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1 Introduction
In recent years, UAV (Unmanned Aerial Vehicle) [1] techniques are developing very 
fast, and UAVs are becoming more and more popular due to their strong maneuverabil-
ity. When performing tasks in hazardous areas, they do not rely on onboard person-
nel. They not only are convenient and intelligent to use, but also reduce pilot training 
costs. Therefore, they are widely used in various application scenarios. With the increas-
ing popularity of UAV applications [2], research issues such as autonomous algorithms, 
collaborative planning algorithms, and intelligent control algorithms [3] for UAVs are 
becoming increasingly prominent. Especially the ability of UAVs to perform tasks in dry, 
harsh or dangerous environments for humans has attracted more and more scientific 
researchers to conduct research on UAV flight formation algorithms, task allocation 
algorithms, path planning algorithms, and efficiency evaluation methods. UAVs not only 
play an increasingly important role in the military field, but also have a high demand in 
civilian field such as wireless sensor networks. Especially in today’s increasingly frequent 
occurrence of various disasters, UAVs are increasingly being used to monitor disaster 
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scenes, such as mountain fire monitoring, maritime emergency rescue, and medical 
material transportation.

The main scenario considered in this paper is that after a severe earthquake, the early 
warning measurement center needs to collect environmental information such as water 
quality and pressure. Such information is very important for analyzing the disaster situ-
ation and giving early warning of possible secondary disasters such as forming of bar-
rier lakes and aftershocks. Due to the threat of aftershocks and the impact of landforms 
being destroyed, it is not feasible to manually collect information using land transpor-
tation facilities. Utilizing the high mobility of UAVs, the early warning measurement 
center can send a UAV cluster to collect data from distributed or pre-set sensors at task 
target points. Due to the cluster distribution of wireless sensor nodes, when earthquakes 
occur on a large-scale, it is difficult to network between each group of sensor nodes. At 
the same time, there is no support from communication facilities such as base stations, 
which makes it impossible to gather all information from various locations. In another 
word, there are far more locations in a large range that require data collection tasks than 
UAVs. By allocating tasks and planning UAV flight paths reasonably, data collection 
tasks within the entire earthquake area can be efficiently completed.

Nowadays, there are many researchers studying on task allocation of UAVs. UAV task 
allocation problem belongs to the task planning problem of multi-agent systems. In 
multi-agent systems, it is quite difficult to find the optimal or near optimal solution of 
the task allocation problem. In general, it is proved to be NP-hard, and it is difficult to 
solve it with conventional numerical methods. The main goal of task allocation, besides 
achieving overall optimal system performance, can also be to minimize the execution 
time of tasks, minimize the time of certain agent activities, maximize the number of 
tasks completed within a specific time, and maximize the robustness of the task allo-
cation process, that is, to ensure the completion of tasks [4]. Due to the fact that opti-
mal overall performance is a vague concept that is difficult to quantify and may depend 
on each agent, the concept of utility is generally used to estimate the value or cost of 
task allocation processes on system performance. Yoon, et  al. [5] introduced the con-
cept of virtual task to reduce the complexity of the problem, and introduced the Hungar-
ian algorithm to decompose the virtual character to calculate an approximately optimal 
path. Itshak, et  al. [6] proposed an improved bee colony optimization algorithm that 
utilized distributed swarm intelligence methods to allocate fixed heterogeneous sensors 
to upcoming unknown tasks to minimize task detection time. They assigned sensors to 
tasks based on their performance, task priority, and the distance between the sensor and 
the location where the task was executed. Based on the classic fixed response thresh-
old model, Wu, et al. [7] adopted a bottom-up approach to design new dynamic envi-
ronmental stimuli, response thresholds, and transfer probabilities under the concept of 
problem centered and evolutionary solving. A dynamic ant colony labor division model 
was proposed, which allowed a group of relatively low intelligent agents to perform 
complex tasks. It had the characteristics of distributed framework, multi-task execution 
sequence, multi-state, adaptive response threshold, and multi-individual response.

