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1 Introduction
A sequence of orthogonal bitmap digital images called frames displayed in fast sequence 
at a stable rate for providing the delusion of a motion picture is digital video [1]. Strict 
requirements on video storage time are possessed by multiple areas, namely the railway 
transportation industry, civil aviation industry, schools, along with banks [2]. The usage 
of ever-augmenting bandwidth in addition to extensive smartphones has caused a wide 
flood of video streams on public along with private networks in recent years [3]. In You-
Tube, each minute video of about 300 h is uploaded, and almost five billion videos are 
seen on YouTube daily as per the latest statistics [4]. But most videos are necessary to 
be coded first for decreasing the data amount on account of the restricted quantity of 
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Recently, video transmission is going through many failures because of the limited size 
of the top-notch technique for storing large volume videos. Thus, video compression 
(VC) techniques are introduced, which try to eradicate various sorts of redundan-
cies within or betwixt video sequences. However, the VC often falls short to maintain 
a good quality of compression if motion discontinuities are present in the video 
frames (VF). To trounce this challenge, this paper proposes an enhanced VC approach 
via run length-based ASCII Huffman (RLAH) encoding, Kernel-based deep Elman 
neural network (KDENN), together with modified Kalman filters (MKF) algorithms. 
Initially, the video is transmuted into frames, and the frame’s color space model (CSM) 
is changed as of RGB to  YCbCr. Next, the frames are bifurcated into [8 × 8] blocks, 
and the significant features are extracted as of every block. On account of these fea-
tures, the KDENN identifies the motion of every block. Those blocks directly undergo 
a compression process in case of a single motion. Otherwise, MFK smoothens those 
blocks in order to eradicate the jitters and undesired movements, and then, it goes 
through compression. After that, RLAH encoding compresses the VF. Then, on the other 
side, the RLAH decoding algorithm decomposes the video. The results exhibit 
that the proposed work renders good quality videos with high PSNR value and also it 
trounces the prevailing compression techniques concerning compression ratio (CR).
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transmission bandwidth along with storage capacity [5]. A crucial part is played by VC 
in giving higher-quality video services under the restricted capabilities of transmission 
networks along with storage [6].

The bit rate is reduced for transmitting and storing information while maintaining 
the video quality is the basic objective of VC [7]. Further, the transmission costs are 
lessened, and thus, the energy resources are saved and increased the effective network 
capacity [8]. During compression, a redundancy that occurred across disparate regions 
in a frame could be considerably decreased through the efficient exploration of the char-
acteristics of the region being coded [9]. Compression techniques comprise of ‘2’ types: 
lossless compression (LLC) along with lossy compression (LC). The LC is irrevocable 
and inexact approximations are utilized for the depiction of original images [10]. After 
compression, the information is not lost in lossless image compression [11]. The best 
one for obtaining identical information is LLC. This is specifically vital for a few applica-
tions, like automated diagnostic systems, where each pixel is important [12].

Popular compression techniques, namely run length encoding (RLE), arithmetic 
encoding, Lempel–Ziv–Welch (LZW), along with Huffman coding (HC), are examples 
of LLC techniques [13]. Currently, the most often utilized LLC algorithms have devel-
oped from an amalgamation of the algorithms explained above with some other par-
ticular algorithms [14]. The data’s quality is not affected by these techniques. If there are 
jitters or undesired movements like a vibration within the frames, then they ought to be 
removed. However, the algorithms could not eliminate those distortions. Severe degra-
dation is caused by such distortions in the quality of experience on the decoder [15]. The 
performance along with the accuracy of a few video processing applications, like target 
recognition along with video classification, is affected by the video quality’s severe deg-
radation on the decoder along with the compression effects. Therefore, the compressed 
video’s quality is needed to be improved efficiently [16].

The utmost apt filter algorithm is vital to be found for blocks in a frame for improving 
the video compressibility while maintaining the perceived quality to achieve top-quality 
images or videos at the decoder [17, 18]. For generating distortion-free compressed vid-
eos, many compression distortion reduction algorithms are proposed lately. However, 
distortion-free videos are not provided by any of them along with that excellent CR 
and improvements are still needed to attain good results. Therefore, an enhanced VC 
approach was proposed by this research methodology via RLAH encoding, KDENN, and 
MKF algorithms.

This paper is categorized as: Sect. 2 talks about the existing works with their outcomes 
and the limitations. Section 3 describes the proposed lossless VC method with suitable 
diagrams. Section 4 examines the proposed methodology’s outcomes and evaluates the 
existing techniques. Lastly, the paper is concluded by Sect. 5 with future guidelines.

