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Abstract 

Cell-free massive multiple-input multiple-output (CF-mMIMO) has attracted consider-
able attention due to its potential for delivering high data rates and energy efficiency 
(EE). In this paper, we investigate the resource allocation of downlink in CF-mMIMO 
systems. A hierarchical depth deterministic strategy gradient (H-DDPG) framework 
is proposed to jointly optimize the access point (AP) clustering and power allocation. 
The framework uses two-layer control networks operating on different timescales 
to enhance EE of downlinks in CF-mMIMO systems by cooperatively optimizing AP 
clustering and power allocation. In this framework, the high-level processing of sys-
tem-level problems, namely AP clustering, enhances the wireless network configura-
tion by utilizing DDPG on the large timescale while meeting the minimum spectral 
efficiency (SE) constraints for each user. The low layer solves the link-level sub-prob-
lem, that is, power allocation, and reduces interference between APs and improves 
transmission performance by utilizing DDPG on a small timescale while meeting 
the maximum transmit power constraint of each AP. Two corresponding DDPG agents 
are trained separately, allowing them to learn from the environment and gradually 
improve their policies to maximize the system EE. Numerical results validate the effec-
tiveness of the proposed algorithm in term of its convergence speed, SE, and EE.

Keywords: Cell-free massive MIMO, Access points clustering, Power allocation, Energy 
efficiency, hierarchical deep deterministic policy gradient

1 Introduction
With the rapid development in mobile communication technology, wireless communi-
cation systems are continuously moving toward higher data rates and energy efficiency 
(EE). In order to fulfill the high-rate, ultra-reliable, and low-latency communication 
requirements of future applications, massive multiple-input multiple-output (MIMO) 
systems has emerged as an effective paradigm to support the growing popularity of 
mobile applications, in which the base station implements hundreds of antennas to 
efficiently serve a large number of user equipments (UEs) [1]. In practical real-world 
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applications of massive MIMO systems, a substantial quantity of antennas can be 
deployed either centrally or in a distributed fashion. In the former scenario, all anten-
nas are positioned within a confined space, eliminating the need for fronthaul. Leverag-
ing channel hardening and favorable propagation characteristic, massive MIMO reduces 
the transmission energy consumption while mitigating interference among UEs, thereby 
supporting greater throughput and more connectivity [2–5]. In the latter scenario, on 
the other hand, distinct antennas are geometrically spaced apart but linked to a cen-
tral processing unit (CPU) through a fronthaul network. Given the proximity of UEs 
to antennas, cell-free massive MIMO (CF-mMIMO) can reduce interference, enhance 
system capacity, and more effectively utilize radio resources, compared with the central 
massive MIMO. Furthermore, CF-mMIMO technology fully leverages macro-diversity 
and multi-UE interference suppression, offering a nearly consistent quality of service 
(QoS) to UEs. This, in turn, enhances system performance and extends coverage [6–8].

For CF-mMIMO systems, access point (AP) clustering and power allocation play an 
important role in enhancing the system performance. Because proper AP clustering 
and power allocation strategies can effectively reduce multi-UE interference, improve 
the system EE, and ensure UE’s QoS [9]. In recent years, there have been many works 
focused on AP clustering and power allocation. For example, the work [10] introduced 
a joint optimization approach encompassing cell, channel, and power allocation to max-
imize the overall UE throughput. In [11], an iterative optimization was conducted for 
AP clustering, linear least mean square error precoding, and power allocation to maxi-
mize the sum-rate in CF-mMIMO systems. Additionally, the authors of the work [12] 
introduced distributed algorithms to address the joint problem of AP selection and 
power allocation in a multi-channel, multi-AP network. Furthermore, the authors of 
[13] devised a joint optimization approach for pilot allocation, AP selection, and power 
control, to enhance the throughput of CF-mMIMO systems. However, these algorithms’ 
computational complexity increase exponentially with the increase of the number of AP 
and UE in the above-mentioned works, which results in real-time processing limitations 
that may be difficult to apply in CF-mMIMO systems. Therefore, it is urgent to develop a 
low-complexity and good-scalability method for large-scale networks.

