOLOv4.

2.3.1  ASPP feature enhancement module

ASPP (Atrous Spatial Pyramid Pooling) is a multi-scale high-level spatial feature extrac-
tion module. It consists of a 1× 1 convolution, three 3× 3 convolutions with different 
dilation rates, and an adaptive global pooling layer. The dilation rates of the Atrous con-
volutions can be customized, allowing for flexible multi-scale feature extraction. Com-
pared to the SPP module in the original YOLOv4 that uses pooling layers, ASPP replaces 
the pooling layer with three sets of dilated convolutions to reduce information loss dur-
ing pooling. It divides the input features into five branches, each with a different recep-
tive field. Compared to the SPP module with only three receptive fields, ASPP refines the 
spacing between receptive fields, enlarging the receptive field range and enhancing the 
network’s ability to perform semantic discrimination on high-level features. The struc-
ture of ASPP is illustrated in Fig. 3.

The receptive field of a convolutional layer represents the information processing 
range of the convolution. As the network deepens, the receptive field expands, allow-
ing the network to transition from local perception to global perception. To better align 
the ASPP module with the objectives of this paper, an analysis of the composition of 
the receptive field in the module is necessary. The receptive field can be represented by 
Eq. (7).

(5)Nparm = Nbox × (4 + 1+ 20) = 266175

(6)Nparm = Nbox × (4 + 1+ 1) = 63882
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The formula indicates that R represents the receptive field size, k denotes the kernel 
size, and r is the dilation rate. Based on this equation, the correspondence between the 
convolutional receptive field and the dilation rate is shown in Table 1.

To enhance the detection performance of the network for small- and medium-sized 
human targets, this paper chooses a small receptive field size of 3. To ensure a balanced 
increase in the receptive field hierarchy, receptive fields 7 and 11 are selected. This cor-
responds to using 3 × 3 convolutions with dilation rates of 1, 3, and 5, along with the 
1 × 1 convolution and global pooling layers in the ASPP module. The chosen receptive 
field composition for the ASPP module in this paper is 1, 3, 7, 11, and 13. This struc-
ture has two additional receptive field sizes compared to the SPP module in the original 
YOLOv4, and the receptive fields are relatively small. This allows for better extraction of 
multi-scale features and enhances the network’s feature representation capability.

2.3.2  Bi‑FPN multi‑scale feature fusion module

Bi-FPN short for Bidirectional Feature Pyramid Network is a weighted bidirectional 
(top-down + bottom-up) feature pyramid network. Its comparison with the PANet 
network structure in YOLOv4 is shown in Fig. 4. In the figure, black arrows represent 
convolution operations, red arrows represent upsampling, blue arrows represent down-
sampling, and purple arrows represent cross-stage connections. Different-colored dots 

(7)R = (k − 1)× (r − 1)+ k

Fig. 3 ASPP structure

Table 1 Comparison table of dilated rate and receptive field

Convolution kernel Dilation rate Receptive 
field

3 × 3 1 3

3 × 3 2 5

3 × 3 3 7

3 × 3 4 9

3 × 3 5 11
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represent features from different levels, while dots of the same color represent features 
from the same level.

(1) Eliminating nodes with only one feature input: The design principle of Bi-FPN is to 
fuse features from different levels. If a node has only one input edge without feature 
fusion, its contribution to the feature network aimed at integrating different fea-
tures will be minimal. Removing such nodes has little impact on the network and 
simplifies it.

(2) Preserving the original input features: When there is no upsampling or down-
sampling operation between input and output nodes, a cross-stage connection is 
added. This is done to prevent the loss of original information caused by convolu-
tional operations and to increase the richness of feature sources. It is beneficial for 
the network to learn the relationships between different features.

(3) Recursive Structure Design: Unlike PANet, which only has one bidirectional feature 
fusion, the bidirectional feature fusion flow in Bi-FPN is a recursive structure. It can 
adapt to the backbone network by changing the number of iterations according to 
different network designs. This recursive structure also facilitates the realization of 
deeper feature fusion in the network.