For UAV path planning algorithms, many researchers in this field have proposed 
effective and feasible planning algorithms that belong to various branches, and have 
proposed some improved intelligent algorithms based on them. Zeng, et  al. [8] first 
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proposed to use the block coordinate descent algorithm to decompose the problem, and 
use the continuous convex optimization algorithm to obtain the optimal solution of the 
joint optimization problem of UAV communication resources and track. Later, this idea 
was successfully applied to various other scenarios, such as UAV communication path 
planning based on energy efficiency maximization [9], multiple UAV downlink broad-
cast communication [10], UAV communication physical layer security design [11], UAV 
mobile edge computing [12], wireless power transmission supported by UAVs [13] and 
wireless energy carrying communication [14]. It is worth noting that one drawback of 
alternately updating UAV paths and allocating communication resources is that if the 
initialization design is improper, it may fall into suboptimal local optima. Therefore, 
Shen, et al. [15] studied the simultaneous updating of these two variables in certain sce-
narios by developing new concave lower bound functions, and also introduced the use 
of alternating direction multiplier techniques to reduce the computational complexity of 
multi-UAV path design. Liang et al. [16] studied the placement and flight optimization of 
multiple UAVs for uplink coordination and multi-point communication. Each UAV for-
wards its signals received from all ground users to the central processor for joint decod-
ing. Due to the limited flight speed of UAVs, utilizing their maneuverability to improve 
communication performance is generally the most suitable application scenario for delay 
tolerance. In fact, for UAV platforms serving multiple users, there is a new compromise 
between communication throughput and access delay. Lyu [17] first studied UAVs with 
fixed flight trajectories, and then Wu [18] expanded them through joint optimization of 
UAV trajectories and communication resource allocation in OFDMA (Orthogonal Fre-
quency-Division Multiple Access) systems.

This paper firstly proposes an improved immune multi-agent algorithm for the offline 
task allocation stage. The proposed algorithm provides higher accuracy and convergence 
performance by improving the optimization operation. Then, this paper proposes an 
improved adaptive discrete cuckoo algorithm for the online task reallocation stage. By 
introducing adaptive step size transformation and appropriate local optimization opera-
tor, the speed of convergence is accelerated, making it suitable for real-time online task 
reallocation. The efficiency of the proposed algorithms is finally proved by numerical 
simulations.

2  Methods
2.1  Task allocation model

The goal of multi-UAV task allocation [19] is to assign a set of target point sequences to 
all UAVs under the condition of known UAV formation groups, target point information, 
and partial environmental information, in order to complete all tasks with the minimum 
cost and achieve the optimal efficiency.

The UAV clusters in this paper meet the following conditions:

1. Isomorphism: All the UAVs have the same structure and function;
2. Communication guarantee: All the UAVs have established communication links 

through flight Ad hoc networks;
3. Functionality: All the UAVs are equipped with relevant equipment for data collec-

tion.
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Assume that the number of UAVs is N, and the set of UAVs is U = {U1, U2, …, UN}. The 
number of target points to traverse is M, and the set of tasks is T = {T1, T2, …, TM}. The task 
allocation problem meets the following principles:

1. All the UAVs have the same resource and constraints;
2. A single target point can only be accessed once;
3. The UAVs visit all target points with the shortest possible total flight distance;
4. The task allocation of all the UAVs should be as fair as possible;
5. UAVs should try to avoid threat areas as much as possible.

The task allocation problem is a combinatorial optimization problem which meets the 
following constraints:

1. Maximum flight distance constraint The maximum flight distance of a single UAV is 
limited by the amount of fuel carried. Assume that the maximum flight distance is Dmax, and 
the route of the ith UAV is Li. Then, the maximum flight distance constraint is expressed as,

2. Target traversal constraint All the target points should be assigned only once, and this 
constraint is expressed as,

where Tj
i  is the jth target point that the ith UAV will visit.

In dynamic scenarios, task allocation should consider the total length of the UAV cluster’s 
execution path, the flight load of each UAV cluster, and the penalty for passing through 
threat zones. Considering these factors, the fitness function is expressed as,

where 
N
∑

i=1

D(Li) is the total length of all the UAVs, max (D(Li)) is the maximum flight dis-

tance, and Do(Li) is the penalty path for UAVs flying through threat zones. α,β , γ are 
three weighting coefficients and,

By minimizing the fitness function, an optimal solution can be obtained for the compre-
hensive evaluation of the total distance, the task balance, and the flight safety. The final opti-
mization problem is expressed as,
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2.2  Improved immune multi‑agent algorithm for offline task allocation

Based on the concept of artificial immune algorithm [20] and multi-agent system, we pro-
pose an improved immune multi-agent algorithm for the offline task allocation stage. By 
limiting some operations within the neighborhood, the ability of traditional immune algo-
rithms to jump out of local optima is improved, while maintaining the fast convergence 
speed of traditional immune algorithms in the initial stage. It is also suitable for dynamic 
and static task allocation issues.

