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Abstract 

The confidence partitioning sampling filter (CPSF) method proposed in this paper 
is a novel approach for solving the generic nonlinear filtering problem. First, the con-
fidence probability space (CPS) is defined, which restricts the state transition 
in a bounded and closed state space in the recursive Bayesian filtering. In the posterior 
CPS, the weighted grid samples, represented the posterior PDF, are obtained by using 
the partitioning sampling technique (PST). Each weighted grid sample is treated 
as an impulse function. The approximate expression of the posterior PDF, as key 
for the PST implementation, is obtained by using the properties of the impulse func-
tion in the integral operation. By executing the selection of the CPS and the PST step 
repeatedly, the CPSF framework is formed to achieve the approximation of the recur-
sive Bayesian filtering. Second, the difficulty of the CPSF framework implementation lies 
in obtaining the real posterior CPS. Therefore, the space intersection (SI) method is sug-
gested to obtain the approximate posterior CPS. On this basis, the SI_CPSF algorithm, 
as an executable algorithm, is formed to solve the generic nonlinear filtering problem. 
Third, the approximate error between the CPSF framework and the recursive Bayesian 
filter is analyzed theoretically. The consistency of the CPSF framework to the recursive 
Bayesian filter is proved. Finally, the performances of the SI_CPSF algorithm, includ-
ing robustness, accuracy and efficiency, are evaluated using four representative simula-
tion experiments. The simulation results showed that SI_CSPF requires far less samples 
than particle filter (PF) under the same accuracy. Its computation is on average one 
order of magnitude less than that of the PF. The robustness of the proposed algorithm 
is also evaluated in the simulations.

Keywords: Confidence, Nonlinear filtering, Partitioning integral, Posterior distribution, 
State estimation

1 Introduction
It is well known that Bayesian filtering provides a general recursive solution to the filter-
ing problem by inferring the posterior probability density function (PDF) of the state 
space model with hidden states [1–5]. For a linear Gaussian system, the well-known 
Kalman filter (KF) can efficiently and accurately obtain the analytical solution of Bayes-
ian inference [6–8]. However, it is impossible to obtain the analytical solution of Bayes-
ian inference using the transfer of finite parameters in a nonlinear/non-Gaussian system. 
Therefore, several approximate methods were proposed to solve the posterior PDF and 
estimate the state in engineering applications [9–12].
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According to the approximation principles, the existing nonlinear filtering methods 
can be grouped into local inference and global inference [13, 14]. These approaches usu-
ally revolve around two core problems: (1) How to accurately describe the posterior PDF 
at current step for obtaining an estimation closer to the Bayesian inference? (2) How to 
accurately transfer the posterior PDF from the current to the next step for ensuring the 
continuous execution of recursive Bayesian inference?

For local inference, the typical representative is the Kalman-like filters including 
extended KF (EKF) [15–17], unscented KF (UKF) [18, 19], cubature KF (CKF) [20, 21], 
quadrature KF (QKF) [13, 22], etc. All of these methods use Gaussian distributions to 
approximate the real posterior PDF for solving the core problem (1). Their difference 
lies in solving the core problem (2). The EKF linearizes a nonlinear system with a first-
order Taylor series expansion, so that the posterior PDF is transferred in the linear part 
of a nonlinear system. The UKF describes a Gaussian distribution using obtained 2d + 1 
sigma points before transferring the posterior PDF, where d denotes the dimensions of 
the state. The third-degree spherical–radial cubature rule is used to overcome the uncer-
tainty of a nonlinear system in the CKF. Therefore, the calculation of volume point set 
becomes the key of the transfer of the posterior PDF. Similarly, the quadrature rule is 
used to obtain the sigma point set and transfer the posterior PDF in the QKF. The [14, 
23] approximate the posterior PDF using a multiparameter mixed distribution. The 
resulting filter is referred to as the belief condensation filtering (BCF). In this method, 
the distribution model is preset. The optimization algorithm, based on the Kullback–
Leibler divergence [24], is used to calculate the parameters of the distribution. All the 
above methods use finite parameter distribution to describe the real posterior PDF.