2  Literature survey
Antony and Sreelekha [19] proffered 2 selective intra-prediction plans (SIP) that choose 
the top prediction design as of the block-centered along with sample-centered predic-
tions at the pixel level. The SIP plan was useful in angular prediction modes in the SIP-
A, whereas the combined SIP method (SIP-C) utilized the SIP approach in the angular 
along with planar prediction modes. The present modern SIP algorithm’s performance 
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was ameliorated by the SIP-C method. Aimed at evading the enormous overrides 
needed to report forecast selection as of the encoder to the decoder, SIP algorithms uti-
lized an extremely low bit (LSP) pick backpacking strategy. Though better compression 
was offered by the SIP, SIP’s run time was not reduced to the expected level.

Irannejad and Mahdavi [20] established a VC technique centered on sparse along with 
redundant illustration utilizing the K-singular values decomposition (K-SVD) along with 
iterative least square dictionary learning algorithm (ILS-DLA). The VFs were split into 
current frames along with reference frames. Concerning the frames of reference, the 
motion-compensated residuals (MCR) along with the motion vectors of current frames 
were assessed. The reference frames along with MCR’s sparse codes were attained utiliz-
ing entropy-coded, learned dictionaries, and it was saved or sent to the motion coding 
domain together with the receiver. Here, the ILS-DLA along with K-SVD techniques was 
utilized in the discrete cosines transformation (DCT) field. However, aimed at lossless 
VC, the field of DCT was not well suitable.

Pal and Bit [21] offered a lightweight VC method, the low overhead spatio-temporal 
VC method which was made by compression of intra- along with inter-frame. Utilizing 
an interpolation search-centered method along with an edge detection scheme, redun-
dant frames were eliminated in compression of inter-frame. Utilizing the adaptive col-
umn dropping method, compression of intra-frame was carried out. For ameliorating 
reconstruction quality, two reconstruction filters were utilized at the end of the receiver. 
Regarding energy consumption, experiential outcomes evinced that the method was bet-
ter while obtaining an acceptable reconstruction quality. However, energy consumption 
was its only concentration and does not ponder the CR.

Rabie and Baziyad [22] proffered a VC technique that makes exploit of the tempo-
rary reluctant in segments video employing the concept of pixogram. The pixogram 
possessed the capability to transform the unrelated spatial areas of individual VFs into 
extremely relevant temporary vectors and thus augmenting the redundancy in the tran-
sition domain. Utilizing this strategy, high CR in video stream could be achieved. This 
compression method was the first to utilize the pixogram concept in VC, and it intended 
to dare the conventional trade-off related to high CRs which causes decreased visual 
quality.

Hemanth and Anitha [23] established a pattern-centered artificial bees colony (ABC) 
method aimed at block motion (BM) estimation in VC applications. Every VF was sub-
partitioned into macroblocks in the BM process. The present frame’s every macroblock 
was analogized with the preceding frame. The method’s major intend was reducing the 
sum absolute difference. Aimed at decreasing the computational expense, the ABC algo-
rithm utilized an initial pattern. Concerning the search points along with convergence 
time, the computational expenditure was exhibited. Regarding the performance metrics, 
experiential outcomes evinced the method’s amelioration when analogized with other 
block matching methods. However, more compression time was utilized by it.

Siddeq and Rodrigues [24] recommended a method aimed at the compression of the 
image along with video centered on 2-level DCT utilizing hexadata coding. In the trans-
formation, the proffered HD coding technique was considerably disparate as of JPEG. 
Various additional steps at the stage of compression were incorporated. In this, the com-
pression of higher-frequency data via the hexadata algorithm was the significant step 
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that leads to the augmented CR, and also the data coding by utilizing 5 disparate keys 
which are created by a key generator. For recovering the large-frequency matrix, match-
ing of binary feature method’s utilization was made at the decompression stage employ-
ing 5 symmetric keys. Better compression was given by this method; however, execution 
time was very high aimed at large images.

Afonso et al. [25] modeled a VC frame centered on spatio-temporal resolution adap-
tation (ViSTRA) that resampled the input video temporally along with spatially dur-
ing encoding which was centered on a quantization resolution decision, along with 
the reconstruction of full-resolution video at the decoder carried out. Utilizing frame 
repetition, temporal upsampling’s execution was carried out. Aimed at spatial resolu-
tion upsampling, utilization of convolutional neural networks (CNN) super-resolution 
design was carried out. ViSTRA had been incorporated the higher-efficiency videos cod-
ing (HEVC) along with software. The major coding gains could be attained by applying 
the ViSTRA and were evinced as of the experiential outcomes. High complexity was this 
method’s major limitations.