2.2.1  Memory population initialization

The immunological memory operation refers to the concept of memory population in the 
clonal selection algorithm, and is used to save the optimal part of agents in each evolution 
process. The size of the memory agent group is limited, so it is necessary to update and 
eliminate it in real-time during each iteration. The specific steps are as follows:

1. Assuming that the size of the initial memory agent group is N, select k antibody agents 
with the best fitness in the current antibody agent grid, and try to add them to the memory 
agent group. If the memory agent group has not reached the pre-set size, this addition is 
allowed, and the k antibody agents are directly added to the agent group.

2. If the memory agent group is full, or the number of antibody agents that can be accom-
modated is less than k, the elimination operation is performed. All antibody agents in the 
current memory agent group are compared with the new k antibody agents for fitness, and 
the antibody agents with the lowest fitness that exceed the size of the memory agent group 
are removed from the memory agent group.

The overall process can be expressed as,

where Nbest is the memory agent group, SelectN (·) means to select the first N agent func-
tions with the best fitness.

2.2.2  Neighborhood cloning operation

The neighborhood cloning operation refers to the antibody cloning operation in the clonal 
selection algorithm. The antibody cloning operation in the clonal selection algorithm only 
multiplies the best few antibodies in the population and then mutates, so it is not suitable 
for maintaining the diversity of the population. Therefore, this paper keeps the cloning pro-
cess in the neighborhood. For each antibody agent, we select the agent with the best fitness 
in its neighborhood and its own several agents, multiply and mutate it to a certain extent, 
and then select the antibody agent with the best fitness to replace the original antibody 
agent. The neighborhood cloning operation is represented as,

where Select(·) represents selecting the best agent, Mutation(·) represents the mutation 
operation, and Clone(·) represents the cloning operation.

(6)Nbest = SelectN (Nbest , L)

(7)Ai,j = Select
(

Mutation
(

Clone
(

Select
({

Ai,j ,Neigh.Ai,j ,
}))))
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2.2.3  Neighborhood suppression operation

The neighborhood suppression operator suppresses high affinity antibodies to 
maintain population diversity. Since the cloning operation in this paper is carried 
out in the neighborhood, if an antibody agent is the local optimal agent, its excel-
lent fitness will make it the parent of all antibody agent clones in its neighborhood, 
that is, the antibodies in a small range all preserve the characteristics of the local 
optimal agent, and the affinity is naturally high, which needs to be suppressed. 
Therefore, within each neighborhood, neighborhood suppression operations can be 
represented as,

where Bi,j is a randomly generated new antibody agent. Since the neighborhood range is 
small, for each agent, if there is an identical agent in the neighborhood, it will be directly 
replaced with the randomly generated antibody agent to maintain the diversity of the 
agent group.

2.2.4  Population crossover operation

The population crossover operation exchanges certain gene loci of two randomly 
selected parent antibodies according to certain rules with a certain probability, 
thereby exchanging information and generating two new offspring. The objects 
selected for the crossover operation in this algorithm are different. For each antibody 
agent, a roulette-wheel-based selection method is used to select another parent agent 
in the entire grid for cross operation, and then replace the original agent with the bet-
ter offspring after cross operation. This operation not only provides an opportunity 
for each antibody agent, regardless of its excellence, to intersect, improve the diver-
sity of the population, conduct global search, but also has mutual motivation between 
excellent individuals, ensuring the direction of evolution. If the crossover operator 
uses a partially matched crossover operator, the population crossover operation can 
be represented as,

where Roulette(L) represents the roulette choice function for the entire grid L, uni-
frnd(0,1) represents a random number that follows a uniform distribution between 0 and 
1, times represents the overall number of iterations, and i indicates the current number 
of iterations. The probability of population crossover operations gradually decreases as 
the number of iterations increases, with the aim of accelerating population convergence 
and preventing the loss of too much useful information due to excessive crossover.

2.2.5  Self‑learning operation

The self-learning operation refers to the self-learning ability of agents in multi-
agent systems. In this paper, the multi-agent is the antibody agent group, and its 

(8)Ai,j =

{

Bi,j , if Ai,j ∈ Neigh.
{

Ai,j

}

Ai,j , otherwise

(9)Ai,j =

{

PMX
(

Ai,j ,Roulette(L)
)

, if unifrnd(0, 1) < (times − i)/times
Ai,j , otherwise
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most representative individual is the individual with the best fitness. Through clon-
ing and mutation of the individual, selecting the optimal individual after mutation 
to replace the original optimal agent, and completing local search in a small range, 
the antibody agent group will further evolve. Self-learning operations is repre-
sented as,