For global inference, a typical representative is the sequential Monte Carlo (SMC)-
based filtering methods [16, 25, 26]. As the major directions of SMC method, particle 
filter (PF) uses many weighted particles to describe the posterior PDF and simulate the 
propagation characteristics of the probability distribution [27, 28]. Weighted particles 
can flexibly describe arbitrary distribution, which makes PF have a greater potential 
to solve complex nonlinear/non-Gaussian filtering problems [29, 31]. However, the 
development of the PF is always confused by the particle degeneracy, impoverishment 
problems and dimension curse, which might affect the accuracy and efficiency and 
even lead to filtering divergence [32–36]. In addition, computational complexity is a 
crucial aspect of concern in PF, and it has the potential to significantly restrict the 
applicability of nonlinear filtering methods [37, 38]. Since the advantages and the dis-
advantages of PF, researchers have proposed several techniques to enhance the stabil-
ity, accuracy and efficiency of the PF, which mainly include the resampling technique 
[39–44], the improvement of the proposed distribution [45–47] and the integration 
technique [48, 49]. For mixed linear/nonlinear state space models, Rao-Blackwellized 
PF (RBPF) uses KF and the PF to achieve the state estimation of the linear and non-
linear parts, respectively. This method can alleviate the dimension curse suffered by 
PF [11, 50]. Furthermore, the stratification technique is used in [51], to compress the 
statistical information contained in a set of random particles. The number of particles 
can be compressed by the method according to the probability of different regions, so 
as to improve the filtering efficiency. Given the above, the idea of PF-like methods is 
that the high probability region of the posterior PDF dominates the performance of 
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filtering. Therefore, the improvement of PF-like methods is essentially to find a way 
to improve the efficiency of particle for describing the posterior PDF. Another typical 
representative of global inference is the grid-based filters (GF) [9, 10]. GF is another 
optimal filtering method compared with the KF. It is worth noting that this applies 
only when the state space is discrete and consists of a finite number of states. In this 
case, the integrals of the recursive Bayesian filtering can be executed numerically as 
a discrete, nonlinear convolution [52–54]. However, the application scope of GF is 
quite limited. Therefore, GF has not been paid attention by most scholars for a long 
time.

Generally speaking, local inference approximates the posterior PDF using one or 
more mixed known distribution. Its advantage is that the calculation cost is small, 
so it has high efficiency. For global inference, SMC method approximates the poste-
rior PDF by accumulating a large number of weighted particles. The posterior PDF 
is transferred through Monte Carlo method. They require much more computation 
than local inference methods. GF method uses numerical integration to describe and 
transfer the posterior PDF. It has strict constraint for the system environment. How-
ever, the global inference methods have better accuracy and robustness when dealing 
with some special nonlinear filtering problems.

In this paper, a novel non-parameter filter method called the confidence partitioning 
sampling filtering (CPSF) method is proposed. We have absorbed the idea of focusing 
on the high probability regions in the SMC method. On this basis, the concept of the 
confidence probability space (CPS) is defined, which is used to choose the high probabil-
ity region of the posterior PDF as the posterior CPS. Then, the grid samples are gener-
ated in the posterior CPS. The posterior probability of each grid sample, also called the 
weight of sample, is calculated according to the approximate expression of the posterior 
PDF, where the acquisition of the approximate expression is based on the idea of the 
numerical integration in GF and the method of the transfer of the posterior PDF in local 
inference. Finally, the weighted grid samples can be used to describe the posterior PDF 
at that time. The transfer of the posterior PDF is executed around obtaining the approxi-
mate expression. The main contributions arising from this study are as follows:

(1) The CPSF framework is established as an idea to solve the generic nonlinear fil-
ter problem in theory. First, the concept of the CPS is defined to compress the 
state space under a certain confidence condition maximally. Second, the par-
titioning sampling technique (PST) is performed in the posterior CPS, to obtain 
some weighted grid samples for describing the posterior PDF. The properties of 
the impulse function in the integral operation guide us to obtain the approximate 
expression of the posterior PDF, which is used in the process of the PST. Finally, the 
CPSF framework is formed by selecting the posterior CPS and executing the PST 
repeatedly, which approximates the Bayesian inference.