On the other hand, to perform the AP clustering and power allocation, an alternative 
approach is to utilize the “learn to optimize” methodology. This approach leverages the 
capability of deep neural networks (DNNs) to acquire intricate patterns and approximate 
complex function mappings. Deep learning (DL) has excelled in perceptual capabilities 
but has certain limitations in decision making. In contrast, reinforcement learning (RL) 
possesses decision-making abilities but has constraints in perception. Therefore, the 
integration of DL and RL, known as deep reinforcement learning (DRL), aims to over-
come each other’s shortcomings [14]. It enables the direct learning of control strategies 
from high-dimensional raw data. This approach closely resembles human thinking and 
has shown immense potential in enhancing wireless communication performance. DRL 
operates based on rewards, allowing it to find solutions to convex and non-convex prob-
lems without the need for extensive training datasets. Additionally, the computational 
complexity required for generating DRL outputs is low, involving only a small number 
of simple operations. These characteristics make DRL a powerful technology poised to 
make significant advancements in the field of wireless communication.
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There are many works on resource allocation of CF-mMIMO systems based on DRL 
[15–24]. In [15], a power allocation method based on deep Q-network (DQN) was exam-
ined, taking into account the presence of imperfect channel state information (CSI). The 
authors of [16] introduced a distributive dynamic power allocation scheme, employing 
model-free DRL, to maximize a utility function based on the weighted sum-rate. The 
work [17] investigated the  joint pilot and data power control, as well as the design of 
receiving filter coefficients in cell-free systems. It also presented a decentralized solu-
tion utilizing the actor-critic (AC) approach. Moreover, in [18], feed-forward neural net-
works were integrated into the output layer of the deep deterministic policy gradient 
(DDPG) algorithm. This integration aimed to mitigate the issue of over-fitting in DRL. In 
[19], a power control algorithm, utilizing the twin delayed deep deterministic policy gra-
dient (TD3), was introduced. Furthermore, to concurrently optimize compute and radio 
resources, [20] tackled a multi-objective problem through the application of a distributed 
RL-based method and a heuristic iterative algorithm. In [21], the authors introduced a 
framework for the joint channels clustering and power allocating using a multi-agent 
DRL approach, known as double DQN (DDQN). In [22], the research focused on opti-
mizing relay clustering and power level allocation in device-to-device transmissions. To 
address this challenge, a centralized hierarchical DRL (HDRL) approach was introduced 
with the aim of discovering the most effective solution to the problem. [23] introduced 
a multi-agent RL (MARL) algorithm to tackle complex signal processing problems in 
high-dimensional scenarios. This approach incorporates predictive management and 
distributed optimization, all the while taking into account a dual-layer power control 
architecture that leverages large-scale fading coefficients between antennas to reduce 
interference. The work of [24] introduced HDRL to achieve automatic unbalanced learn-
ing. At a higher level, decisions regarding the quantity of synthetic samples to generate 
are made, while at a lower level, the determination of sample locations is influenced by 
the high-level decision, considering that the optimal locations may vary depending on 
the sample quantity. [25] explored DRL within a hierarchical framework and presented 
the hierarchical DQN (H-DQN) model. This approach breaks down the primary prob-
lem into autonomous sub-problems, with each one being handled by its dedicated RL 
agent. [26] demonstrated tasks that H-DQN cannot solve, highlighted limitations in 
such hierarchical frameworks, and described the recursive hierarchical framework that 
summarizes an architecture using recursive neural networks at the meta-level.

In a word, many research works demonstrated the excellent performance of DRL-
based methods in resource allocation in CF-mMIMO systems. However, while DRL is 
excellent at solving the optimization problems, its limitations become apparent when 
dealing with some problems with hierarchy and complexity. This provides an oppor-
tunity for the introduction of HDRL. HDRL uses a hierarchical framework that breaks 
down problems into independent sub-problems and is handled by a dedicated DRL 
agent, allowing for better challenges when dealing with complex problems. Especially 
when the joint optimization problem of AP clustering and power allocation is con-
ducted, HDRL can efficient handle multiple levels of information and decision making. 
This is mainly because HDRL can flexibly deal with hierarchical relationships, the origi-
nal optimization problem is divided into more manageable sub-problems, so as to better 
adapt to the complexity and uncertainty in the actual scenario. Therefore, although DRL 
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is excellent in solving most of optimization problems for some specific joint optimiza-
tion problems, HDRL’s hierarchical structure and flexibility can provide a more efficient 
solution. In this paper, how to make better use of the advantages of DRL and HDRL, and 
how to choose appropriate methods, is an important direction of resource allocation in 
CF-mMIMO systems.

More recently, it is important to emphasize that the AP-UE association network 
structure is tailored to the channel statistics to harness array gain, while power alloca-
tion is customized based on the instantaneous effective CSI to attain spatial multiplex-
ing gain. Furthermore, AP clustering constitutes a global decision for the entire system, 
while power allocation involves local decisions for each specific link or connection after 
connection establishment. Therefore, two sub-problems need to be addressed at differ-
ent timescales and levels since they have distinct scopes of influence and optimization 
objectives. Fortunately, the HDRL algorithm can decompose this joint optimization 
problem into two sub-problems, allowing optimization at different levels. Moreover, 
for CF-mMIMO systems, the total number of APs and UEs is very large and thus the 
joint optimization of AP clustering and power allocation would induce prohibitively 
high complexity. However, in practical applications, especially for mobile communica-
tion systems, the joint optimization needs to be completed in real-time. This requires 
the algorithm to have fast convergence speed and low latency to adapt to the network 
dynamics and user mobility.

To address the above challenges, we propose a hierarchical depth deterministic strat-
egy gradient (H-DDPG) framework for joint optimization of AP clustering and power 
allocation in CF-mMIMO systems using the idea of “divide and conquer.” The frame-
work employs a two-layer control network operating on different timescales to improve 
the system EE performance. The main contributions of this paper can be summarized as 
follows.

• In this paper, we proposed a joint optimization framework for resource allocation 
of CF-mMIMO systems, taking into account AP clustering and power allocation. 
Unlike traditional methods, this integrated approach helps to coordinate system 
resources, reduce multi-user interference and power consumption, while meeting 
the constraints of the minimum spectral efficiency (SE) per UE and the transmitted 
power budget per AP, and thus achieve a better EE performance.

• To solve the formulated joint optimization problem, we propose a H-DDPG algo-
rithm. The algorithm combines the principles of DRL and hierarchical optimization, 
and creates a collaborative optimization framework that combines AP clustering and 
power allocation. By running two-layer control networks on different time scales, 
the decomposition and processing of system-level and link-level problems are real-
ized, with the goal of maximizing the EE of the system. For system-level problems, 
namely AP clustering, the implement of DDPG on a large timescale enhances the 
configuration of wireless networks and helps to improve the overall performance of 
the network. For link-level problem, i.e., power allocation, by utilizing DDPG on a 
small timescale, interference between APs is successfully reduced and the transmis-
sion performance is improved.
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• The efficiency of the proposed approach is verified through numerical simulations. 
The simulation results demonstrate that compared to single-layer DDPG approaches, 
the proposed two-tier H-DDPG method, exhibits substantial enhancement in terms 
of the convergence speed, EE, and SE performance.