(4) Weighted Feature Fusion: This approach involves learning the importance of dif-
ferent input features and performing a discriminative fusion. Traditional feature 
fusion methods often simply overlay or add feature maps, such as using concatena-
tion or shortcut connections, without distinguishing between the simultaneously 
added feature maps. However, different input feature maps have different resolu-
tions and contribute differently to the fused input feature map. Therefore, simply 
adding or overlaying them is not the optimal operation. This paper adopts the fast 
normalized fusion method to achieve weighted feature fusion. The specific expres-
sion is as follows:

(8)O =

∑

i

wi × Ii

∈ +
∑

j wj

Fig. 4 Structure comparison of PANet and Bi-FPN
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The O represents the weighted output, Ii denotes the i-th feature input and wi repre-
sents its corresponding weight.

Due to the stackability of Bi-FPN, this study conducted experiments on the stacking 
effect of different layers of Bi-FPN with YOLOv4. The experimental results are shown in 
Table 2.

As can be seen from Table 2, when the number of superpositions increases from 1 to 
2, the APperson index rises to 92.0%, and when the number of layers is increased, the net-
work begins to degrade. Therefore, this paper chooses a two-layer Bi-FPN to merge with 
the original YOLOv4, in order to achieve a balance between the precision and the num-
ber of parameters in the merged network. Standard convolution in Bi-FPN is replaced by 
depth-separable convolution to reduce the number of parameters in a multi-scale fusion 
module.

2.3.3  Human object detection based on ABYOLOv4 algorithm

After completing the construction of ASPP and Bi-FPN, to enhance the performance of 
the multi-scale features in Bi-FPN, an additional adjustment input from the mid–low 
layers was added on top of the original network’s three feature inputs. This modification 
transformed the neck part into a structure with four inputs and three outputs, aiming to 
reuse mid–low layers for small- and medium-scale targets. The final constructed ABY-
OLOv4 network structure is illustrated in Fig.  5, comprising the CSPDarknet53 back-
bone network, the feature pyramid ASPP structure, and the Bi-FPN multi-scale feature 
module. The red arrows represent the newly added mid–low feature input, the red box 
indicates the replaced Bi-FPN multi-scale feature module, and the green box signifies 
the replacement of the SPP module with the ASPP module.

When utilizing the improved ABYOLOv4 human object detection network for object 
detection, the specific workflow is as follows: When an image is input, it is first resized 
to (416, 416, 3)and then fed into the CSPDarknet53 backbone feature extraction net-
work. Subsequently, the feature pyramid ASPP is employed for multi-scale feature 
enhancement. Following this, the bidirectional feature pyramid Bi-FPN combines the 
mid-low features extracted by the backbone network at three additional scales and the 
high-level semantic features enhanced by ASPP. Finally, the combined features are input 
into YOLOHead for prediction, yielding the positional information of human targets.

3  Experiment and result analysis
3.1  Model training parameter

The human detection model proposed in this paper was trained and tested on the 
VOC2007 and VOC2012 datasets. The experiments were conducted using a single P106-
100 GPU with 6 GB of memory, an Intel(R) Core(TM) i5-4460 CPU @ 3.20 GHz, and 

Table 2 Comparison table of different layers of Bi-FPN fusion effect

Bi-FPN layers APperson (%)

1 91.2

2 92.0

3 91.5
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the software environment consisted of PyTorch 1.2.0, CUDA 10.0, and cuDNN 7.4.0. 
Table 3 presents the experimental training environment, Adam optimizer was used in 
the model, and other parameters were the default values. The training process consisted 
of two stages: the first stage involved frozen training, which preserved the training speed 
while preventing the network parameters from being disrupted in the early stages of 
training. The second stage involved unfrozen training. The total number of epochs was 
set to 100. The first 50 epochs were dedicated to frozen training with a batch size of 
8 and a learning rate of 1× e−3 . The remaining 50 epochs were allocated for unfrozen 
training, with a batch size of 4 and a learning rate of 1× e−4 . The learning rate decay 
coefficient was set to 0.92.