(2) The SI_CPSF algorithm is proposed as a specific nonlinear filtering algorithm. To 
overcome the difficulty of obtaining the real posterior CPS in the CPSF framework, 
the space intersection (SI) method is proposed to obtain the approximate posterior 
CPS. Then, an executable nonlinear filtering algorithm, called SI_CPSF algorithm, 
is formed to solve the generic nonlinear filter problems.
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(3) The approximate error between the CPSF framework and the recursive Bayesian 
filter is analyzed theoretically. The approximation error is divided into two parts: 
the space truncation error and quantization error. These two types of error can be 
controlled by two parameters in the CPSF framework: confidence and sampling 
interval. Furthermore, the consistency of the CPSF framework to the Bayesian filter 
is proved theoretically.

(4) The performances of the proposed algorithm, including the accuracy, efficiency and 
robustness, are evaluated by four representative simulation experiments.

The structure of this paper is as follows: In Sect.  2, the principal problem model and 
Bayesian filtering are introduced. In Sect. 3, the CPSF framework and the SI_CPSF algo-
rithm which is derived from the SI technique is presented in detail. In Sect. 4, the approxi-
mate error of the CPSF framework to the Bayesian filter is discussed at great length. 
Furthermore, the consistency of the CPSF framework to Bayesian filter is proved. In Sect. 5, 
simulation results are provided that describe the performance of the SI_CPSF algorithm. In 
Sect. 6, this paper is concluded.

2  Problem statement
The discrete state space model of the general filtering problem at time step k can be 
described as follows:

where xk and yk are the state and observation, respectively. uk and vk are noise sequences 
with uk ∼ pu(x) and vk ∼ pv y  . They are independent of each other. f  and h denote 
the state model and observation model, respectively. Alternatively, the complete filter 
process can be described as the transition of probability distribution: State transition 
distribution p

(

xk
∣

∣xk−1

)

 can be obtained from (1) and pu(x) ; the likelihood distribution 
p
(

yk |xk
)

 can be obtained from (2) and pv
(

y
)

.
The objective of recursive Bayesian filtering is to obtain the posterior PDF at the current 

time step, to achieve the state estimation [42]. Recursive Bayesian filtering which can be 
divided into two steps: Prediction and Update.

The prediction step infers the prior distribution at time step k, as follows:

The update infers the posterior distribution at time step k as follows:

(1)xk = f
(

xk−1

)

+ uk

(2)yk = h(xk)+ vk

(3)p
(

xk
∣

∣y1:k−1

)

=

∫

p
(

xk
∣

∣xk−1

)

p
(

xk−1

∣

∣y1:k−1

)

dxk−1

(4)p
(

xk
∣

∣y1:k
)

=
p
(

yk |xk
)

p
(

xk
∣

∣y1:k−1

)

p
(

yk
∣

∣y1:k−1

)
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3  Confidence partitioning sampling filtering
In this section, the CPSF method is proposed to overcome the integral difficulty that 
is caused by a nonlinear system in the filtering process. The main idea of the method 
is that the high probability region of the posterior PDF dominates the performance of 
the filtering. Therefore, the whole structure of the CPSF method is finding the high 
probability region and describing the posterior PDF in the region.

3.1  Partitioning sampling technique

Definition 1 Suppose that p(x) is the PDF of a distribution. Its complete probability 
space is called C0

p(x) . C
α
p(x) is a bounded subspace of it, which satisfies

where S =
∫

C
α
p(x)

1dx , 0 ≤ α ≤ 1 . Then, Cα
p(x) is called the CPS of p(x) under the confi-

dence 1− α.

In the Cα
p(x) , the sampling interval τ is used to divide it into L blocks, where 

τ = [τ1, τ2, · · · τD]
T  . D is the dimension. Then, samples are deployed on the center of 

each block and obtain the sample set X̂ , where X̂ ≡
[

x̂1, x̂2, · · · x̂L
]T  . The weight of 

each sample is calculated as follows:

The above process is called partitioning sampling technique (PST). The detailed 
steps are shown in Table 1

Theorem 1 Suppose that p(x)  is the PDF of a distribution. 
{

X̂,ω
}

L
 is obtained using 

the PST from p(x) . Then,

(5)
minimize S

(6)s.t

∫

Cα
p(x)

p(x)dx = 1− α

(7)ω ≡ [ω1,ω2, · · ·ωL]
T

(8)ωl =
p
(

x̂l
)

∑L
l=1 p

(

x̂l
)

Table 1 Partitioning sampling technique

INPUT: p(x) , Cα
p(x),τ

OUTPUT:
{

X̂,ω
}

L

Procedure:

1): Sampling X̂ in Cα
p(x) according to τ;

2): Calculate weights according to (7), (8) and get 
{

X̂,ω
}

L
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Proof See Appendix A.

