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1 Introduction
In normal operation, measurement instruments usually provide a continuous stream 
of equidistantly spaced samples of a physical quantity being observed. Common signal 
processing algorithms for statistical analysis usually rely on a continuous data stream, 
typically arranged in blocks of a defined duration. However, there are several reasons 
why normal operation may fail. There may be boundary conditions, under which the 
measurement system cannot operate. This includes cases, where the quantity under 
observation is temporarily inaccessible. For distributed measurement systems, the 
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Nonparametric estimation of the covariance function and the power spectral density 
of uniformly spaced data from stationary stochastic processes with missing samples 
is investigated. Several common methods are tested for their systematic and random 
errors under the condition of variations in the distribution of the missing samples. 
In addition to random and independent outliers, the influence of longer and hence 
correlated data gaps on the performance of the various estimators is also investigated. 
The aim is to construct a bias-free estimation routine for the covariance function 
and the power spectral density from stationary stochastic processes under the condi-
tion of missing samples with an optimum use of the available information in terms 
of low estimation variance and mean square error, and that independent of the spec-
tral composition of the data gaps. The proposed procedure is a combination of three 
methods that allow bias-free estimation of the desired statistical functions with effi-
cient use of the available information: weighted averaging over valid samples, deriva-
tion of the covariance estimate for the entire data set and restriction of the domain 
of the covariance function in a post-processing step, and appropriate correction 
of the covariance estimate after removal of the estimated mean value. The procedures 
abstain from interpolation of missing samples as well as block subdivision. Spectral 
estimates are obtained from covariance functions and vice versa using Wiener–Khin-
chin’s theorem.
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communication channels may be temporarily disrupted. The instrument may also need 
to be reconfigured or shut down for maintenance. In other cases, the measurement prin-
ciple involves a signal pre-processing that may fail under certain conditions, resulting in 
outliers or gaps in the data stream. A real case was a long-term environmental measure-
ment with distributed sensors communicating over a wireless mesh. From time to time, 
packets of data got lost along the way, and occasionally, a microcontroller went suddenly 
through a reset cycle.

Data sets with missing samples or longer data gaps can be understood as the product 
of the uninterrupted process xi with a specific sampling function wi , which is the train 
of valid instances with unit amplitude. This way, the statistical properties of the data set 
with interruptions wixi deviate from those of the process under investigation. The dis-
crete Fourier transform (DFT), e.g., obtained from such a signal is the convolution of 
the DFT of the process with the DFT of the sampling function. Therefore, the sampling 
function and its statistical properties have a direct influence on the estimated statistics of 
the measured signal as illustrated in Fig. 1. For missing samples occurring independently 
of each other, the covariance function and the power spectral density are different from 
those of longer data gaps. While the sampling function with independent outliers has no 
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Fig. 1 Masking (multiplying) a signal with a sampling function corresponds to a convolution of the 
respective discrete Fourier transforms, finally leading to deviations in the covariance functions and power 
spectral densities between the uninterrupted and the interrupted signal
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covariances between two different time instances and has a flat white spectrum, longer 
data gaps lead to temporal covariances and a colored spectrum as shown exemplarily 
in Fig. 2. The terms “independent outliers”, “random outliers”, “uncorrelated outliers” or 
“missing data points without correlation” are used as synonyms for this particular kind 
of a sampling function in the present paper. In contrast, “longer data gaps”, “extended 
data gaps” or “correlated data gaps” are used for any kind of sampling function different 
than the first one.