2.2.6  Partial 2‑opt operator

The 2-opt operator was first used in the traveling salesman problem, of which the goal 
is to find a Hamiltonian circuit with the minimum sum of weights. The traveling sales-
man problem is one of the most widely studied problems in the field of combinato-
rial optimization. This problem is NP-hard. There is no constant approximation of 
polynomial time for the traveling salesman problem if no additional assumptions are 
added. Researchers are committed to designing a better approximation algorithm for 
the traveling salesman problem in metric space. The 2-opt optimization algorithm is 
one of them, which is the core of the classic Lin Kernighan algorithm. The 2-opt opti-
mization algorithm starts from an arbitrary feasible solution and repeatedly searches. 
If a crossing edge is found, the encoding in the middle of this pair of crossing edges is 
reversed. This substitution operation is performed until the local optimal is reached, 
and the local optimal solution is finally used as the algorithm’s solution. The 2-opt algo-
rithm is expressed as follows.

Algorithm 2-opt local optimization algorithm

Although it is not possible to directly perform 2-opt operations on the overall 
antibody, for the target points under each UAV, partial 2-opt operations can be 
used to accelerate the convergence of the algorithm. The specific operations are as 
follows,

(10)Abest = Select(Mutation(Clone(Abest)))

(11)Solution =
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where 2− opt(·) represents performing 2-opt optimization, N is the number of target 
points, M is the number of drones, and {·} represents the splicing of various parts.

2.3  Improved cuckoo algorithm for online task allocation

The previous section proposes an improved offline task allocation algorithm, which is 
characterized by the introduction of a large number of optimizations to ensure the accu-
racy of the optimization results. The time complexity is large, so the calculation time is 
long, and the requirements for the real-time scenes cannot be met. Therefore, this sec-
tion proposes an improved cuckoo optimization algorithm, which has strong ability to 
jump out of local optimization and a lower complexity.

2.3.1  Target point exchange operator

The target point exchange operator mainly completes the approximation of large step 
random walks in the Levy distribution. The main idea of the target point exchange 
operator is to evaluate the excellent state indicators of each target point, identify one 
or more target points with the worst indicators under a UAV in this generation of 
feasible solutions, and remove them from the UAV’s target point sequence and place 
them in the candidate pool. Then several UAVs are selected in a random order, select-
ing one or more target points from the candidate pool that have the best performance 
for them into their own target point sequence. The evaluation index selected in this 
section is the average value of the sum of distances from the target point to all points 
in the UAV target point sequence, which is given as,

where value(i) represents the evaluation index, i represents the target point label, K rep-
resents the number of target points of the UAV, and Distance(i, j) represents the distance 
between the target points. So, the target point exchange operator can be expressed as,

where delete_worst(·) denotes the function of removing the worst objective point, and 
reselect(rest, pool) denotes reselecting the target point function in the candidate pool.

2.3.2  Partial 2‑opt operator

For online task allocation algorithms, real-time performance is an important indica-
tor that needs to consider the constraints of computing time and computer power. 
For the initial stage of population evolution, the use of partial 2-opt operators is of 
great benefit to evolution, because it can replace all local cross paths and generate 
paths with no or less loops, which can greatly accelerate the convergence of the algo-
rithm. However, as a search operator with time complexity of O(n3) in the overall 
algorithm, it will consume more time. In the later stage of algorithm iteration, almost 

(12)value(i) =
1

K − 1

K
∑

j=1
j �=i

Distance
(

i, j
)

(13)
[rest, pool] = delete_worst(Solution)

Solution = reselect(rest, pool)
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all loops are removed by local or global optimization operators, so not performing 
2-opt optimization with a certain probability will not reduce the algorithm’s optimi-
zation ability. So, drawing inspiration from the sigmoid function, the probability set 
by the following equation determines whether to perform 2-opt optimization.

where times represents the overall number of iterations, times-i_num represents the 
remainder iterations. The probability of 2-opt execution has decreased from around 64% 
to around 26%, saving a lot of computation time.