3  RLAH encoding‑based enhanced video compression
VC is a method that lessens the data utilized to encode the video content. This lessening 
in data transcribes to benefits like small storage as well as lower transmission bandwidth 
needs, aimed at a clip of video content. To attain the best video watching experience, it 
is important to compress the videos devoid of losing the original quality; however, it is 
an extremely challenging task. To overcome this challenge and achieve enhanced VC, 
this paper proposes three different novel algorithms, say RLAH encoding, KDENN, and 
MKF. Certain steps are performed to design an effectual VC methodology. The proposed 
work encompasses ‘8’ steps: (i) video to frame conversion, (ii) color transform, iii) divid-
ing frames into [8 × 8] blocks, (iv) attribute extraction, (v) block motion classification, 
(vi) smoothening, (vii) compression, and, (viii) decompression. These steps are eluci-
dated below in detail. Figure 1 exhibits the proposed VC method’s workflow.

3.1  Video to frame conversion

The VC is carried out via VF. Thus, initially, the video is transmuted into frames. The 
sequence of frames is written as

wherein F̂r represent the sequence of frames set and F̂rN implies the N- number of 
frames.

3.2  Color transform

VF has significant correlations betwixt every signal, and it is composed of ‘R,’ ‘G,’ and 
‘B’ (red, green, as well as blue) signals. RGB color space is not well fit for autonomous 
coding on account of the higher correlation. Thus, the RGB-CSM is transmuted into the 

(1)Input video → F̂r; sequence(video_frames)

(2)F̂r =
{

f̂r1, f̂r2, f̂r3 . . . f̂rN

}
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CIE-Lab (Commission International d’Eclairage Lab) CSM. CIE-Lab is basically a per-
ceptual uniform color space in which perceptual uniformity alludes to how ‘2’ colors 
vary when a person notices those ‘2’ colors. Thus, it can well be utilized to make precise 
color balance corrections via altering output curves on a′ as well as b′ components, or 
to regulate the lightness contrast utilizing the ‘3’ component. In CIE-Lab, the ‘3’ compo-
nents L′ signifies luma component that is illumination information and a′b′ implies the 
chroma information. L′ = 0 renders the black color and L′ = 0 renders white color. The 
a′, the values a′ > 0 imply magenta. The b′, the values b′ > 0 imply yellow.

Let consider the RGB-CSM of video frames F̂r is F̂r(r, g , b) . As of these RGB values, the 
CIE-Lab values are attained via a nonlinear mapping of the x′y′z′  coordinates as:

Utilizing Eqs. (3), (4), and (5), the CIE-Lab can well be derived as

(3)x′ = 0.4303F̂r(r)+ 0.3416F̂r(g)+ 0.1784F̂r(b)

(4)y′ = 0.2219F̂r(r)+ 0.7068F̂r(g)+ 0.0713F̂r(b)

(5)z′ = 0.0202F̂r(r)+ 0.1296F̂r(g)+ 0.939F̂r(b)

(6)L′ =

{

116h
(

y′

ym
− 16

)

if
(

y′

ym

)

> 0.00856

903.3 otherwise

}

(7)a′ = 500

(

h

(

x′

xm

)

− h

(

y′

ym

))

Fig. 1 Work flow of the proposed VC
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wherein xm, ym, and zm signify the tristimulus values of the illuminant. The conversion of 
RGB-CSM to CIE-Lab CSM is expressed as

wherein F̂r(L′, a′, b′)  signifies the CIE-Lab CSM frame. CIE-Lab includes more color 
(even more compared to a person eye could see) than other color spaces.

3.3  Block motion identification

The target’s movement regarding the preceding frame is determined in each succes-
sive video frame for eliminating the undesirable translational camera motions. Thus, 
a stabilized video is generated. The captured videos are simple to encompass a higher-
frequency motion like vibration. The image’s quality is affected by this high-frequency 
motion (multiple motions). Thus, for eliminating the motions from the frames, motion 
identification is conducted to identify the high-frequency motions within the frames. 
The finding of motion vectors (single motion, multiple motions) from neighbor-
ing frames in a video sequence is motion identification. The motion vectors might be 
the entire frame or an explicit part, for example, random-shaped patches, rectangular 
blocks, or else a single pixel. Each VF is separated into 8 × 8 blocks aimed at provid-
ing an accurate motion identification process. The obtained blocks are mathematically 
expressed as

where bj indicates total blocks obtained from N-number of frames, (b1, b2, ...., b64)1 and 
(b1, b2, ...., b64)N denotes the list of blocks of frame 1 and frame N  , respectively. Few fea-
tures are initially extracted from every block for training the classifier to distinguish the 
block motion.

3.4  Attribute extraction

Here, the vital features are taken as of every VF’s block. Attributes like standard devia-
tion, kurtosis, mean, skewness, block correlation, and also gray-level co-occurrences 
matrix (GLCM) are chosen aimed at the block motion detection procedure. The attrib-
utes are detailed as:

3.4.1  Mean ( bj(u, v))

This is an average that signifies the VF block’s general brightness and is articulated as

where 
m
∑

u=1

n
∑

v=1

bj(u, v) implies the addition of the block’s every pixel value (PV); m× n is 

the VF’s size.