An obvious way to circumvent the problem caused by missing data samples is to inter-
polate the signal and fill the gaps with predicted values, see [1]. The interpolation scheme 
can mime the statistical properties obtained from the valid parts of the signal and miss-
ing values can be predicted. Then the statistical quantities like the covariance function 
or the power spectral density are derived from the reconstructed signal consisting of a 
mixture of originally valid samples and the interpolated ones. Examples for this prin-
ciple are Kalman interpolation in audio reconstruction [2, 3], the adaptive filter-bank 
approach [4] or the Karhunen–Loève procedure resp. proper orthogonal decomposi-
tion for gappy data [5] or in turbulence measurements [6]. However, even the best inter-
polation in terms of the minimum prediction error, understood as the minimum mean 
square error between the interpolated signal and the true signal, will lead to a significant 
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Fig. 2 Different statistical properties of the sampling function with information on missing data points: 
Independent outliers without correlations between each other yielding a white noise spectrum vs. extended 
data gaps with correlations yielding a colored spectrum
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dynamic error depending on the probability of invalid data points. The prediction will 
ideally replace missing samples by something like the expectation of all possible continu-
ations of the signal at the respective time instance. Then the interpolation itself would 
be bias-free; however, it will suppress parts of the fluctuations of the true signal. Finally, 
statistical properties of the partially interpolated signal deviate from those of the original 
signal. For rare and short gaps in the data sequence, this may work sufficiently; for more 
and longer gaps, the error may easily become unacceptable. Note that this holds for any 
interpolation scheme, even for those, which perfectly mimic the spectral composition of 
the signal under observation.

In [7] the expected dynamic error is derived particularly for sample-and-hold inter-
polation including empirically obtained parameters. In [8] the findings could be repro-
duced with the parameters derived algebraically. For an assumed covariance function 
of the uninterrupted signal, the covariance function after interpolation of missing data 
points is predicted based on the statistical properties of the occurrence of missing data 
points. The primary covariance function estimated from the interpolated signal then can 
be improved by the inverse of this correspondence. Under ideal conditions, this proce-
dure entirely inverts the dynamic error caused by the interpolation. Therefore, the con-
sideration and inversion of the influence of the interpolation step is a promising method 
to obtain bias-free estimates of the covariance function and the spectrum. However, the 
derivation of the particular correspondence depends on the specific statistical properties 
of the missing data points, namely a random occurrence of invalid samples which are 
independent of each other. If the statistics of the data gaps change, then the procedure 
needs substantial modification. Therefore, it is no universal solution.

In [9] no interpolation has been used. Instead the expected spectrum of the discrete 
Fourier transform has been derived for the signal with missing samples or data gaps of 
various statistical characteristics. From these expectations, a deconvolution could have 
been developed to improve the estimation of the spectra, similar to the deconvolution 
after interpolation in [7]. Instead, a procedure has been used avoiding the data gaps by 
rejecting all values past the first missing sample by means of zero padding. Depending on 
the probabilities of the occurrence of the first missing sample, the spectra get different 
resolution and the superposition of many spectra from individual data blocks becomes 
smeared. However, this method is very inefficient in using the information available, 
since significant amount of valid samples get rejected. It is limited to small amounts of 
missing samples anyway, since series of valid samples become too short for increasing 
amounts of missing samples.

There exists a wide variety of direct spectral estimators optimized for spectral estima-
tion from a limited (typically small) number of unevenly sampled observations of signals 
[10–19]. They are widely counted as direct spectral estimators, since the amplitudes of 
the spectrum are obtained directly at any frequency from the sinusoidal fits. All these 
estimators potentially are able to process also signals with missing samples. However, 
the spectral composition of equidistantly sampled signals with independently missing 
samples deviates from random sampling in continuous time, not to mention correlated 
data gaps, which the above methods cannot handle accurately. Since Lomb–Scargle’s 
method [10, 11] is widely used as a benchmark, it is included in the comparison below to 
prove it as biased.
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Missing data samples in equidistant data streams have also been investigated 
broadly in [20–28], including also specific cases of correlated data gaps. These deriva-
tions strictly depend on the specific cases of missing data and are not robust against 
changes in spectral content of the data gaps. This also holds for [29–33], where par-
ametric estimation has been performed. This way effective process identification is 
possible in a limited search space. However, bias-free estimation is not possible for 
unknown or changing spectral content of the data gaps.