The following sections of this paper are organized as follows: Section  2 provides a 
detailed description of the system model. In Section 3, the power consumption model 
is elaborated. Section 4 is dedicated to formulating the optimization problem. Section 5 
expounds on the principles and design of the H-DDPG algorithm. Section 6 discusses 
the simulation results. Finally, Section 7 offers the paper’s conclusion.

2  System model
As illustrated in Fig.  1, we consider a CF-mMIMO system, comprising K arbitrarily 
located single-antenna UEs and L geographically distributed APs, with each AP being 
equipped with N antennas. In the context of implementing the UE-centric cell-free 
architecture, where each UE is catered to by a specific subset of APs. All APs are con-
nected to the CPU via fronthaul links.

In this paper, time division duplex (TDD) protocol and a block fading model are adopt, 
where time–frequency resources are divided into coherent blocks so that the channel 
coefficients in each block can be assumed to be fixed. The coherent block consists of τc 
symbols, as shown in Fig. 2, and the channels are independently and randomly distrib-
uted in each coherent block. In the TDD-based protocol, each coherent interval τc is 

Fig. 1 CF-mMIMO system model

Fig. 2 Structure of resource block of length τc time instants
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divided into three stages: (i) the uplink channel estimation phase, (ii) the downlink data 
transmission phase, and (iii) the uplink data transmission phase. In this paper, we only 
focus on resource allocation to maximize the system EE of the downlink in CF-mMIMO 
systems. The proposed algorithms in this work can be readily applied to the uplink sce-
nario, after some straightforward simplification. Assuming the duration of uplink train-
ing phase is τp , the remaining coherence interval (τc − τp) is used for the downlink data 
transmission.

In the context of spatially correlated Rayleigh fading, the channel linking the k-th UE 
and the l-th AP is denoted as hkl ∈ C

Nand is characterized as hkl ∼ NC(0,Rkl) with 
Rkl ∈ C

N×N signifying the spatial correlation matrix. Conversely, when transmitting 
from the l-th AP to the k-th UE, the average channel gain for any specific antenna is 
determined through the normalized trace βkl = 1

N tr(Rkl)

2.1  Channel estimation

In the channel estimation phase, each AP independently obtains the CSI through local 
estimation, using the uplink pilot transmissions from UEs. Consider a collection of 
mutually orthogonal τp pilot sequences allocated to UEs, where tk denotes the index of 
the pilot assigned to the k-th UE, and Stk represents the group of UEs sharing pilot tk . 
When a UE from set Stk transmits pilot tk , the received signal yptk l ∈ C

N at the l-th AP is 
determined by computing the inner product between the received signal and pilot 
sequence tk as follows:

where pp represents the pilot transmitting power per UE, and ntk l ∼ NC

(

0, σ 2IN
)

denotes the additive Gaussian noise vector at the l-th AP. By utilizing the MMSE estima-
tor at the l-th AP, the channel estimation between the k-th UE and the l-th AP can be 
expressed as

where Ψ tk l = E

{

y
p
tk l

(

y
p
tk l

)H
}

=
∑

i∈Stk
τpppRil + σ

2IN represents the received pilot 

signal’s correlation matrix.

2.2  Data transmission

Let ςi ∈ C symbolize the downlink data signal with unit power for the i-th UE, where 
E
{

|ςi|2
}

= 1 is independent of each other. For the l-th AP, the CPU encodes the associ-
ated data symbol and transmits it to the l-th AP over fronthaul links. Then, the transmit-
ted signal at the l-th AP is given as

(1)
y
p
tk l

=
∑

i∈Stk

√
τppphil + ntk l ,

(2)ĥkl =
√
τpppRklΨ

−1

tk l
y
p
tk l

∼ NC

(

0, τpppRklΨ
−1

tk l
Rkl

)

,

(3)xl =
K
∑

i=1

√
ρilwilςi,
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where wil ∈ C
N represents the normalized precoding vector at the l-th AP for the i-th 

UE, i.e., �wil�2 = 1 , and ρil ≥ 0 signifies the power allocated to the i-th UE by the l-th 
AP.

Suppose that each UE is served by all APs over the same time–frequency resources. 
Accordingly, the received signal at the k-th UE can be expressed as

where nk ∼ NC

(

0, σ 2
)

 represents the noise at the k-th UE.
As stated in [27], the achievable SE of the k-th UE is defined as

where

This SE expression is applicable to any choice of the transmission precoding vector 
wk.  In fact, it also applies to any channel allocation, not just the associated Rayleigh 
fading. The expression can be calculated using Monte Carlo methods, which involves 
approximating each expectation with a substantial number of randomly generated 
sample averages. More precisely, we can generate an implementation of the channel 
estimate in a large set of coherent blocks. The normalized precoded vector is denoted 
as wil = wil/�wil�.  This paper adopts the linear precoding minimum mean square 
error precoding scheme.

3  Power consumption model and energy efficiency
This section presents the definition of a general power consumption model. The main 
elements of the power consumption model are given as follows: (1) the power con-
sumption at the radio site, encompassing power utilization by UEs 

{

Pue
k : ∀k

}

APs 
{

P
ap
l : ∀l

}

 , and fronthaul links 
{

P
fh
l : ∀l

}

(2) the  CPU power consumption Pcpu [28]. 