2.3.3  Adaptive optimization proportion strategy

In general discrete cuckoo algorithms, the proportion of executing short step, medium 
step, and long step jumps is generally fixed, set to 20%, 30%, and 50%, respectively. This 
not only maintains local evolution, but also maintains a good ability to jump out of local 
optima. However, in the later stage of evolution, the population benefits little from long 
step jumps, and only a small range of local optimizations are needed to approach the 
optimal solution. Therefore, this paper proposes an adaptive optimization step probabil-
ity adjustment strategy. According to the above-mentioned analysis, the probability of 
short steps should be adjusted from 20% to around 50%, and the probability of long steps 
should be adjusted from 50% to around 20%. Using the sigmoid function, the probability 
of short step jumps is expressed as,

and the probability of long step jumps is expressed as,

where times represents the total number of iterations, and times-i_num represents the 
remaining iterations, so the probability of medium step jumps is expressed as,

2.3.4  Learning strategies for discovering bird nests

The discovery of bird nests is similar to the dropout strategy in machine learning, which 
preserves population diversity by randomly discarding some feasible solutions. The 
probability of bird nests being discovered in the improved algorithm is set to a constant 
value of 20%. After the bird’s nest is discovered, the generated feasible solution is dis-
carded and the strategy of learning from the optimal solution of this generation is acti-
vated. After three medium steps, an optimal individual is selected to replace the position 
of the generated feasible solution.

The improved cuckoo algorithm for online task allocation is expressed as follows,

(14)P2 = 0.2+ 0.5 ∗
1

1+ e−4×
times/2−i_num

times

(15)Pshort = 0.1+
1

1+ e−2.2+1.36∗ times−i_num
times

(16)Plong = 0.6−
1

1+ e−2.2+1.8∗ times−i_num
times

(17)Pmid = 1− Pshort − Plong
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Algorithm Improved cuckoo algorithm

The time complexity of the improved adaptive cuckoo algorithm proposed in this sec-
tion is O(times × N). Compared with the offline allocation algorithm in the previous sec-
tion, it has greater complexity reduction and faster running time.

3  Results and discussion
3.1  Improved immune multi‑agent algorithm for offline task allocation

The simulation parameters are set as follows: The grid parameter is 6, the size of the 
agent group is 36, the memory population size is 36, the number of iterations is 5000, 
and the clone multiplication factor is 10. Assuming that the task is distributed in a 
three-dimensional space of 50 km × 50 km × 400 m, with 4 UAVs and 30 target points, 
the truncation vector is [7, 14, 21]. We set a cylindrical meteorological threat zone with 
a radius of 3 km and a height of 400 m in the scenario, and the center of the circle is 
located at the horizontal coordinates [33 km, 20 km]. Figure 1 shows an example of the 
flight routes of the UAVs and the location of the threat zone. The circles on the routes 
are the start points of the UAVs, and the triangles are the target points.

3.1.1  Offline task allocation without threat or energy constraint

Since there is no threat zone, the penalty path weighting coefficient γ = 0. α should be 
slightly greater than β, and α + β + γ = 1, so we set α = 0.7 and β = 0.3, experimentally. 
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We compare our proposed algorithm with the improved clonal selection algorithm [21]. 
Table 1 shows the numerical results.

The known optimal solution of this problem is 74.6146 by using the proof by exhaus-
tion in mathematics to traverse all the existing feasible solutions. Next, we shall analyze 
the optimization performance of the proposed immune multi-agent algorithm.

From Table 2, we can see that the iterations all reach the global optimal solution, and 
there is no deviation between the optimal solution and the average solution, which is 
suitable for offline task allocation.

Fig. 1 An example of the simulation scenario. UAV1: the flight route of UAV 1. UAV2: the flight route of UAV 
2. UAV3: the flight route of UAV 3. UAV4: the flight route of UAV 4. Threat zone: the cylindrical meteorological 
threat zone

Table 1 Distance comparison of the offline task allocation algorithms with no constraint (unit: km)

Algorithm UAV1 
distance

UAV2 
distance

UAV3 
distance

UAV4 
distance

Total 
distance

Maximum 
distance

Threat 
penalty

Reference 
[21]

58.3190 27.4975 71.9817 116.7276 274.5259 116.7276 0

Proposed 
offline algo-
rithm

58.3190 65.2507 70.6570 85.5261 279.7528 85.5261 0

Table 2 Fitness function of the improved immune multi-agent algorithm with no constraint

Index Known optimal 
solution

Algorithm 
optimal 
solution

Algorithm 
average 
solution

Deviation 
degree of 
optimal 
solution

Deviation 
degree of 
average solution

Fitness function 74.6146 74.6146 74.6146 0% 0%
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3.1.2  Offline task allocation with energy constraint

When the UAV has energy constraints, the task allocation problem can be changed to 
the following statement: when the base calculates the time when the UAV must return 
due to insufficient energy, the completed task set is recorded as Tc, and the returning 
UAV set is recorded as Ureturn, then the problem becomes to allocate the tasks in the 
remaining task set T − Tc to the UAVs in the remaining set U − Ureturn . Since there is 
also no threat zone, the penalty path weighting coefficient γ = 0. α should be slightly 
greater than β, and α + β + γ = 1, so we set α = 0.7 and β = 0.3, experimentally. We 
compare our proposed algorithm with the improved clonal selection algorithm, and 
Table 3 shows the numerical results.