All the methods mentioned above make bad compromises at the one or the other 
point. They are either biased, inefficient or they are limited to a specific sampling 
scheme. The present article introduces bias-free estimators for the covariance func-
tion and the power spectral density from equidistant data sets with interruptions of 
arbitrary spectral composition. It is a combination of three known but rarely used 
methods, namely a) weighted average taken from [25], except for any spectral or time 
windowing to circumvent any modulation of the spectrum by filtering resp. win-
dowing, b) restriction of the domain of the covariance function, mentioned briefly 
in [34] as an appropriate means for reducing the estimation variance of the spectral 
estimates and c) correction of the covariance estimate after removal of the estimated 
mean value, adapted to the weighted average to work with gapped data [35–37]. This 
combination allows bias-free estimation of the covariance function and the power 
spectral density from signals with data gaps, independent of the spectral content of 
the data gaps and with an optimum use of the available information. The combina-
tion is especially advantageous, because the individual processing steps benefit from 
each other. Weighted averages discriminate missing data pairs, possibly leading to 
missing values in the covariance estimate, especially in the ranges of long time lags. 
Restricting the domain of the covariance function before its transformation into a 
spectrum first uses all valid pairs of data from the entire data set, resulting in better 
converged estimates of the individual values of the covariance estimate, and then only 
the most reliable are going into the transformation. Finally, nonzero mean values in 
combination with missing data lead to an increased estimation variance of the spec-
tral estimate. Subtracting the mean value on the other side leads to biased covariance 
estimates. Here, the last part of the proposed method, the correction of the covari-
ance estimate after removal of the estimated mean value, is the solution.

The invalid samples are assumed a priori known, given by an additional flag (weight) 
for each data sample indicating whether the sample is valid or invalid. No pre-knowl-
edge about the characteristics of the process under investigation or the sampling 
scheme are needed. The procedures work independent of the statistical characteris-
tics of the data gaps, except that pairs of data points exist at all required lag times for 
estimating the covariance function. It is assumed that the data gaps (randomly and 
independently occurring outliers as well as correlated data gaps) are not containing 
information from the data, namely that the validity of the samples is independent of 
the values of the observed process, so there is no preferential sampling.

Note that the introduced processing methods are suitable for signals from station-
ary stochastic processes only and for their statistical analysis. They are not suited for 
signals with time-dependent statistical properties, e.g., single pulses. For those, miss-
ing information cannot be restored by the methods presented here. Interpolation of 
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missing portions of the signal is not required and, neither interpolation of the data 
gaps nor any kind of reconstruction of the signal are intended.

Note further that the weighted averages make different discrimination of the data ensem-
ble at different lag times. This and also bias correction for empirical mean removal result 
in correlation matrices, which potentially may violate the nonnegative definiteness. As a 
consequence, negative values occur in the corresponding power spectral density. Since the 
introduced procedures yield bias-free estimates for both, the covariance function as well 
as the spectrum, averages over multiple estimates of these functions will converge toward 
the true functions of the underlying process. However, since the procedure is consistent, 
the estimated functions will also converge toward the true functions if applied to single but 
longer data sets, without losing information between block boundaries. The ultimate solu-
tion of course is regularization. Since this inevitably introduces a bias in both the covariance 
function and the corresponding spectrum, regularization is not considered in the present 
paper, where bias-free estimation has priority.

The programs used here are available as supplementary material to the present paper at 
[38]. The implementation of the covariance and spectral estimations is done consistently 
based on FFT routines to achieve sufficient data throughput.

2  Methods
2.1  Weighted average

Assuming an equidistantly spaced signal xi with N samples ( i = 1 . . .N  ), then the covari-
ance function γk is

with the expectation �·� of the product · and with the expectation of the signal µ = �xi� . 
Note that xi is the population of the generic signal instead of a particular realization. 
Note further that the autocovariance function is a function of the lag distance k between 
the samples xi and xi+k , and it is symmetrical about k = 0 . That is why it is often given 
as the one-sided covariance function for k = 0 . . .N − 1 . However, the estimation pro-
cedures can be adapted to cross-covariance functions between two signals also, where 
symmetry is not given.