The total power consumption is represented as

The power consumption at the k-th UE is given as

(4)

ydlk =
L

∑

l=1

hHklxl + nk

=
L

∑

l=1

hHkl
√
ρklwklςk +

K
∑

i=1
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(

L
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√
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)

+ nk ,

(5)SEk = τd

τc
log2 (1+ SINRk),
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where Pc,ue
k  is the power consumption of the internal circuitry, while the second term 

accounts for the power usage during uplink transmission, and 0 < ηue ≤ 1 denotes the 
power amplifier efficiency at the UE. τp

τc
 is represented as the fractions of the uplink pilot 

transmission, the power consumption at the l-th AP is

wherein the internal circuit power of each AP antenna is represented by Pc,ap
l  

Dl ⊂ {1, . . . ,K } is the subset of UEs served by the l-th AP, Ppro
l  as the power consumed 

to process the received/transmitted signals of each UE in Dl , and 0 < ηap ≤ 1 as the 
power amplifier efficiency at the AP. For each fronthaul link, the power consumption is

where Pfix
l  represents the fixed power consumption, and the remainder describes the 

load-related uplink and downlink signaling, with Psig
l  representing the signaling power 

for each UE. The CPU is charge of processing all of the UE’s signals and has power 
consumption

where Pfix
cpu represents the fixed power consumption, B stands for the system bandwidth, 

and Pcod
cpu denotes the energy consumption per bit for the initial encoding at the CPU.

As per the established power consumption model, the overall system EE in the consid-
ered CF-mMIMO system (in bits/joules) is

4  Problem formulation
The focus of this paper is on maximizing the overall system EE in the considered CF-
mMIMO system through a joint optimization of AP clustering and power allocation, 
while adhering to constraints associated with the SE requirements of individual UEs and 
the transmit power budgets of each AP [29]. The problem is formulated as

(8)Pue
k = Pc,ue

k + τppp

τcηue
,

(9)P
ap
l = NP

c,ap
l + N |Dl | · Ppro

l + τd

τcηap

∑

k∈Dl

ρkl ,

(10)P
fh
l = P

fix
l + τu + τd

τc
|Dl | · P

sig
l ,

(11)Pcpu = P
fix
cpu + B

K
∑

k=1

SEk · Pcod
cpu ,

(12)
EE = B ·

K
∑

k=1

SEk

Ptotal
,

(13)

Maximize
(ρkl :∀k ,l)

EE

s.t. C1 : SEk ≥ SE
min
k

, ∀k

C2:
K
∑

k=1

ρkl ≤ Pmax, ∀l
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where SEmin
k  represents the minimum spectral efficiency required for the k-th UE, and 

Pmax represents the maximum transmit power of each AP.
It is evident that the optimization problem in  (13) is non-convex, making it challeng-

ing to obtain a global optimal solution that adheres to the non-convex constraint C1 and 
C2. Furthermore, in CF-mMIMO systems, the number of APs and UEs is very large, 
leading to a high complexity when we jointly optimize AP clustering and power alloca-
tion. To address these challenges, in the following section, the HDRL algorithm is devel-
oped to obtain a optimal solution.

5  Joint optimization of AP clustering and power allocation based on H‑DDPG 
algorithm

This section introduces a two-layer DRL framework for addressing the optimization 
problem (13) by employing the HDRL framework. This framework incorporates both 
high-level and low-level control strategies to achieve the network optimization through 
hierarchical coordination.

5.1  HDRL framework

Since the joint optimization of AP clustering and power allocation usually involves a 
large number of nonlinear constraints. Traditional optimization methods cannot effec-
tively solve nonlinear problems, and non-convex optimization algorithms result in 
cubic-order complexity, which is impractical in CF-mMIMO systems. The  DRL algo-
rithm has some advantages in dealing with complex nonlinear problems. Moreover, 
HDRL is a DRL framework composed of two distinct levels of DRL. This hierarchical 
approach aims to address complex decision tasks by partitioning them into high-level 
and low-level control layers. The advantages of HDRL compared to DRL are as follows.

1. HDRL uses a hierarchy to break down complex tasks into smaller sub-tasks with 
their own policies and rewards, improving efficiency in solving complex problems.

2. HDRL promotes knowledge sharing between different levels, allowing low-level 
strategies to benefit from higher-level guidance, accelerating effective strategy learn-
ing.

3. HDRL balances exploration and utilization by involving different levels of strategy. 
High-level policies focus on global decision making, while low-level policies provide 
detailed exploration and adjustment, enhancing environmental exploration and stra-
tegic refinement.

4. Because HDRL can learn strategies more efficiently, especially in the case of reason-
ably divided hierarchies, it usually has faster convergence. This means it can find a 
better strategy in a relatively short period of time.

Therefore, this paper proposes a distributed two-layer DRL framework, as shown in 
Fig. 3, in which the high-level control strategy and the low-level control strategy work 
successively in a distributed manner. In each layer of HDRL, agents learn their dynamic 
environment through repeated sequences of observations, actions, and rewards. In slot 
t, by observing state st , the agent takes action at ∈ A based on some strategy π, and then 
receives a reward rt from the environment and advances to the following state st+1 . 
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The quadruple (st , at , rt , st+1)represents a single interaction with the environment [30]. 
Define et as an empirical sequence, where et = (st , at , rt , st+1) . To maximize cumulative 
rewards, the agent seeks an optimal strategy.

The two primary methods for determining the optimal strategy are the value-based 
approach, DQN, and the policy-based approach, DDPG, respectively. Significant spatial 
capacity is necessary to accommodate the potentially substantial quantity of UEs and 
APs within the CF-mMIMO system, and continuous motion space due to power alloca-
tion issues. Traditional RL methods, such as Q-learning and DQN, are commonly used 
to deal with discrete action spaces where agents choose one of a limited set of discrete 
actions. DDPG and its enhanced iterations are well-suited for addressing challenges in 
scenarios with continuous action spaces. It combines deterministic strategy gradient 
method and DNN, which can effectively learn and optimize continuous action strate-
gies. Hence, the DDPG algorithm can obtain rapid and consistent learning rate.