For instance, suppose p(x) ∼ N
(

0, diag([1, 1])
)

 . The Cα
p(x) is a circle of equal probability 

in two-dimensional space. Let α = 0.001 , the radius of the circle is:

Let τ = [0.5, 0.5]T , the processing procedure of the PST can be seen in Fig. 1 intuitively. 
Finally, 

{

X̂,ω
}

L
 can be used to approximately express the p(x)  discretely:

where δ(·) denotes the Dirichlet function.
In this instance, the subspace Cα

p(x) contains (1− α)× 100% probability information. 
Simultaneously, Cα

p(x) is the minimum space under the condition of ignoring α × 100% 
probability information. In a general probability model (e.g., Gaussian distribution, mixture 
Gaussian distribution, etc.), the probability space can be greatly compressed into a bounded 
probability space Cα

p(x) with losing a negligible amount of probability information. This 
makes it possible to implement the PST [55, 56].

3.2  Confidence partitioning sampling filtering framework

In this subsection, we illustrate the CPSF framework using the Bayesian inference from 
time step k − 1 to k . Suppose that the posterior PDF at time step k − 1 can be described by 
a set of weighted grid samples 

{

X̂k−1,ωk−1

}

Nk−1

 , where Nk−1 denotes the sample number. 

X̂k−1 ≡
[

x̂k−1,1, x̂k−1,2, . . . , x̂k−1,Nk−1

]T deployed in the bounded space Cα
p(xk−1|y1:k−1 )

 

evenly. Therefore, all the probability information is described by their weights.
Then, the posterior PDF at time step k − 1 can be expressed discretely as follows:

p(x) ∝ lim
α,τ→0

∑+∞

l=1
ωlδ

(

x − x̂l
)

r =
√

−2 ln(α) ≈ 3.717

(9)p(x) ∝
∑L

l=1
ωlδ

(

x − x̂l
)

(10)p
(

xk−1

∣

∣y1:k−1

)

∝
∑Nk−1

n=1
ωk−1,nδ

(

xk−1 − x̂k−1,n

)

Fig. 1 The processing procedure of the PST
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In (10), the posterior PDF at time step k − 1 is expressed by Nk−1 weighted impulse func-
tions. Then, the prior PDF at time step k can be considered as a result that the impulse 
functions act on f(·) . The partial prior PDF, which is caused by one impulse function, can be 
expressed according to (3) as follows:

Meanwhile, (11) can be rewritten according to the sampling property of the impulse 
function:

Furthermore, p
(

xk
∣

∣x̂k−1,n

)

 is translated pu(x) by adding �xk ,n . Concretely, it can be 
expressed as follows:

where �xk ,n = f
(

x̂k−1,n

)

 . Substituting (12) into (13) yields:

Now, the partial prior PDF is described by the PDF of process noise. Moreover, the 
complete prior PDF expression can be obtained according to the additive property of the 
impulse function, as follows:

and the posterior PDF at time step k can be expressed according to (4) and (14) as 
follows:

In (15), the approximate expression of the posterior PDF is constructed using the process 
noise model, the observation noise model and the weights of the grid samples at time step 
k − 1. We can theoretically obtain the posterior CPS according to (15). Then, the PST can 
be executed for obtaining the weighted grid samples  

{

X̂k ,ωk

}

Nk

 at time step k. The poste-

rior PDF at time step k can be described in discrete form, as follows:

The state at time step k can be estimated:

(11)pn
(

xk
∣

∣y1:k−1

)

∝

∫

p
(

xk
∣

∣xk−1

)

ωk−1,nδ
(

xk−1 − x̂k−1,n

)

dxk−1

(12)pn
(

xk
∣

∣y1:k−1

)

∝ ωk−1,np
(

xk
∣

∣x̂k−1,n

)

(13)p
(

xk
∣

∣x̂k−1,n

)