If all samples xi in a particular realization of the signal are given, then the covariance func-
tion at any lag distance k can be estimated from the average of all samples of the data set, 
which have the distance k. With missing samples, either reconstruction and filling the gaps 
will help for the price of a bias, as mentioned above, or the averaging process is restricted 
to those pairs of samples, where both xi and xi+k are available, as used, e.g., in [25]. This 
method has the potential to yield bias-free covariance estimates also from signals with gaps. 
However, the application of window functions in that publication introduces a new bias by 
modulating the values of the data sequence.

By leaving away the window function and the data modulation that goes with it, the 
covariance estimate can be formally written as the weighted average

(1)γk = (xi − µ)(xi+k − µ) k = −(N − 1) . . .N − 1
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with the weights wi corresponding to the validity of the samples xi ( wi = 1 for a valid 
sample and wi = 0 for an invalid one). Ck denotes the covariance estimate and xi and wi 
in the sums are one particular realization of the signal and the corresponding weights.

This estimate of the covariance at lag distance k is the mean value of all products 
(xi − µ)(xi+|k| − µ) , which are available from the data set, where both values xi and 
xi+|k| are valid, corresponding to wiwi+|k| being one. In other words, this estimate cal-
culates the sum of all such products of values with the respective distance available from 
the data set, and divides the sum through the number of the pairs counted in the sum in 
the numerator. As long as the sampling function wi is independent of the signal xi , the 
expectation of the estimate Ck then is

which is identical to the true covariance γk . Hence, Ck is a bias-free estimate of γk inde-
pendent of the characteristics of the sampling function, as long the expectation µ of the 
signal is given and the sampling function is independent of the signal. This estimator is 
proposed and intensively investigated in terms of its characteristics in the present paper, 
especially under the condition of various spectral characteristics of the sampling func-
tion as formed by the series of weights. For the first tests for this estimator in Sect. 3, the 
expectation µ of the signal is assumed to be known a priori and correctly removed from 
the data before further processing. The specific role of an unknown expectation, the esti-
mation and removal of an empirical mean value is discussed in Sect. 2.3. If the sampling 
function depends on the signal, appropriate weighting schemes are required addition-
ally, as, e.g., in [19], which is not considered in the present paper.

2.2  Restricting the domain of the covariance function

The power spectral density obtained from a single data set has an unacceptable high esti-
mation variance. A common means to reduce this variance is a subdivision of the entire 
data set into shorter blocks and average the respective power spectral densities obtained 
from the individual data blocks. This method is known as Bartlett’s method, see [34, 
39]. By using shorter data blocks, the spectral resolution is reduced accordingly, which 
leads to the desired effect of reduced estimation variance. A disadvantage of Bartlett’s 
method is that correlations between samples at the end of one block and the beginning 
of the next are not counted. Furthermore, the wrap-around error may be increased if 
the assumption is made that the signal respectively the block is periodic. For too short 
blocks this may lead to significant deviations. In contrast, for longer blocks the reduction 
of the estimation variance becomes less effective. With Welch’s method, see [40], where 
the statistical functions from overlapping blocks get averaged, correlations between 
block boundaries are counted. However, this also partially generates redundancy. This 
fact is taken into account by applying windowing functions to the data blocks prior to 

(2)Ck =

N−|k|
∑

i=1

wiwi+|k|(xi − µ)(xi+|k| − µ)

N−|k|
∑

i=1

wiwi+|k|

(3)�Ck� =
〈

(xi − µ)(xi+|k| − µ)

〉

,
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their statistical analysis. Again, the additional data modulation by the window function 
leads to biased estimates of the statistical functions.