The DDPG algorithm consists of four networks: the actor network, the critic network, 
and their respective target networks, each with specific relationships between them. The 
role of the actor component is to produce an action for each time step using a determin-
istic strategy denoted as µ(st |θµ) , learned by a DNN with weight . Update the weight θµ 
to find the best deterministic strategy µ(st |θµ) using the action value function, with the 
anticipated long-term reward defined as:

Here, Rt represents the cumulative discounted future reward. In general, θµ is updated 
by gradient ascent:

Here, αµ represents the learning rate, and J (θ) stands for

(14)Q(st , at) = E[Rt |st , at ],

(15)θ
µ ← θ

µ + α
µ∇θ J (θ)|θ=θ

µ ,

(16)J (θ) = E[Q(st ,µ(st |θ))],

Fig. 3 HDRL algorithm framework
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J (θ) represents the anticipated target value of st . It is worth noting that the action 
value function in Eq. (14) permits recursive relationships

This is what is required to determine Q(st ,µ(st |θµ)) given by (15) in the critic section. 
More specifically, the critic uses a separate DNN with weight θQ to evaluate the action 
value function Q

(

st ,µ(st |θµ)|θQ
)

 . Typically, weight θQ is updated using the following 
method:

Here, αQ represents the learning rate, and L(θ) stands for

where L(θ) represents the mean squared Bellman error function of the target.
The target actor network is essentially a duplicate of the actor network, but it under-

goes gradual parameter updates aimed at stabilizing the training process. The primary 
role of the target actor network is to supply target actions, thereby minimizing the 
training error of the actor network. The target critic network is a duplicate of the critic 
network, and it also undergoes gradual updates. Its function is to provide target value 
function to reduce the training error of critic network. The target critic network’s output 
is utilized to compute the critic network’s error, facilitating the back-propagation of the 
error signal and, consequently, updating the critic network. In the course of training, 
the parameters of the target actor network and target critic network are methodically 
aligned with those of the corresponding actor network and critic network at specific 
intervals. This process aids in stabilizing the training, minimizing fluctuations, and 
enhancing the algorithm’s convergence. The structure of the DDPG algorithm is illus-
trated in Fig. 4.

5.2  Action dichotomy scheme based on DDPG

The advantage of splitting DDPG actions into AP clustering and power allocation actions 
is that it allows the agent to consider these two critical factors simultaneously in a single 
time step and optimize system performance in a more integrated manner. This design 
helps to reduce communication latency, increase network capacity, reduce interference 
levels, and provide a better user experience [31].

1. State st

 obtained from the low-level AP clustering,The state space comprises the AP cluster 
APt−1 selected by the AP in the previous time slot, the channel’s large-scale fading coef-
ficient βlk , the transmit power pt−1 from the previous slot, and the UE’s SINR. Defined 
as follows is the state of the t-th time slot:

(17)Q(st , at) = r(st , at)+ γE[Q(st+1, at+1)],

(18)θ
Q ← θ

Q − α
Q∇θL(θ)|θ=θ

Q ,

(19)L(θ) = E
[

(

Q(st , at |θ)− yt
)2
]

,

(20)st = {APt−1,βlk , pt−1, SINR},
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2. Action at.

  The agent’s action is divided into AP clustering and power allocation; thus, the 
action of the t-th time slot is defined as follows:

3. Reward r(st , at).

Defining (22) is the reward function of the t-th time slot according to the goal in the 
problem.

where u(x) is a step function, with a value of zero for x ≤ 0 and one otherwise. The steps 
of the DDPG algorithm closely resemble those of the H-DDPG algorithm presented 
below, and will not be introduced here.

(21)

at =
{

aAPt , aPAt

}

aAPt = {α11,α12,α22, . . . ,αLK },
aPAt = {p11, p12, p22, . . . , pLK }

(22)r(st , at) = B ·

K
∑

k=1

SEk

Ptotal
−

K
∑

k=1

u
(

SEmin
k − SEk

)

,

Fig. 4 Structure of the DDPG algorithm
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5.3  H‑DDPG‑based method

Considering the complexity of AP clustering and power allocation, a HDRL model 
with DDPG is proposed to reduce the search space. The layered model consists of two 
DRL agents and is optimized with power allocation as the meta-controller. The power 
allocation agent PA

(

sPAt , aPAt , rPAt
)

 is responsible for assigning transmission power to 
the UE with the objective of optimizing the signal quality, such as the signal-to-noise 
ratio, at the UE terminal, and enhancing the overall system throughput, all while min-
imizing interference. The AP clusters the agent AP

(

sAPt , aAPt , rAPt

)

 to select the service 
AP for all UEs and makes it meet the constraint of minimum SE. Typically, the AP 
clustering agent depends on the power allocation agent for transmitting packets, and 
the reward for the AP clustering agent actions depends on the actions of the power 
allocation agent. Moreover, the input sPAt  for the power allocation agent depends on 
the actions of the AP clustering agent and the environmental state.

Specifically, two DDPG agents are designed, corresponding to AP clustering and 
power allocation, respectively. In the first layer DDPG, a state space is established, 
which includes CSI of different base stations, UE equipment location and channel 
quality. Based on this state information, a strategy network is trained to cluster the 
appropriate set of APs to maximize the data transfer rate. Further considered in the 
second layer of DDPG is the power allocation problem. Using the current network 
state and the AP set clustered in the first layer of DDPG, the second policy network is 
trained to optimize the power allocation for each AP, aiming to achieve maximum EE 
while considering power consumption. They evolve their strategies through constant 
interaction. Verified by a large number of numerical simulation experiments are the 
effectiveness and performance advantages of the proposed method. The definitions of 
state, action, and reward functions related to the H-DDPG algorithm are as follows.