(8)b′ = 200

(

h

(

y′

ym

)

− h

(

z′

zm

))

(9)F̂r(r, g , b)
RGB to CIE−Lab

−→ F̂r(L
′, a′, b′)

(10)bj =
{

(b1, b2, ...., b64)1, ......, (b1, b2, ...., b64)N ; list(frame_blocks)
}

(11)bj(u, v) =
1

m× n

m
∑

u=1

n
∑

v=1

bj(u, v)
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3.4.2  Standard deviation ( Sd )

The measurement of the frequency distributions of a block’s PV is termed as that block’s 
standard deviation. It is articulated as

3.4.3  Kurtosis ( Ks)

The parameter that determines the shape of a random variable’s probability distribution 
is termed kurtosis that is enumerated as

3.4.4  Skewness ( Sw )

It is stated as the measurement of symmetry or the nonexistence of symmetry. The VF’s 
skewness is computed utilizing Eq. (14) as

3.4.5  Correlation ( Cu,v)

Correlation computes the specific pixel pairs’ joint occurrence probability.

3.4.6  GLCM

The GLCM functions describe an image’s texture by computing how frequently the pixel 
pairs comprising certain values in a certain spatial relationship prevail inside an image, 
generating a GLCM and then taking statistical measures as of this matrix. The GLCM’s 
textural attributes are detailed as:

3.4.6.1 Energy (En) Energy is determined centered on the block’s normalized histogram.

3.4.6.2 Entropy (Ey) Entropy is stated as the randomness’s statistical measure, which 
may be utilized aimed at characterizing the block’s texture.

(12)Sd =

√

√

√

√

1

m× n

m
∑

u=1

n
∑

v=1

(

bj(u, v)− bj(u, v)
)

2

(13)Ks =
1

m× n

m
∑

u=1

n
∑

v=1

(

bj(u, v)− bj(u, v)
)4

Sd
4

(14)Sw =

√

√

√

√

√

1

m× n

m
∑

u=1

n
∑

v=1

(

bj(u, v)− bj(u, v)
)3

Sd
3

(15)Cu,v =

∑

(

u− bj(u, v)
)(

v − bj(u, v)
)

√

∑

(

u− bj(u, v)
)2

∑

(

v − bj(u, v)
)2

(16)En =
1

m× n

m
∑

u=1

n
∑

v=1

(

bj(u, v)
)

2
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3.4.6.3 Homogeneity (Hy) It signifies the closeness of the elements’ distribution as of the 
GLCM toward the GLCM’s diagonal.

3.4.6.4 Dissimilarity (Dy) Dissimilarity is stated as the local intensity variation’s meas-
urement determined as the mean absolute differentiation betwixt the neighboring pairs.

3.4.6.5 Cluster tendency (Ct ) Cluster tendency is stated as the measurement of voxels’ 
groupings comprising equivalent gray-level values.

where bj(u) implies bj(u) ’s mean intensity; bj(v) implies bj(v) ’s mean intensity. The total 
extracted attributes are signified as Zf ,N .

3.5  Block motion classification

Here, the classifier extracts a block’s features and categorizes them as one amidst the 
‘2’ types either comprising single or multiple motions. Multiple motions signify speedy 
changes betwixt the image’s pixels; the single motion signifies the steady alterations 
betwixt the image’s pixels. The proposed work employs a KDENN classifier aimed at 
block motion categorization. The conventional Elman neural network is defined as a 
partial recurrent network design that comprises ‘4’ layers: the inputted layer (IL), the 
hidden layer (HL), the context layer, and then the outputted layer (OL). The difference 
betwixt this network and the feed-forward neural network is the context layer’s presence 
in the Elman network. The context layer is utilized to memorize the HL’s output that is 
observed as a step delay operator. Aimed at decrementing the training error, greater than 
n-number of HLs are utilized in the proposed classifier that studies the data intensely by 
filtering the information via this n-number of the HLs. This deep learning provides an 
accurate categorization. Figure 2 exhibits the KDENN’s structure.