The reduction of the spectral resolution can also be obtained in a post-processing step 
from the entire data set without the necessity of block subdivision. Reducing the spectral 
resolution corresponds to a shorter domain of the covariance function. For a random 
process with a finite memory, the autocovariance function becomes zero at lag times 
beyond the memory length. In this case the autocovariance function can be shortened to 
the extent of the longest lasting covariance CK  with K < N  without losing information. 
Equation (4) then is determined for k = −K . . .K  instead of k = −(N − 1) . . .N − 1 . 
For effectiveness, K ≪ N  is proposed, where K must consider the correlation interval 
of the signal, and then in combination with a significantly longer data set. Due to the 
restricted domain of the autocovariance function, the spectral resolution is reduced 
accordingly, leading also to a significantly lower estimation variance of the spectrum 
without introducing new errors from too short a block subdivision or any amplitude 
modulation of the signal by window functions. The advantage of this method compared 
to usual block subdivision is that the correlations of all samples are considered from the 
entire data set without interruptions at block boundaries. Further suppression of the 
wrap-around error, e.g., via the application of a window function is not needed, avoiding 
additional modulation of the signal smearing the spectrum. This method is identical to 
[41, 42] used with a rectangular window applied to the covariance function estimated. 
Note that this method is known for a long time. It has been shortly mentioned in [34]. 
However, it has not gained acceptance, even if the results in reducing the estimation 
variance are comparable to block averaging without the risk of worsening by too short 
blocks and, it is superior in efficiently using the information available.

Principally, the power spectral density is obtained by means of the DFT from a shorter 
version of the covariance estimate than that one, which has been obtained by the covari-
ance estimate before. Assuming the covariance estimate being bias-free and no further 
covariances exist outside the shorter interval from −K  through K, the power spectral 
density will also be bias-free, since the DFT is linear. If covariances exist beyond the 
interval from −K  through K, they will not be counted by the transform into the spec-
trum, which then gets biased.

2.3  Mean removal and Bessel’s correction

Without mean removal, the covariance function would have an offset of µ2 with µ being 
the expectation of the signal. Nevertheless, the spectral estimate is unbiased at all frequen-
cies except for zero frequency even with µ  = 0 (Fig. 7a in advance). However, in contrast 
to uninterrupted equidistant sampling, in the case of missing samples, a nonzero expecta-
tion increases the estimation variance of the spectrum (Fig. 7b in advance). Therefore, it is 
recommendable to estimate and to remove the mean value from the data before further 
covariance or spectral analysis. If the empirical mean value x̄ is used for that instead of the 
true expectation µ , a new bias occurs in the estimated covariance function as derived in 
[35–37], leading to a covariance estimate, which is asymptotically bias-free only. This new 
bias corresponds to the bias of the estimate of the data variance, if x̄ is subtracted from the 
data instead of µ . For uncorrelated data, the appropriate correction is to divide the sum of 
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(xi − x̄)2 by N − 1 instead of N, which is widely known as Bessel’s correction. However, 
the correction for correlated data is more complex. Fortunately, the mentioned papers also 
provide an appropriate correction. In reference to the variance estimate from uncorrelated 
data, the correction here is also denoted as Bessel’s correction. Weighted averages are docu-
mented in the two last publications only. For the reader’s convenience, a brief summary of 
the procedure applicable to the present case is given here.

Estimating the covariance function as

after estimation and removal of the empirical mean

yields an expectation of the covariance function estimated, which is

with the vector C, which contains all estimated covariance values Ck for k = −K . . .K  
and the vector γ , which is the counterpart with the true covariances γk for k = −K . . .K  . 
The square matrix A represents a linear relation between γ and 〈C〉 and it has the 
elements

with

and

(4)Ck =

N−|k|
∑

i=1

wiwi+|k|(xi − x̄)(xi+|k| − x̄)