= pu
(

xk − �xk ,n
)

pn
(

xk
∣

∣y1:k−1

)

∝ ωk−1,npu
(

xk − �xk ,n
)

(14)p
(

xk
∣

∣y1:k−1

)

∝
∑Nk−1

n=1
ωk−1,npu

(

xk − �xk ,n
)

(15)
p
(

xk
∣

∣y1:k
)

∝ p
(

yk |xk
)

∑Nk−1

n=1
ωk−1,npu

(

xk − �xk ,n
)

∝ pv
(

yk − h(xk)
)

∑Nk−1

n=1
ωk−1,npu

(

xk − �xk ,n
)

(16)p
(

xk
∣

∣y1:k
)

∝
∑Nk−1

n=1
ωk ,nδ

(

xk − x̂k ,n
)

(17)xk = (ωk)
T X̂k
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After that, the recursive Bayesian filtering is approximately executed by obtaining the 
approximate expression of the posterior PDF, finding the posterior CPS and performing 
the PST, repeatedly.

This method, which approximates the Bayesian filtering, is called the CPSF frame-
work. In this framework, we give two descriptive forms of the posterior PDF: the approx-
imate expression (see (15)) and the weighted grid samples 

{

X̂k ,ωk

}

Nk

 . The transfer of 

the posterior PDF is achieved by the repeated execution of the two steps: finding the 
posterior CPS and performing the PST. The structure of the CPSF framework is shown 
in Fig. 2. The filter steps are shown in detail in Table 2

Remark 1 Compared with the computation of the PF, the CPSF framework adds the 
calculation step of the sample weight, which is mainly reflected in (15). The computa-
tional complexity of this part is about O

(

Nk−1 × Nk

)

 . However, samples do not need to 
reflect the probability information. This phenomenon greatly reduces the requirement of 
the sample number, which can improve the efficiency of filtering. The efficiency is evalu-
ated using simulation experiments in Section V.

Remark 2 Generally speaking, the posterior PDF can obtain the better estimation than 
the prior PDF or likelihood PDF, which means it has better compressibility than that 

Fig. 2 Structure of the CPSF framework

Table 2 The CPSF framework

Initialization:

Set α,τ

Calculate Cα
p(x0)

Obtain the weighted grid samples according to PST
{

X̂0,ω0

}

N0
← PST

(

p(x0),C
α
p(x0)

, τ

)

//Overall time steps:

For k ← 1 to K  do

1): Get the expression of the posterior PDF at time step k (see Eq. 15);

2): Obtain the posterior CPS at time step k according to Definition 1 and Eq. (15);

3): Obtain the weighted grid samples according to PST
{

X̂k ,ωk

}

Nk
← PST

(

p(xk |y1:k ),C
α
p(xk |y1:k )

, τ

)

4): State estimation (see Eq. 17)

End
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of the prior or likelihood in most cases. For a relatively stationary filtering system, the 
size of the CPS is relatively stable in the whole filtering process. Therefore, the sample 
number obtained by the PST is relatively stable for a determined τ . For a non-stationary 
filtering system, the size of the CPS might be changed with the change of the scale of the 
posterior distribution. In this case, the samples number might fluctuate greatly in the 
whole filtering process for a determined τ . In this case, we can dynamically adjust the 
sampling interval according to the size of the posterior CPS.

Remark 3 In the CPSF framework, the selection of two parameters ( α and τ ) depends 
on the following principles: (i) The selection of α depends on the engineering require-
ments for the credibility of the filtering results. In specific engineering requirements, 
there is usually a strict demand for the confidence level of filtering results. For instance, 
in civil aviation, the ICAO GNSS SARPs specify a integrity requirement of  10–7 for CAT 
I. (ii) The selection of the sampling interval depends on the size of the confidence space 
for the filter to enter the steady-state working phase and the requirements for computa-
tional timeliness.

3.3  CPSF algorithm based on space intersection

In the previous subsection, we proposed the CPSF framework based on the concept of the 
CPS and the properties of the impulse function. For a simple distribution, the CPS can be 
obtained easily according to (15). For a complex nonlinear system, it is difficult to obtain the 
posterior CPS directly. To ensure the implementation of the CPSF framework in arbitrary 
nonlinear system, the SI technique is suggested for estimating the posterior CPS roughly in 
this subsection, which forms a nonlinear filter algorithm called SI_CPSF algorithm.