3.2  Model evaluation indicator

In this paper, precision, recall, average precision ( APperson ), and frame rate (FPS) were 
used to compare target detection networks. Precision refers to the ratio of the number 
of correctly predicted positive samples to the number of all predicted positive samples. 
Recall refers to the ratio of the number of correctly predicted positive samples to the 

Fig. 5 ABYOLOv4 framework

Table 3 Experimental training environment

Environment configuration

System Windos10

GPU P106-100

Memory size 6 GB

CPU Intel(R) Core(TM) 
i5-4460 CPU 
@3.20GHZ

Python 3.7

Torch 1.2.0
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total number of true-positive samples; As shown in Formula 10, the value of mAP in 
target detection is equal to the average of AP values for each category. ABYOLOv4 is a 
single classification human object detection model, that is n = 1 , so AP is equivalent to 
mean average precision (mAP). Therefore, this paper uses AP as the evaluation index; 
FPS refers to how many images can be detected per second; the purpose is to compare 
the speed of object detection in the object detection model, which is an indispensable 
indicator.

APperson is the average precision metric specifically used for pedestrian detection. A 
higher APperson indicates fewer false positives and false negatives, indicating a better 
overall performance of the model. N (TP)person represents the number of correctly 
detected pedestrians, N

(
object

)
person

 represents the actual number of pedestrians in the 

image, and N
(
images

)
person

 represents the total number of pedestrians present in the 

test images.

where n represents the number of classes, and APi represents the average accuracy of 
each class.

3.3  Model training and testing results

The training loss curve and PR curve for the ABYOLOv4 model are shown in Figs.  6 
and 7; it can be observed that due to the use of pre-trained weights, the model’s loss 
decreases rapidly and converges to the optimum around 50 epochs. The corresponding 
APperson is 92.3%.

(9)APperson =

∑ N (TP)person
N(object)person

N
(
images

)
person

(10)mAP =
1

n

i=n∑

i=1

APi

Fig. 6 Loss value curve
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In Table  4, the results of the human detection experiment using distillation on the 
dataset are shown for a Score_threshold of 0.5. It can be observed that when ASPP and 
two-layer Bi-FPN are incorporated into the original YOLOv4, the APperson of the net-
work improves by 0.2% and 0.3%, respectively. The use of depth-wise separable convolu-
tions in the self-built Bi-FPN reduces the size of the weight files by 24%. After adding 
ASPP, the size of the weight file increases by 12.5% due to the addition of convolution 
operation in the ASPP module. Compared with the original YOLOv4, the APperson of 
the ABYOLOv4 network with Bi-FPN and ASPP modules added at the same time has an 
increase of 0.5%, and the recall rate and frame rate FPS of the ABYOLOv4 model have 
increased by 1.7% and 5, respectively, indicating that the model can detect more targets 
and faster detection speed. It achieves the purpose of reducing the missing rate of small- 
and medium-scale targets, and the weight file size is also reduced by 18%, achieving the 
balance between precision and parameter number.