By using the proof by exhaustion in mathematics to traverse all the existing feasible 
solutions, we can know that the optimal solution of the problem is 67.7000. Next, 
we analyze the optimization performance of the proposed immune multi-agent algo-
rithm. The result is given in Table 4.

In the proposed algorithm, on average, eight out of 30 iterations have reached the 
global optimal solution. For offline planning algorithms, parallel data centers on the 
ground can definitely be used for operations to achieve numerical optimal solutions. 
For a more complex multi-objective optimization problem, it is already excellent, and 
the optimal solution has no deviation degree. The average solution deviation degree is 
small, and the algorithm performance improvement is significant.

3.1.3  Offline task allocation with threat and energy constraints

In the case of meteorological threat, the task allocation problem can be changed 
to the following statement: keep away from meteorological threat as far as possi-
ble while ensuring the shortest distance and load balance. Assume that a cylindrical 
meteorological threat zone with a radius of 3 km and a height of 400 m appears, and 
the center of the circle is located at the horizontal coordinates [33 km, 20 km]. Due to 
the dominant factor in the threat zone, the penalty path weighting coefficient γ = 1

3
 . 

Table 3 Distance comparison of the offline task allocation algorithms with energy constraint (km)

Algorithm UAV1 
distance

UAV2 
distance

UAV3 
distance

UAV4 
distance

Total 
distance

Maximum 
distance

Threat 
penalty

Reference 
[21]

103.0753 41.7938 94.4393 94.6392 333.9476 103.0753 0

Proposed 
offline algo-
rithm

67.7887 65.4857 68.4093 67.9007 269.5844 68.4093 0

Table 4 Fitness function of the improved immune multi-agent algorithm with energy constraint

Index Known optimal 
solution

Algorithm 
optimal 
solution

Algorithm 
average 
solution

Deviation 
degree of 
optimal 
solution

Deviation degree 
of optimal 
solution

Fitness function 67.7000 67.7000 71.5029 0% 5.6%



Page 13 of 19Ye et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:21  

α should be slightly greater than β, so we set α = 7
15

 and β = 1
5
 , experimentally. We 

compare our proposed algorithm with the improved clonal selection algorithm, and 
Table 5 shows the numerical results.

Next, we will analyze the optimization performance of immune multi-agent algo-
rithms. In the simulations, three out of 30 iterations have reached the global optimal 
solution. The details are given in Table 6.

For offline planning algorithms, parallel data centers on the ground can definitely be 
used for operations to achieve numerical optimal solutions. For a more complex multi-
objective optimization problem, it is already excellent, and the optimal solution is unbi-
ased, with a small deviation from the average solution and a significant improvement in 
algorithm performance.

3.2  Improved cuckoo algorithm for online task allocation

3.2.1  Online task allocation without threat or energy constraint

Since there is no threat zone, the penalty path weighting coefficient γ = 0. α should be 
slightly greater than β, and α + β + γ = 1, so we set α = 0.7 and β = 0.3, experimentally. 
We compare the performances of the improved clonal selection algorithm [21], the 
offline task allocation algorithm proposed in Sect.  2.2, and the online task allocation 
algorithm proposed in Sect. 2.3. The simulation result is given in Table 7.

Table 5 Distances of the offline task allocation algorithms with threat and energy constraints (km)

Algorithm UAV1 
distance

UAV2 
distance

UAV3 
distance

UAV4 
distance

Total 
distance

Maximum 
distance

Threat 
penalty

Reference 
[21]

66.8262 110.5447 81.3587 90.9541 349.6837 110.5447 0

Proposed 
offline algo-
rithm

58.3190 65.2507 70.6570 90.9069 285.1336 90.9069 0

Table 6 Fitness function of the improved immune multi-agent algorithm with both constraints

Index Known optimal 
solution

Algorithm 
optimal 
solution

Algorithm 
average 
solution

Deviation 
degree of 
optimal 
solution

Deviation degree 
of optimal 
solution

Fitness function 75.0640 75.0640 76.8237 0% 2.3%

Table 7 Distances of the online and offline task allocation algorithms with no constraint (km)

Algorithm UAV1 
distance

UAV2 
distance

UAV3 
distance

UAV4 
distance

Total 
distance

Maximum 
distance

Threat 
penalty

Reference 
[21]