The feature values extracted are inputted to the KDENN classifier’s IL. IL comprises N
-dimensional external input vectors Zf ,N . At Zf ,N ’s arrival in IL, equivalent weight values 

(17)Ey =
1

m× n

m
∑

u=1

n
∑

v=1

(

bj(u, v)
)

log2
(

bj(u, v)
)

(18)Hy =

m
∑

u=1

n
∑

v=1

(

bj(u, v)
)

1+ (u− v)2

(19)Dy =

m
∑

u=1

n
∑

v=1

(

bj(u, v)
)

|u− v|

(20)Ct =

m
∑

u=1

n
∑

v=1

(

u+ v − bj(u)− bj(v)
)2

(

bj(u, v)
)

(21)extracted_attributes

(

bj(u,v) ,Sd ,Ks ,Sw ,Cu,v ,En,Ey,Hy,Dy,Ct

)

−→ Zf ,N



Page 9 of 19Manjunatha et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:15  

aimed at these inputted feature values are produced arbitrarily. Next, the inputted values 
and their equivalent weight values are sent to the HL and the HL’s output can be equated 
as

where OHID,t̃ signifies the HL’s output at t̃ iteration; OHID,t̃ signifies the HL unit’s output 
at t̃ iteration; OCON ,t̃ implies the context layer unit’s output at t̃ iteration, correspond-
ingly. The context layer’s output is formulated as

where OHIDD,t̃−1 implies the HL’s output at t̃ − 1 iteration; WIH implies weight of the IL 
to HL; WHC signifies the weight of HL to context layer; κH symbolizes the kernel activa-
tion function. The κH is employed in the KDENN in place of the Gaussian activation 
function. The κH is revealed to comprise a strong performance in the deep learning neu-
ral networks. The κH is equated as

where κ(α) signifies the κH aimed at the input α ; βN implies the mixing coefficients; dN 
symbolizes the dictionary elements; k implies kernel coefficient. Past the κH , the HL pro-
vides its output OHID,t̃ as an input onto the OL. Gr on HL’s output, the OL generates the 
end output as

where OOUT ,t̃ signifies the OL unit; κO implies the OL’s activation function; WHO signi-
fies the weight of HL to the OL. The final categorization outcome comprises ‘2’ classes 

(22)OHID,t̃ = κH
(

WIH OCON ,t̃ +WHC

(

Zf ,N

))

(23)OCON ,t̃ = OHIDD,t̃−1

(24)κ(α) =
∑

N
βNk(α, dN )

(25)OOUT ,t̃ = κO
(

WHOOHID,t̃

)

Fig. 2 Structure of KDENN
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(‘0,’ ‘1’). Herein, ’0’ signifies a single motion; ’1’ implies multiple motions. In the single 
motion block, the VF directly undergoes a compression procedure, or else in the mul-
tiple motion blocks, a smoothing process is carried out aimed at those multiple motion 
blocks and that is implemented to the compression procedure past smoothing. The 
motion smoothening is executed aimed at eliminating the undesired movements and jit-
ters, generally pondered as multiple motions, like a vibration in the captured video.

3.6  Smoothing

Here, the undesired movements and jitters prevalent in the captured videos are elimi-
nated through the MKF. Kalman filter (KF)  is stated as an algorithm, which smooths 
the VFs by the filtering of numerous motions. It offers a few unknown variables’ esti-
mates, provided the measures are noted over time. KFs are indicating their effectiveness 
in the noise smoothing process. The proposed work does a few alterations to the stand-
ard KFing procedure utilizing the variances–covariance matrix (VCM). The measure-
ment error matrix (MEM) is utilized in the standard KF aimed at observation vector 
computation that provides the means for every variable. In MKF, a VCM is implemented 
in the MEM’s place. VCM provides the variables’ variances along the main diagonal 
and the co-variances betwixt every variable pair prevalent in the other matrix positions 
aimed at incrementing the smoothing performance with not affecting the frames’ signifi-
cant information.

KFing procedure comprises ‘2’ phases: prediction and updation. Ponder a linear dis-
crete-time dynamic system defined by the linear stochastic difference equation,

where Sq signifies the state vector; θq implies the state transition matrix; dq symbolizes 
the disturbance vector; q signifies time index. Next, the smoothing block is attained as of 
various motions as

where Sm(q) signifies the smoothed blocks, �q symbolizes the VCM; nq implies the noise 
measurement. Utilizing Eqs. (26) and (27), the undesired movement and jitters are elimi-
nated as of various motion blocks. Next, the VFs are implemented to the subsequently 
pace aimed at furthermore processing.

3.7  Video compression

The VF undergoes a major step of lessening the file size in this step. The video is com-
pressed using a run length-centered ASCII Huffman (RLAH) encoding algorithm. The 
sequence of PV is initially suppressed using an RLE algorithm in RLAH, and then, cor-
responding ASCII values are calculated for those PV. The HC compresses the video 
grounded on these ASCII values. The step-by-step explanation of RLAH centered VC is 
explained as follows,

Step 1: Run length encoding

(26)S(q + 1) = θqSq + dq

(27)Sm(q) = �qSq + nq
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 RLE is a very easy compression technique, which runs on the sequence 
encompassing the same PV occurring many successive times and the sequence is 
encoded for storing merely a single value along with its count. The frequency is 
not utilized for the single occurrence of a specific value as that would produce an 
overhead influencing the compression’s efficiency.