• AP Clustering

 Because AP clustering is a global decision for the entire system, and power alloca-
tion is a local decision for each specific link or connection after the connection is 
established. These two problems need to be solved at different timescales and levels 
because they have different spheres of influence and optimization goals. Therefore, 
AP is clustered as high-level DDPG, and its DDPG algorithm is designed as follows:

1. State st .

 The state space S is a collection of states observed by the agent within the environ-
ment. It includes the AP cluster APt−1 from the previous time slot, the large-scale 
fading coefficient βlk of the channel, and the SINR of the UE. Defined as follows is 
the state of the t-th time slot:

(23)st = {APt−1,βlk , SINR},
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2. Action at

 The action space A is a collection of actions undertaken by the agent in response 
to each state. In the context of the AP clustering problem, an assignment variable 
αlk ∈ {0, 1} is defined, where k = 1, . . . ,K  , l = 1, . . .L . When the k-th UE is served 
by the l-th AP, it is equal to 1; otherwise, αlk = 0 . The joint clustering of all αlk forms 
an action space composed of discrete points of 2kl . The action for the t-th time slot is 
defined as follows:

3) Reward r(st , at).
According to the goal in the problem, the reward function of the t-th time slot is 

defined as:

Through the step function, a uniform penalty is created for all UEs who do not achieve 
the minimum SE [32].

The steps of high-level DDPG algorithm are shown in Algorithm 1. Initially, the actor 
network and critic network, along with their respective target networks, are initialized. 
Simultaneously, the experience replay buffer and noise are also initialized. Using the 
actor network, an action is selected based on the current state, if aHt  is greater than zero, 
then consider action aHt = 1 , otherwise set aHt = 0 . Execute the selected action in the 
environment, then record the reward and the next state. Storing the current state, action, 
reward, and the next state within the experience replay buffer. Randomly selecting a 
batch of experiences from the replay buffer for training the actor and critic networks. 
The target value is computed with the assistance of the target actor network and target 
critic network, aiming to minimize the error of the critic network. By applying the tar-
get actor network to the next state, the target value is estimated. To minimize the critic 
network error, the critic network error is calculated, and the gradient descent method 
is employed to update the critic network weights. The policy gradient method updates 
the weights of the actor network by maximizing the value function of the critic network 
associated with the actor network’s output. Soft updates are employed to enhance train-
ing stability by gradually adjusting the parameters of the target actor and critic networks 
to align with those of the actor and critic networks. Repeat the training cycle until the 
predetermined number of training cycles is reached.

6  Power allocation
As the low level of the H-DDPG algorithm, power allocation is taken, and the DDPG 
algorithm is designed as follows.

(24)at = {α11,α12,α22, . . . ,αLK },

(25)r(st , at) = B ·

K
∑

k=1

SEk

Ptotal
−

K
∑

k=1

u
(

SEmin
k − SEk

)

,
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1. State st

 Consisting of the AP clusters APt obtained from the low-level AP clustering, the 
large-scale fading coefficient βlk of the channel, the transmit power pt−1 of the.

Algorithm 1 The main step of the high-level DDPG algorithm

 

 previous time slot, and the SINR of the UE, the state space is defined. Defined as follows is the state of 
the t-th time slot:

2. Action at

 The action of the agent is defined as the transmit power assigned by the AP to the 
UE. The action of the t-th time slot is defined as follows:

(26)st = {APt ,βlk , pt−1, SINR},
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3. Reward r(st , at).

In accordance with the problem’s objective, the reward function for the t-th time.

Algorithm 2 The main steps of low-level DDPG algorithm

slot is defined as follows:

It is important to emphasize that although the high-level and low-level rewards are 
expressed differently, they both constitute integral components of their respective global 
rewards. Furthermore, the constraints on high-level and low-level strategies are identical, 

(27)at = {ρ11, ρ12, ρ22, . . . , ρLK },

(28)
r(st , at) = B ·

K
∑

k=1

SEk

Ptotal
,
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ensuring a monotonically improving EE throughout the system. The procedure of low-level 
DDPG algorithm is shown in Algorithm 2.

The most significant distinction between Algorithm 2 and Algorithm 1 lies in the.

Algorithm 3 he main steps of H-DDPG algorithm

 

action design. Algorithm  2 handles action aLt  to adhere to the maximum transmit 
power constraint of each AP. The idea of H-DDPG is to update the high-level and low-
level networks sequentially, where the agents continuously adjust the high-level and 
low-level decisions to improve the transmission performance of the whole system. In 
particular, the high-level network policy is adjusted using a stable low-level policy to 
reduce inter-AP interference, whereas the low-level policy is updated with a more con-
vergent high-level network policy to enhance system performance. The two networks 
continually update each other to attain their respective optimal strategies [33].

In this paper, we focus on the convergence and cumulative returns of the proposed 
framework H-DDPG in different training periods. During each training session, the two 
agents utilize the policy with the maximum reward to select the AP and assign power to 
each UE in the network, and then update their policies at the end of each training ses-
sion. The complete H-DDPG algorithm steps are summarized in Algorithm 3.

6.1  Computational complexity

H-DDPG consists of two layers of DDPG, so its complexity is the sum of the super-
position of two layers. In the DDPG layer for AP clustering, the input dimension is 
L(2K − 1)+ K  , and the output dimension is LK. Hence, the computational complexity 
of both the actor networks and their corresponding target networks is represented as 
O(a1) = (3LK − L+ K )

2 , and the complexity of the critic networks and their target net-
works is denoted as O(c1) = (8LK − 2L+ 2K )(2LK − L+ K )+2L2K 2+2LK  . The over-
all complexity is represented as O(ap) = O(a1)+ O(c1) . Moreover, in the DDPG layer 
for power allocation, the input dimension is L(3K − 1)+ K  and the output dimension 
is LK, the complexity of the actor networks and their target networks is symbolized as 
O(a2) = (4LK − L+ K )

2 . Similarly, the complexity of the critic networks and their target 
networks is expressed as O(c2) = (10LK − 2L+ 2K )(3LK − L+ K )+ 2L2K 2 + 2LK  . 
The overall complexity is represented as O(pa) = O(a2)+ O(c2) , resulting in the com-
plexity of the H-DDPG algorithm being denoted as O(H) = O(ap)+ O(pa).
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7  Numerical results
In this section, the implementation details of the HDRL method for solving the optimi-
zation problem given by (13) are presented, followed by evaluating its performance and 
comparing it with other existing methods.