58.3190 27.4975 71.9817 116.7276 274.5259 116.7276 0

Proposed 
offline algo-
rithm

58.3190 65.2507 70.6570 85.5261 279.7528 85.5261 0

Proposed 
online algo-
rithm

58.3190 65.2507 70.6570 85.5261 279.7528 85.5261 0
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From Table  7, although our proposed algorithm has a slightly longer total distance 
than the improved clonal selection algorithm, it has a much better balance in task allo-
cation, i.e., the difference between the maximum distance and the minimum distance is 
much smaller. Figure 2 shows the fitness function curves of the three algorithms. It can 
be seen that the online task allocation algorithm has the fastest convergence speed, so it 
is suitable for real-time scenarios.

The proposed online task allocation algorithm (the improved cuckoo algorithm) has a 
smaller maximum distance than the algorithm in [21]. Then we test the overall perfor-
mance of the improved cuckoo algorithm, and the simulation result is given in Table 8.

In the simulations, 6 out of 30 iterations have reached the global optimal solution. If 
the number of target points changes, the online task allocation algorithm can give out a 
good solution within limited time.

3.2.2  Online task allocation with energy constraint

In the case of energy constraints on UAVs, the online task allocation problem can be 
expressed as follows: the UAV’s own system realizes that there is a risk of energy shortage 
when performing several tasks and must return. The completed task set is expressed as 
Tc, and the returning UAV is expressed as Ureturn. Then, the problem becomes to assign 

Fig. 2 Convergence of fitness functions of the task allocation algorithms with no constraint. Offline 
algorithm: the fitness function value of the proposed offline algorithm varies with the number of iterations. 
Reference [20]: The fitness function value of the algorithm which was proposed in Reference [20] varies with 
the number of iterations. Online algorithm: The fitness function value of the proposed online algorithm varies 
with the number of iterations

Table 8 Fitness function of the improved cuckoo algorithm with no constraint

Index Known optimal 
solution

Algorithm 
optimal 
solution

Algorithm 
average 
solution

Deviation 
degree of 
optimal 
solution

Deviation degree 
of optimal 
solution

Fitness function 74.6146 74.6146 76.8631 0% 3%
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tasks in T-Tc to the UAVs in U-Ureturn. Since there is also no threat zone, the penalty path 
weighting coefficient γ = 0. α should be slightly greater than β, and α + β + γ = 1, so we 
set α = 0.7 and β = 0.3, experimentally. Assume that UAV 2 must return after completing 
Task 5. The simulation result is given in Table 9.

The improved cuckoo algorithm shows better fairness than the algorithm in [21], how-
ever, a little worse than the offline algorithm in Sect. 2.2, but the convergence speed of 
the online algorithm is much faster than that of the offline one, as shown in Fig. 3.

The overall performance with energy constraint is given in Table 10.

Table 9 Distances of the online and offline task allocation algorithms with energy constraint (km)

Algorithm UAV1 
distance

UAV2 
distance

UAV3 
distance

UAV4 
distance

Total 
distance

Maximum 
distance

Threat 
penalty

Reference 
[21]

103.0753 41.7938 94.4393 94.6392 333.9476 103.0753 0

Proposed 
offline algo-
rithm

67.7887 65.4857 68.4093 67.9007 269.5844 68.4093 0

Proposed 
online algo-
rithm

67.7887 65.4857 65.2353 69.8132 268.3229 69.8132 0

Fig. 3 Convergence of fitness functions of the task allocation algorithms with energy constraint. Offline 
algorithm: the fitness function value of the proposed offline algorithm varies with the number of iterations. 
Reference [20]: The fitness function value of the algorithm which was proposed in Reference [20] varies with 
the number of iterations. Online algorithm: The fitness function value of the proposed online algorithm varies 
with the number of iterations

Table 10 Fitness function of the improved cuckoo algorithm with energy constraint

Index Known optimal 
solution

Algorithm 
optimal 
solution

Algorithm 
average 
solution

Deviation 
degree of 
optimal 
solution

Deviation degree 
of optimal 
solution

Fitness function 67.7000 67.9005 72.9760 0.3% 7.7%
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The deviation degree of the optimal solution for 30 iterations is 7.7%. Although the 
performance declines a little, the calculation speed is fast; and thus, the algorithm is 
suitable for online task allocation where scenarios that require a temporary return flight 
often occurs.