 The same PV in the frames is initially counted in RLE. After that, the encoded 
PV is written as PV with a count of PV, which is shown below.

 Example for RLE

 Input pixel values: 44 44 44 56 56 56 56 25 81 81

 Encoded pixel values: 344 456 25 281.
A series of frequency-PV pairs are generated by the output PV, which is indicated 
as Sk . This new representation was forwarded to the next section for the ASCII 
value calculation.

 where F̂(u, v)i indicates the PV of i-th VF and Sk signifies the new PV generated 
using RLE.
Step 2: ASCII value calculation: The corresponding ASCII value is produced for 
the output PV in this step, which is obtained as of the preceding step.

 where Ac symbolizes the ASCII code of Sk PV.
Step 3: Huffman coding: HC is an LLC algorithm. A variable-length code is allot-
ted to input different characters in this algorithm. The code length is related to 
how the characters are utilized frequently. The smallest codes are possessed by 
the most frequent characters along with longer codes meant for the least frequent 
ones.

The Huffman encoding compression operates by means of generating a binary tree of 
nodes. A table was initially drawn, which comprises an ASCII column and frequency 
columns. Each ASCII value is entered in the ASCII column and the total occurrences of 
that value into the frequency column. All the nodes are grouped in ascending order cen-
tered on the frequency values. Next, a parent node is formed by joining 2 least frequency 
value nodes. Then, these 2 frequency values are added and labeled as the parent node. 
This step is recurred till all the nodes are formed. The resultant parent nodes are merged 
for generating a new parent node subsequent to node creation; then, child node values 
are added, and also it is labeled as the parent node. If any node remains, then it will be 
added to the uppermost parent node. All the values are added and also it is named the 
root node. Each left arrow is named as 0, and the right arrow is labeled as 1 on a binary 
tree. For compressing the values, start as of the root node and trace the character by 
reading off 1’s and 0’s.

(28)F̂(u, v)i
Suppress pixel values

−→ Sk

(29)Sk
ASCII code conversion

−→ Ac
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where C(F̂r) indicates the compressed video frames. The video sequence, using the above 
3 steps, is compressed frame by frame. Each frame of the video is provided to the RLAH 
encoder, and each frame’s output is concatenated at the output. The pseudocode of the 
RLAH encoding algorithm is given in Fig. 3.

The RLAH is a reversible process. The above three steps are executed in reverse 
order for decompressing the video. The video’s quality is calculated among the origi-
nal video in addition to the decompressed video centered on some quality metrics after 
decompression.

4  Result and discussion
In this section, performance analysis of the model is discussed. The proposed process is 
carried out using MATLAB tools and validates the performance using the permanence 
parameters as peak signal-to-noise ratio (PSNR).

4.1  Performance evaluation

Peak signal-to-noise ratio  (PSNR) is used as the performance metric in this analy-
sis. It is an engineering term for the ratio between the maximum possible power of 

(30)Ac
Frame compression

−→ C(F̂r)

Fig. 3 Pseudocode of proposed RLAH encoding algorithm
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a signal and the power of corrupting noise that affects the fidelity of its representation. 
Because many signals have a very wide  dynamic range, PSNR is usually expressed as 
a logarithmic quantity using the decibel scale.

PSNR is most easily defined via the  mean squared error (MSE). Given a noise-
free m × n monochrome image I and its noisy approximation K, MSE is defined as:

The PSNR (in dB) is defined as

where MAXI is the maximum possible pixel value of the image. When the pixels are rep-
resented using 8 bits per sample, this is 255. More generally, when samples are repre-
sented using linear PCM with B bits per sample, MAXI is  2B − 1.

The raw video is sent to the proposed encoder, and the encoded H.264 streams are 
received as the output. The encoder only PSNR (PSNR enc) is calculated also. The 
H.264/AVC video streaming apps are now supported by the framework, new video 
codecs can be readily added. A quality measurement based on PSNR is presented, which 
works well for both short and lengthy video sequences. The experiments are executed 
using five disparate standard videos (foreman_cif.y4m, grandma_qcif.y4m, akiyo_qcif.
y4m, coastguard_qcif.y4m, and bowing_qcif.y4m) with disparate sizes included by the 
standard database. The detailed results are mentioned below.

4.2  Experimental results

Here the analysis outcomes regarding the compression process are given, and in this, 
one sample frame is pondered as of every video.

The clear depiction of every stage is given by the work which is exhibited in Fig. 4. The 
video sequence’s input frames are exhibited in Fig.  4A. Figure  4b exhibits the conver-
sion of RGB into CIE-Lab for adjusting the frame’s lightness for attaining a better-qual-
ity image. Finally, utilizing RLAH decoding, image decompression is performed and is 
exhibited in Fig. 4C. Regarding diverse quality metrics, the frame quality is analyzed by 
analogizing the actual frame with the achieved decompressed frames.