7.1  Simulation parameters

The network topology comprises L = 12 APs and K = 8 UEs randomly distributed 
within a 0.5 km radius. The number of antennas per AP is denoted as N = 4 . In the 
case of each randomly generated topology as described above, the positions of UEs 
and APs remain constant during the evaluation phase. A random pilot assignment 
is employed, in which each UE randomly selects a pilot sequence from an orthog-
onal pilot pool with a length of τp . Considering the communicate operates on a 
20 MHz channel. The total receiver noise power is -94 dBm. Each AP has the maxi-
mum downlink transmit power of pmax = 1W  , while each UE has an uplink power 
of pi = 100mW  during the pilot transmit phase. The coherent block length is set to 
τc = 200 [34–36]. The path loss model used to calculate the LSF coefficient is defined 
as follows:

where dkl represents the distance between the k-th UE and the l-th AP. Table 1 summa-
rizes the simulation parameters and represents the urban micro-area environment.

In this algorithm, the high and low  layer networks have the same structure. The 
actor neural network consists of a fully connected layer of input layer and average 
dimension hidden layer, and it is connected to a second fully connected hidden layer 
of output action space dimension by batch normalization and layer normalization. 
The number of hidden layer neurons is the average over the input dimension and out-
put dimension, respectively. Moreover, critic neural network is divided into two parts: 

(29)βkl = −35.3− 37.6 log10

(

dkl

1m

)

dB,

Table 1 Environmental parameters

Regional area 0.5 km × 0.5 km

Bandwidth 20 MHz

AP number L = 12

Number of AP antennas N = 4

Number of UEs K = 8

Downlink noise coefficient  − 94 dBm

Maximum transmit power of a single AP Pdlmax = 1W

Coherent block length τc = 200

Pilot length τp = 10

Internal circuit power Pc,uek = 0.1W

Internal circuit power P
c,ap
l = 0.2 W

Fixed power consumption Pfixl = 0.825 W

Fixed power consumption Pfixcpu = 5 W

Signaling power P
sig
l = 0.01 W

Energy consumption per bit Pcodcpu = 0.1 mW
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state and action. The state part includes the input layer, the full connection layer of 
the average dimension hidden layer, which is processed by batch normalization and 
layer normalization. The action part connects the status part output and the action 
input with the full connection layer. The number of hidden layer neurons is twice that 
of the average input dimension. The critic network finally outputs Q-value through 
the output layer. ReLU is chosen as the activation function for the high-level aspect, 
while the Sigmoid function is selected for the low-level aspect.

The learning rate for training the actor network is set to δ = 1e − 4 , the learning rate 
for training the critic network is δ = 1e − 3 , the discount factor is 0.99, and the soft 
update parameter, which governs the gradual update of target network parameters, is 
0.001 [37]. The target network is created as a duplicate of both the actor network and the 
critic network to ensure training stability. The neural network was trained using mini-
batch stochastic gradient descent (mini-batch SGD) with a mini-batch size of 128, and 
an experience replay buffer with a maximum capacity of 10,000. It is assumed that all 
UEs have the same SEmin

k  , as CF-MIMO systems offer the advantage of delivering a con-
sistently satisfactory service to all UEs in the network.

7.2  Simulation results discussion

To evaluate the performance of the proposed H-DDPG-based methods, three other 
algorithms were used for comparison. One approach is to employ a single-layer DDPG 
algorithm to address the challenge of jointly optimizing AP clustering and power allo-
cation. The single-layer DDPG framework generates an action corresponding to AP 
clustering and power allocation at each time slot, which is represented as “S-DDPG.” 
The second approach involves applying the DDPG algorithm to AP clustering, while 
power allocation is addressed using a conventional method, referred to as “AP-DDPG”. 
The third is the traditional joint optimization scheme [38], which is denoted as “LP-
MMSE.” Compared to H-DDPG, S-DDPG is used to compare the advantages of hier-
archical structure and provides an alternative method to solve the joint optimization 
problem. Moreover, the AP-DDPG scheme is chosen to independently study the effects 
of AP clustering and power allocation, which facilitates to understand the advantages 
of DRL in specific problems and the applicability of traditional methods for large-scale 
problems. As a traditional optimization scheme, LP-MMSE provides a benchmark 
against DRL-based methods. For S-DDPG, the total complexity of the actor network 
and its corresponding target network is denoted as O(a) = (5LK − L+ K )

2 . Similarly, 
the complexity of the critic network and its associated target network is represented 
as O(c) = (14LK − 2L+ 2K )(3LK − L+ K )+ 8L2K 2 + 4LK  , whose complexity is 
O(s) = O(a)+ O(c) . In AP-DDPG, the complexity is O(AP) = O(a1)+ O(c1)+ LK .