N−|k|
∑

i=1

wiwi+|k|

(5)x̄ =

N
∑

i=1

wixi

N
∑

i=1

wi

(6)�C� = Aγ

(7)akj = δk−j +
Wj

D2
−

Gkj +Hkj

DWk

(8)δk−j =

{

1 for k − j = 0

0 otherwise

(9)D =

N
∑

i=1

wi

(10)Wj =

N−|j|
∑

i=1

wiwi+|j|

(11)Gkj =

min(N ,N−j,N−k)
∑

i=max(1,1−j,1−k)

wiwi+jwi+k
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and Wk similar to Wj with j replaced by k. Then the inverse A−1 of this matrix is applied 
to the primary, biased estimate of the covariance function C, finally yielding a refined 
estimate Ĉ of the covariance function

From Eq. 6, with A−1 multiplied on the left side, one obtains

and assuming A, which is defined by the sampling function wi , being independent from 
C finally yields

meaning Ĉ is a bias-free estimate of γ . Note that K < N − 1 is required to ensure that 
A can be inverted, since at K = N − 1 the matrix is not full ranked. Furthermore, the 
derivation of the matrix A assumes that no covariances exist outside the investigated 
interval from −K  through K. If this is not given, the refined covariance estimate is not 
bias-free anymore; however, it will still be better than without this refinement. In [35] 
this is called a “nearly bias-free” covariance estimate. The requirement of having no fur-
ther covariance outside the interval of lag times investigated coincides with the require-
ment for a bias-free estimate of the power spectral density derived hereof via the DFT.

3  Results and discussion
To test the performance of the proposed algorithm in comparison to established alterna-
tives, a stochastic process is simulated generating data sequences with an artificial spec-
tral composition from random white noise with an appropriate moving-average filter. 
The order of the filter can be chosen arbitrarily, in the present test an order of 25 has 
been used. The coefficients of the filter are chosen according to the desired spectrum, 
which also can be specified arbitrarily. To allow easy identification of various kinds of 
biases, which otherwise possibly would not appear obviously, in this test, the spectrum 
of the simulated process has an exponentially increasing slope, with a distinct dip in the 
observed frequency range. The parameters of the process and the values of the correla-
tion function and the spectrum are provided as supplementary data with the present 
paper at [38]. The random generator provides independent signals of such spectral char-
acteristics with a total length of 26tu (time units) to later obtain covariance estimates 
with lag times up to 25tu. This maximum lag time corresponds to the order of the mov-
ing-average filter, such that no correlations exist beyond the obtained covariance esti-
mates and bias-free estimates of the covariance function with Bessel’s correction and 
bias-free estimates of the power density spectra are possible. The signals have an expec-
tation of µ = 4au (amplitude units) and a standard deviation of 2au. These primary sig-
nals directly from the random generator have no interruptions.

(12)Hkj =

min(N ,N−j,N+k−j)
∑

i=max(1,1−j,1+k−j)

wiwi+jwi+j−k

(13)Ĉ = A−1C .

(14)A−1�C� = γ

(15)
〈

A−1C
〉

=
〈

Ĉ
〉

= γ
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To mimic the data gaps, for each sample of the primary signal appropriate weights are 
chosen by a second random process. To identify the performance of the covariance and 
spectral estimators under varying spectral characteristics of the data gaps, two different 
generators of the sampling functions have been realized. The first weighting routine gen-
erates individual samples marked as invalid, independently from each other, with a prob-
ability of 25% , resulting in a flat, white noise spectrum of the sampling function. The second 
weighting routine generates correlated series of invalid samples, where the length of inva-
lid data sequences has an exponential distribution with a mean of 4tu. The probabilities of 
changes between valid and invalid samples are chosen such that this procedure also yields 
25% invalid samples on average. In Fig.  3 individual realizations of the signals and the 
weights are shown. While in Fig. 3a only individual samples are marked as invalid indepen-
dently from each other, in Fig. 3b longer sequences of invalid samples can be seen.

The generated signals then are analyzed by the proposed algorithm, and the results are 
compared to those of common alternatives in terms of the mean covariance and power 
spectral density and their respective estimation variances.