4.3  Comparative results

Here, aimed at the proposed design’s verification, the proposed compression technique’s 
CR is analyzed, verified, and analogized with the prevailing compression techniques. 
In the proposed RLAH encoding along with prevailing arithmetic encoding (AE), run 
length encoding (RLE), Lempel–Ziv–Welch encoding (LZWE), 10 adjacent frames in 
every video together with the 10 frames’ average CR are picked which are exhibited in 
Table 1.

The ratio betwixt the original frame size and the compressed frame size is articulated 
as CR, and it alludes to how much compression a specific frame attains and the frame 
quality in general. The frame’s CR must be high aimed at effectual compression. The 

(31)MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[

I
(

i, j
)

− K
(

i, j
)]2

PSNR = 10 log10

(

MAX2
I

MSE

)

= 20 log10 (MAXI )− 10 log10(MSE)
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proposed RLAH encoding is analogized with the prevailing compression techniques 
and is exhibited in Fig. 5, which exhibits that the highest CR for every disparate video 
is attained by the proposed RLAH encoding. The proposed RLAH encodings’ average 
CR is 0.6770 for foreman_cif.y4m, whereas average CR of 0.2936, 0.3966, and 0.0221 
is attained by the prevailing AE, RLE, along with LZW encoding, respectively, and is 
low when analogized with the RLAH’s CR. The CR of 0.6044, 0.5677, 0.7643, along with 
0.5143 aimed at grandma_qcif.y4m, akiyo_qcif.y4m, coastguard_qcif.y4m, along with 
bowing_qcif.y4m videos, respectively, is attained by the proposed RLAH. And when 
analogized with the prevailing techniques, the proposed RLAH attains better outcomes 
regarding CR. In general, the proposed RLAH is more effectual at compressing the dis-
parate types of videos and is exhibited by the graphical analysis.

4.4  Performance analysis

The proposed RLAH attains top performance in compression of the video when 
analogized with the other compression techniques which are evinced as of the 

Fig. 4 Visual results of proposed video compression model a Input VFs, b RGB to CIE-Lab conversion, c 
decompressed image

Table 1 Average CR of 10 frames

Video Arithmetic 
encoding

Run length 
encoding

LZE encoding Proposed 
RLAH 
encoding

Foreman_cif.y4m 0.2936 0.3966 0.0221 0.6770

Grandma_qcif.y4m 0.1241 0.1362 0.0218 0.6044

Akiyo_qcif.y4m 0.3666 0.4033 0.0225 0.5677

Coastguard_qcif.y4m 0.3743 0.4243 0.0221 0.7643

Bowing_qcif.y4m 0.3676 0.3993 0.0054 0.5143
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aforesaid comparison. Here, regarding some performance metrics, namely correla-
tion value (CORR), root mean square errors (RMSE), indifference quality level (IQI), 
maximum difference (MD), peak signal-to-noise ratio (PSNR), mean absolute errors 
(MAE), mean square error (MSE), signal-to-noise ratio  (SNR), along with structural 
similarity index measure (SSIM), the proposed design’s decompressed image’s qual-
ity is assessed. Here, 10 adjacent frames are picked in each video and the average 
of MAE, SSIM, MD, CORR, PSNR, SNR, MSE, IQI, along with RMSE of proposed 
RLAH encoding aimed at 10 frames is exhibited in Table 2 which is the same as the 
CR analysis.

Regarding the PSNR along with SNR, Fig.  6 exhibits the proposed design’s per-
formance. The decompressed image’s quality will be superior if the PSNR value is 
high. The PSNR value of 34.35, 39.42, 39.20, 35.59, and 39.25 for foreman_cif.y4m, 
grandma_qcif.y4m, akiyo_qcif.y4m, coastguard_qcif.y4m, and bowing_qcif.y4m 
video, respectively, is attained by means of the proposed design. The PSNR must be in 
the range betwixt 30–50 aimed at better image quality, and the proposed design prof-
fers a PSNR value of above 34. The proposed design offers outstanding performance 
regarding grandma_qcif.y4m and akiyo_qcif.y4m videos. Therefore, it is evinced that 
the proposed model’s decompressed image quality is high. The proposed design offers 
31.24, 28.33, 32.30, 29.78, and 34.33 for the five disparate videos regarding SNR value. 