Since SE and EE affect each other, when SE is increased, EE may decrease. It is evi-
dent from Figs. 5 and 6 that when subjected to similar SE constraints, the CF-mMIMO 
system employing H-DDPG attains the highest EE. It improves EE by nearly 35% and 
19% compared to S-DDPG and AP-DDPG, respectively. Compared with traditional 
optimization schemes, the EE performance gains are more significant. Hence, while the 
computational complexity of the S-DDPG and AP-DDPG algorithms is lower compared 
to the H-DDPG algorithm, but it is evident that the optimization performance of the 
H-DDPG algorithm is significantly superior to both of these algorithms.
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This is attributed to the fact that H-DDPG decomposes the problem into two levels: 
a high level, which addresses AP clustering, and a low level, focusing on power alloca-
tion, with each level having its dedicated policy network. This layered approach makes 
the optimizing decisions at different levels more flexible and efficient. In addition, the 
hierarchical approach helps the policy network reach convergence more easily because 
the action space and state space at each stage are relatively small. Simultaneously, the 
high-level and low-level policies can be optimized to enhance system-level and link-level 
performance, thereby elevating the overall system’s performance. Moreover, it is impor-
tant to note that the curve performs poorly at the beginning, but converge rapidly as the 

Fig. 5 Comparison of SE with Epochs increase under different schemes with L = 12, K = 8

Fig. 6 Comparison of EE with Epochs increase under different schemes with L = 12, K = 8
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training rounds increase, because the DDPG algorithm needs to interact with the envi-
ronment several times to gradually adjust the neural network weight.

As depicted in Fig. 7, it is evident that within the H-DDPG algorithm, the number 
of UEs meeting the minimum SE requirement gradually rises with the advancement 
of iterations. Furthermore, it is evident that even when the minimum SE threshold 
is set at a high value and the EE does not exhibit significant differences, the major-
ity of UEs can still satisfy this threshold. This highlights the advantages of H-DDPG 
algorithms in the tradeoff of SE and EE, which can flexibly adjust system performance 
under different requirements to achieve better performance optimization.

The hierarchical structure enables H-DDPG to dynamically adjust its policy to 
adapt to changes in different environments and network states. This flexibility can be 
important in real networks, especially when network conditions are constantly chang-
ing, and H-DDPG can respond to those changes, thus achieves an improved EE per-
formance. It adjusts the power allocation strategy according to the current network 
state and UE needs and gradually improves the SE of each UE. Moreover, the algo-
rithm efficiently controls the transmission power of each AP to guarantee system sta-
bility and feasibility, consequently mitigating potential interference issues. H-DDPG 
algorithms consider power allocation collaboratively on a global scale to maximize 
total EE, rather than just local optimization, which helps to make more efficient use of 
limited resources.

Figure  8 illustrates the cumulative distribution function of EE per UE for various 
methods. From Fig. 8, it is evident that the H-DDPG method exhibits the outstanding 
EE performance, the AP-DDPG method shows a slightly inferior performance, and the 
S-DDPG method demonstrates the poorest EE performance. This is mainly because 
the H-DDPG method makes full use of the knowledge sharing and reuse mechanism 
brought by the hierarchical structure, so that it can make more accurate decisions. 
In the hierarchical structure, agents at different levels can share information, and 

Fig. 7 Average number of UEs whose SE exceeds the threshold
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the policies at lower levels can be guided by the policies at higher levels, thus the 
knowledge of the whole system can be transferred between different levels, effective 
policies can be learned faster. This provides a more comprehensive understanding of 
the entire system state, enabling more precise optimization. Therefore, H-DDPG can 
learn strategies more efficiently, especially in the case of a reasonably divided hierar-
chy, and it usually has faster convergence.

As shown in Fig. 9, we can observe the effect of the relative position between the AP 
and the UE on the system EE over time. It is worth noting that the H-DDPG method 
consistently performs well in terms of the EE performance, consistently outperform-
ing other methods. In comparison, AP-DDPG method, although slightly inferior to 

Fig. 8 CDF of the EE per UE under different schemes with L = 12 and K = 8

Fig. 9 EE versus times
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H-DDPG, still ranks second and shows the good performance. In addition, S-DDPG 
method is inferior to H-DDPG and AP-DDPG in the EE performance, it is still supe-
rior to the traditional algorithm.

These observations highlight the effectiveness of the H-DDPG method. The rea-
son for this difference is that H-DDPG breaks down the joint optimization problem 
into multiple levels, each focused on a different task or goal. This hierarchical con-
trol strategy enables agents to deal with multi-objective problems more effectively, 
and decomposes complex tasks into simpler subtasks, thus improving the manage-
ability and execution efficiency of tasks. Moreover, H-DDPG can balance the capac-
ity of exploration and utilization. Each level of strategy can play a role in different 
stages of exploration and utilization. High-level policies are generally more focused 
on the global exploration and general decision making, while low-level policies can be 
explored and adjusted in more detail. This facilitates to explore the environment dur-
ing the learning process, while allowing for more refined strategic adjustments.

8  Conclusion
In this paper, we designed an energy-efficient AP clustering and power allocation for 
CF-mMIMO systems. To deal with the non-convex optimization problem, a H-DDPG 
algorithm is proposed. This algorithm takes the advantage of both DRL and hierarchi-
cal optimization to create a collaborative optimization framework which effectively han-
dle AP clustering and power allocation. In particular, the original optimization problem 
first was divided into two sub-problems, and then the corresponding DDPG agents are 
trained separately. During the training phase, these agents learn from the environment, 
gradually improving their strategies to maximize the system EE. Simulation results 
clearly demonstrate that the proposed H-DDPG method leads to a substantial enhance-
ment in the system’s EE, compared to benchmark methods. Moreover,  this study pro-
vides a new research perspective for resource allocation in CF-mMIMO systems, that 
is, by dividing the problem into small sub-problems in multiple stages, the problems at 
different levels can be optimized more flexibly. For the further research, in light of the 
centralized information exchange in single-agent DRL-based algorithms, it is essential 
to develop multi-agent DRL algorithms for resource allocation in CF-mMIMO systems. 
Also, the joint design of  AP clustering and UE scheduling, as well as beamforming is 
promising to satisfy future massive connectivity in real-world applications.
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PLC  Power line communication
SBL  Sparse Bayesian learning
SNR  Signal-to-noise Ratio
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