3.1  Weighted average

10,000 realizations of such signals have been simulated and analyzed for both weighting 
schemes. Wiener–Khinchin’s theorem [43] is relating the covariance function C and the 
appropriate power spectral density S

with the fundamental sampling step �t of the signal and the discrete Fourier transform 
DFT . Both, C and S are two-sided functions, with their values arranged cyclic, modulo 

(16)S = �t · DFT{C}

Fig. 3 Single realizations of the signal with a independent outliers and b with long gaps
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their total length, which is in this first test 2N − 1 , yielding a spectral increment of 
�f = 1

(2N−1)�t . Provided that the covariance function is zero outside the determined 
rage of lag times, a bias-free covariance yields a bias-free power spectral density and 
vice versa, provided the spectrum is zero outside the range of frequencies determined. 
This way, both statistical functions can be used alternatively to represent possible devia-
tions. Figure 4 shows the empirical mean of the power spectral density obtained from 
the 10,000 realizations of the covariance functions comparing the proposed weighted 
average with other widely used methods.

Sample-and-hold interpolation as a prominent example for interpolation attempts 
yields biased estimates for both cases, individual outliers as well as longer data 
gaps (Fig.  4a and b). Sample-and-hold interpolation with appropriate inversion of 
the dynamic error as in [7, 8] is constructed to correct the bias after interpolation 
for individual and independent outliers (Fig.  4a). Since the correction procedure is 
strictly bounded to the assumption of independent outliers, it fails in the case of 
correlated data gaps as in Fig. 4b. In contrast, the proposed weighted average yields 
bias-free estimates for both sampling schemes. Note that the known expectation µ 
has been subtracted from the data before estimating the covariance function, leading 
to bias-free estimates of the covariance function. Since no further correlations exist 
beyond the investigated range of lag times, the spectra obtained from the covariance 
estimates are also bias-free. This way, averages over multiple estimates of the covari-
ance function or the power spectral density will converge toward the true functions 
of the underlying process. Additionally, results are shown for Lomb-Scargle’s method 
[10, 11], which often is used as a reference algorithm for spectral estimation from 
irregularly sampled data. However, independent of the particular sampling scheme, a 

Fig. 4 Average of the power spectral density from 10,000 signals with a independent outliers and b with 
long gaps
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distinct bias can be seen for that method, which is even larger than that for sample-
and-hold interpolation.

The diagrams show the one-sided spectra in a logarithmic scale. This way neither the 
value at zero frequency can be seen nor negative values of the function. Even if negative 
spectral values physically make no sense, an unbiased estimate with some uncertainty 
may lead to values below zero. This corresponds to correlation matrices, which violate 
the nonnegative definiteness. Both, the discrimination of different data in weighted aver-
aging as well as bias corrections (e.g., for sample-and-hold interpolation) potentially lead 
to such cases.

3.2  Restricting the domain of the covariance function

To demonstrate the performance of the restriction of the domain of the covariance func-
tion, the simulated signals have been extended in duration to 260tu each. From these 
signals, either 10 blocks of the initial signal duration of 26tu with no overlap or 19 blocks 
of the same duration with 50% overlap can be cut out. Then the covariance function is 
derived also from the entire signals and the domain is restricted to a maximum lag time 
of 25tu ( K = 25 ), which is identical to the maximum lag time as achieved from the data 
blocks. The covariance function has been transformed into the power spectral density 
using again Wiener–Khinchin’s theorem with the spectral increment of �f = 1

(2K−1)�t 
now. Again 10,000 realizations of the signal and the statistical analysis have been simu-
lated. Figures 5 and 6 show the empirical mean and the empirical variance of the power 
spectral density from these 10,000 realizations for the two simulated weighting schemes. 
No systematic errors can be identified for the investigated estimators (Fig. 5), while the 
estimation variance for block averaging with overlap is lower than without overlap and 

Fig. 5 Average of the power spectral density from 10,000 signals based on weighted average covariance 
estimation with a independent outliers and b with long gaps
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Fig. 6 Empirical estimation variance of the power spectral density from 10,000 signals based on weighted 
average covariance estimation with a independent outliers and b with long gaps

Fig. 7 a Empirical mean and b variance of the power spectral density from 10,000 signals based on 
weighted average covariance estimation
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that of the method with domain restriction of the covariance function and without block 
subdivision is lowest (Fig. 6).