In order to further verify the detection effect of the ABYOLOv4 network and the origi-
nal YOLOv4 network on small and medium target human bodies, this paper selected 
4 groups of pictures, respectively, to compare and verify the model detection effect. 
The experimental results are shown in Fig.  8. In a–h of Fig.  8, the detection effect of 
the original YOLOv4 network is listed on the left. On the right side are the improved 
ABYOLOv4 network detection results. Figure a and b are the pictures selected from the 
VOC2007 test set, Figure c, and Figure d are the pictures downloaded from the network, 

Fig. 7 PR curve

Table 4 Ablation experiment result

Model Precision (%) Recall (%) APperson(%) FPS Weight file 
size (mb)

YOLOv4 93.2 82.6 91.8 24 244.29

YOLOv4 + Bi-FPN 90.2 85.0 92.0 31 178.47

YOLOv4 + ASPP 92.7 83.7 92.1 23 275.32

ABYOLOv4 91.9 84.3 92.3 29 199.00



Page 13 of 16Li et al. EURASIP Journal on Advances in Signal Processing          (2024) 2024:6  

Fig. 8 Comparison of detection effect of YOLOv4 and ABYOLOv4
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and Figure e,f,g, and h are the pictures collected by mobile phones on campus. It can be 
seen from the results of a and b that the two networks have a good effect on the image 
detection of the selected test set. There are no missed cases, but the classification confi-
dence of ABYOLOv4 is higher than that of the original YOLOv4. According to the com-
parison of c,d,e,f,g, and h, it can be seen that when there are more human bodies in the 
picture and the scale is small, the original YOLOv4 has seriously missed detection, and 
only 6 human frames are detected, while ABYOLOv4 has detected 8 human frames, and 
the missed detection rate is lower than that of the original YOLOv4. The confidence of 
ABYOLOv4 is improved. It can be seen from the actual scene experiment results that 
the original YOLOv4 still has a high detection rate for small- and medium-sized human 
bodies, and the improved model has a better effect.

It is worth noting that, under the influence of background, occlusion, and other con-
ditions, the proposed model will also have the phenomenon of missing detection. The 
detection results in Figure I and Figure J show that the human object missed in the pic-
ture is in the blue box. By analyzing the reasons for missing detection, Figure i is on 
the one hand because the human object is small in scale and slightly blocked. On the 
other hand, the person’s wearing color and the background color are very similar, so 
the human object is not detected. In Figure j, the human body in the blue box on the 
left is seriously shielded, so there is a phenomenon of missing detection. In addition to 
blending into the background, too small a target severe occlusion, and serious interfer-
ence, the human object missed by the original YOLOv4 network can be detected by the 
improved ABYOLOv4 network. The improved YOLOv4 network with enhanced inte-
gration of multi-scale features also has a better application than the original network in 
real scenes.

4  Discussion
To address the issue of high omission rates for small- and medium-sized human object 
detection caused by distractions, complex backgrounds, and varying human scales in 
human object detection tasks, this study builds upon the YOLOv4 network. Firstly, the 
SPP module is replaced with the ASPP module to increase the network’s receptive field 
hierarchy and enhance its ability to perceive multi-scale targets. Secondly, the original 
PANet multi-scale fusion module is replaced with a self-built two-layer Bi-FPN, which 
introduces a new feature input to reuse medium- and small-scale features to enhance 
the network’s ability to express features of small- and medium-sized targets. Finally, to 
achieve the balance between precision and parameter number, the standard convolu-
tion in Bi-FPN is replaced by deep separable convolution, and the ABYOLOv4 network 
model is established. The performance of the ABYOLOv4 network is trained on the 
VOC2007 and VOC2012 datasets and tested through distillation experiments. When 
compared to the original YOLOv4 network, the proposed improvement modules show 
corresponding enhancements, reducing the impact of varying human scales on human 
object detection. Model detection tests conducted on selected test sets and downloaded 
images validate that ABYOLOv4 outperforms the original YOLOv4 network in detect-
ing small- and medium-sized human targets. In terms of the VOC dataset, compared 
with the original YOLOv4, the weight file size of the ABYOLOv4 model is reduced by 
45.3 M, the APperson performance index is improved by 0.5%, the recall rate is increased 
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by 1.7%, and the frame rate increase indicates that the detection speed is also improved. 
It reflects the effectiveness of the ABYOLOv4 network model, achieves the balance of 
precision and parameter number, and can realize more accurate human object detection.
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