3.2.3  Online task allocation with threat and energy constraint

When there is a meteorological threat, the task allocation problem can be expressed 
as follows: while ensuring the shortest distance and load balance, try to stay as far 
away from the meteorological threat as possible. The meteorological threat zone is 
the same with that in Sect. 3.1.3. Due to the dominant factor in the threat zone, the 
penalty path weighting coefficient γ = 1

3
 . α should be slightly greater than β, and 

α + β + γ = 1, so we set α = 7
15

 and β = 1
5
 , experimentally. The simulation result is 

given in Table 11.
The convergence speeds of the three algorithms are given in Fig. 4. It can be seen 

that the proposed online algorithm has better real-time performance than the offline 
algorithm.

Although the optimal fitness is 67.9005, which is about 0.3% lower than the optimal 
solution, the total distance index and maximum distance index are similar to those 
of the immune multi-agent algorithm, proving that the improved algorithm performs 
equally well in the problem of poor performance of clone selection algorithms. The 
overall performance with energy constraint and threat zone is given in Table 12.

The average solution without deviation degree for 30 iterations is 4.9%, which is 
only a 2.6% decrease in performance compared with that of the improved immune 
multi-agent algorithm. However, the speed improvement is significant, and it is suit-
able for online task allocation with threat and energy constraints. This algorithm can 
be used to obtain a high-quality solution in a limited time for scenarios where UAVs 
need to return temporarily.

According to the simulation results above, both the proposed offline task allocation 
algorithm and the proposed online task allocation algorithm have their advantages 
and disadvantages. The proposed offline task allocation algorithm, i.e., the improved 
immune multi-agent algorithm, can achieve better balance among all the UAVs, and 
both the total distance and the maximum distance are smaller, but the convergence 
speed of the algorithm is slower, so it is suitable for task allocation in the offline stage. 
On the other hand, the proposed online task allocation algorithm, i.e., the improved 

Table 11 Distances of the online and offline task allocation algorithms with both constraints (km)

Algorithm UAV1 
distance

UAV2 
distance

UAV3 
distance

UAV4 
distance

Total 
distance

Maximum 
distance

Threat 
penalty

Reference 
[21]

66.8262 110.5447 81.3587 90.9541 349.6837 110.5447 0

Proposed 
offline algo-
rithm

58.3190 65.2507 70.6570 86.4723 280.6991 86.4723 0

Proposed 
online algo-
rithm

58.3190 65.2507 70.6570 87.2897 281.5164 87.2897 0
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cuckoo algorithm, has a faster convergence speed, but the total distance and the max-
imum distance are larger, so it is suitable for task allocation in the online stage. In a 
complete flight task, from before taking off to completing the last mission, both the 
two algorithms are applied.

4  Conclusions
For scenarios where multiple UAVs collect sensor data from large-scale wireless sensor 
nodes after earthquakes, this paper proposes two task allocation algorithms for different 
stages.

In response to the high accuracy requirements of offline task allocation algorithms, 
this paper first establishes a general mathematical model for data collection task allo-
cation problems, and then proposes an improved immune multi-agent algorithm as a 
solution for offline task allocation problems, striving to improve the accuracy of the 
algorithm and plan the global optimal task allocation scheme. The accuracy and effec-
tiveness of the algorithm have been demonstrated through simulation analysis.

In response to the issue of higher real-time requirements for online task allocation 
algorithms, this paper proposes an improved adaptive discrete cuckoo algorithm as the 
allocation algorithm for online tasks. By introducing adaptive step size transformation 

Fig. 4 Convergence of the fitness functions of the task allocation algorithms with both constraints. Offline 
algorithm: the fitness function value of the proposed offline algorithm varies with the number of iterations. 
Reference [20]: The fitness function value of the algorithm which was proposed in Reference [20] varies with 
the number of iterations. Online algorithm: The fitness function value of the proposed online algorithm varies 
with the number of iterations

Table 12 Fitness function of the improved cuckoo algorithm with both constraints

Index Known optimal 
solution

Algorithm 
optimal 
solution

Algorithm 
average 
solution

Deviation 
degree of 
optimal 
solution

Deviation degree 
of optimal 
solution

Fitness function 75. 0640 75.4523 78.9049 0.3% 4.9%
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and appropriate local optimization operators, the convergence speed of the algorithm is 
accelerated, making it suitable for real-time scenarios of online reassignment. Through 
runtime analysis and algorithm optimization characteristics analysis, it has been proven 
that it achieves fast convergence performance with minimal loss of accuracy.

Abbreviations
NP  Non-deterministic Polynomial
OFDMA  Orthogonal Frequency-Division Multiple Access
UAV  Unmanned Aerial Vehicle
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