Fig. 5 CR analysis

Table 2 Performance of proposed model (average of 10 frames)

Video PSNR SNR Corr SSIM IQI MD MAE MSE RMSE

Foreman_cif.y4m 34.35 31.24 0.99 0.97 0.84 0.75 0.02 0.0003 0.033

Grandma_qcif.y4m 39.42 28.33 0.99 0.99 0.90 0.33 0.01 0.0004 0.018

Akiyo_qcif.y4m 39.20 32.30 0.99 0.99 0.92 0.27 0.01 0.0001 0.018

Coastguard_qcif.y4m 35.59 29.78 0.99 0.95 0.93 0.64 0.02 0.0027 0.028

Bowing_qcif.y4m 39.25 34.33 0.99 0.98 0.91 0.49 0.01 0.0001 0.018
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If the SNR value equals 20, then the image’s quality is acceptable, and the resulting 
image is of outstanding quality if the SNR value is above 30. The proposed design’s 
SNR value is above 29 aimed at all the videos. The proposed model’s SNR value is 
above 31, especially for Foreman_cif.y4m, Akiyo_qcif.y4m, and Bowing_qcif.y4m 
videos. Therefore, it is evinced that better video quality is attained by the proposed 
design.

Regarding, the CORR, SSIM, IQI, along with MD, Fig.  7 exhibits the proposed 
model’s performance. The degree of similarity (or dissimilarity) betwixt 2 videos is 

Fig. 6 Performance of proposed model regarding PSNR and SNR

Fig. 7 Performance of proposed model regarding CORR, SSIM, IQI, and MD



Page 17 of 19Manjunatha et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:15  

evaluated by the CORR. The CORR betwixt the actual and the decompressed video 
is above 0.99 for every video that means the decompressed video quality is nearly 
close to the actual video quality. The structural similarity betwixt actual and decom-
pressed videos is measured by SSIM. The proposed design’s SSIM is 0.97, 0.99, 0.95, 
0.99, along with 0.98, for foreman_cif.y4m, grandma_qcif.y4m, coastguard_qcif.y4m, 
akiyo_qcif.y4m, along with bowing_qcif.y4m video, respectively, which is nearly close 
to 1. Thus, it is evinced as of outcomes that the proposed design is highly effectual 
and appropriate for compression of video, and regarding IQI along with MD also it 
proffers top performance.

Regarding, MAE, MSE, along with RMSE, Fig.  8 exhibits the proposed model’s 
performance. These 3 metrics are referring to as error metrics. The average squared 
difference betwixt the actual video and the decompressed video is measured by the 
MSE. The MAE, RMSE, together with the MSE of any model, must be low for a high-
quality video. The MAE, MSE, along with RMSE for foreman_cif.y4m video, are only 
0.02, 0.0003, 0.033, for akiyo_qcif.y4m video are 0.01, 0.0001, and 0.018, for grandma_
qcif.y4m video are 0.01, 0.0004, and 0.081. The MAE, RMSE, along with MSE val-
ues, are extremely low, i.e., below 0.1 for the remaining videos also. Therefore, the 
error betwixt the actual video and decompressed video is low which is evinced as of 
the outcomes, and hence, the decompressed video quality is almost near to the actual 
video.

Aimed at compressing the videos, the proposed design is more effectual and con-
sistent which is evinced as of the entire graphical analysis. The video compression 
plays an important role in the following applications viz., EDTECH (e-Learning Plat-
form), OTT (over the top) service platforms, and social media. So, this proposed 
work implies an active involvement in bringing about the results in the area of video 
compression for many applications including the above-mentioned one.

Fig. 8 Performance of proposed model regarding MAE, MSE, and RMSE
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5  Conclusion
VC is stated as the technique of decrementing the amount of data needed aiming at rep-
resenting the digital video while conserving acceptable video quality. This work proffers 
an enhanced VC technique. This work’s core aim is to utilize efficient techniques and 
model an effective VC method aimed at attaining a higher-quality compressed video 
with higher PSNR Value and also higher CR. Latest techniques have been utilized in 
every stage aimed at effective VC. The proposed RLAH encoding technique’s perfor-
mance is analogized with the prevalent techniques concerning the CR. The experiential 
outcomes exhibited that the proposed RLAH encoding technique gives an outstanding 
compression performance with a higher CR of 0.76 aimed at Coastguard_qcif.y4m video. 
Moreover, examining the proposed approach’s performance by analogizing the decom-
pressed video’s quality with the actual video identified that the RLAH encoding tech-
nique offers a high-quality video comprising maximal PSNR value with minimal error 
values. It attained the 39.42 PSNR value with a minimal MSE of 0.0001 aimed at the 
Akiyo_qcif.y4m video. The performance examination confirmed that the RLAH encod-
ing approach effectively compresses the videos and offer high-quality videos.

Even though the RLAH encoding approach attains a high CR, it causes important arti-
facts in the compressed videos, like ringing, blurring, and blocking. The proposed work 
can be prolonged in the upcoming future by including artifact filtering methods aimed 
at incrementing its performance.
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