3.3  Mean removal and Bessel’s correction

Figure  7 compares the results of the spectral estimation from data sets with zero and 
with nonzero expectation. The empirical mean of the spectra in Fig. 7a shows no differ-
ence between the various cases. A nonzero expectation µ of the data yields a covariance 
function with a constant offset of µ2 . It will affect the spectrum only at zero frequency, 
which is hidden in the logarithmic scaled one-sided spectrum shown in the graph. 
However, Fig. 7b shows that the estimation variance of the spectrum increases with a 
nonzero expectation. Therefore, a mean free signal would be preferred. Because normal 
applications lack the correct expectation µ , probably the empiric mean value x̄ will be 
subtracted instead.

The expected bias due to the removal of the estimated mean value x̄ instead of the cor-
rect but unknown expectation µ of the data mainly consists of an offset. Higher order 
terms exist, for symmetry reasons in autocovariance estimates, namely even orders. 
However, the constant offset is dominant. Therefore, the autocovariance estimates are 
better suited than the spectra to demonstrate this bias. Figure  8 shows the mean and 
the variance of the autocovariance estimates, obtained from 10,000 realizations of the 
signal for both weighting schemes. In this simulation, the signals had a duration of 100tu 
( N = 100 ) and the autocovariance estimates have been restricted to 25tu ( K = 25 ), 
corresponding to the test cases above, to fulfill the requirement for the correction 
( K < N − 1 ) and to demonstrate the achievable effect.

Fig. 8 a Empirical mean and b mean square error of the covariance estimates after removal of the empirical 
mean value from 10,000 signals using weighted averages
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Figure  8a shows the empirical mean of the covariance estimates. The bias of the 
estimates without Bessel’s correction is obvious. With the correction, the bias is effec-
tively removed for both weighting schemes. However, the correction is achieved for 
the prize of an increased mean square error as shown in Fig. 8b, which depends on K 
chosen with respect to N and, it rapidly drops with smaller K. This perfectly coincides 
with the restriction of the domain of the covariance function above. Then, the mean 
square error still increases with Bessel’s correction; however, it is acceptable if bias-
free estimates are in focus.

4  Conclusion
Routines for nonparametric estimation of the covariance function and the power 
spectral densities from signals with invalid samples have been introduced for both 
cases, for independent individual outliers as well as for longer and hence correlated 
data gaps. The combination of ensemble averages over valid samples only, a poste-
riori restriction of the domain of the covariance function and Bessel’s correction after 
estimation and removal of the estimated mean value, yields bias-free estimates of the 
statistical functions. This holds also for large amounts of data missing and it holds 
independent of the dynamic characteristics of the data gaps. While the first two parts 
of the whole procedure are clearly superior to alternative methods like interpolation 
or block subdivision, Bessel’s correction yields bias-free estimates for the prize of an 
increased mean square error. Since the application of weighted average and restric-
tion of the domain of the covariance function yields consistent estimates even with 
the removal of the estimated mean value, Bessel’s correction as the final part of 
the introduced procedure is recommendable only, if strictly bias-free estimation is 
mandatory.

The implementation of the covariance and spectral estimations is done consistently 
based on FFT routines to achieve sufficient data throughput. All programs used here, 
the parameters of the simulated process and the values of the correlation function 
and the spectrum are available as supplementary material to the present paper at [38]. 
In this repository also programs for bias-free estimation of the cross-covariance and 
the cross-spectral density from two signals with missing data are available.
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