Suppose that the Cα
pu

 is the CPS of the process noise model. 
{

X̂k−1,ωk−1

}

Nk−1

 is the 

weighted grid sample for describing the posterior PDF at time step k−1, which satisfies

After one time step transfer of the system model, �Xk can be obtained, where

Furthermore, each sample x̂k−1,n in X̂k−1 will be transferred in the space �xk ,n + C
α
pu

 
under the confidence 1− α . Therefore, the estimation of the prior CPS can be described as 
follows:

The likelihood CPS is Cα
p(yk |xk )

 . As p
(

yk |xk
)

 is determined by the observation and its 

noise model, we can obtain the CPS of likelihood distribution expediently. The roughly esti-
mation of the posterior CPS is defined as:

X̂k−1 ∈ C
α
p(xk−1|y1:k−1 )

�Xk =
[

�xk ,1, �xk ,2, . . . , �xk ,Nk−1

]T

(18)C̃
α
p(xk |y1:k−1 )

=
Nk−1

∪
n=1

(

�xk ,n + C
α
pu

)

(19)C̃
α
p(xk |y1:k )

= C̃
α
p(xk |y1:k−1 )

∩ C
α
p(yk |xk )
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As the expression of the posterior PDF can be approximated by (15), we can perform 
the PST in the C̃α

p(xk |y1:k )
 . Then, the 

{

X̃k , ω̃k

}

Ñk

 can be obtained according to the set 

sampling interval.

Proposition 1 Suppose Cα
p(xk−1|y1:k−1 )

 and 
{

X̂k−1,ωk−1

}

Nk−1

 are the real posterior CPS 

and the weighted grid samples at time step k-1, respectively. When the p
(

xk−1

∣

∣y1:k−1

)

 is 
applied to arbitrary nonlinear system f(·) , the lower bound of the confidence of C̃α

p(xk |y1:k )
 

approximates to 1−
(

3α − α2
)

.

Proof See Appendix B.

For the estimation of the posterior CPS, we can determine its lower 
bound:C3α−α2

p(xk |y1:k )
⊂ C̃

α
p(xk |y1:k )

 . In practice, the weak amplification of the lower bound of 

the confidence has little effect on the state estimation as α is very small. However, the 
change of the position relation between the likelihood CPS and the prior CPS might 
affect its upper bound, which makes that it impossible to determine its upper bound. 
This phenomenon might result in containing extremely low weighted samples in the 
weighted grid samples. These low weighted samples would greatly limit the efficiency of 
filtering. Fortunately, the probability information is completely reflected in the weights 
for the weighed grid samples. The samples are evenly distributed within the approximate 
posterior CPS, each sample represents only a subspace within it. Therefore, we take the 
weight as the evaluation index to discard the lowest weighted samples:

In this procedure, we discard the Nk (where,Nk = Ñk − Nk ) samples with the lowest 
weights, which satisfies:

and normalize the weight of the rest samples to get ωk . Then, the weighted grid samples 
set 

{

X̂k ,ωk

}

Nk

 is obtained, which roughly belongs to Cα
p(xk |y1:k )

 . This specify filtering 

algorithm is called SI_CPSF algorithm. The block diagram of it is shown in Fig. 3. The 
detailed algorithm flow is shown in Table 3.

4  Approximate error of the CPSF method to Bayesian filter
In this section, the approximation error between the CPSF method and Bayesian filter-
ing is analyzed theoretically. The theoretical consistency between the CPSF method and 
Bayesian filtering is further proved.

The filtering process from time step k − 1 to k  is considered as an example: The poste-
rior PDF at time step k − 1 is p

(

xk−1

∣

∣y1:k−1

)

 . C0
p(xk−1|y1:k−1 )

 is the complete state space 

including two parts: Cα
p(xk−1|y1:k−1 )

 and Cα

p(xk−1|y1:k−1 ) , where Cα

p(xk−1|y1:k−1 ) is the com-

plementary set of Cα
p(xk−1|y1:k−1 )

 . Therefore:

(20)
{

X̂k ,ωk

}

Nk

⇐
{

X̃k , ω̃k

}

Ñk

∑Nk

n=1
ω̃k ,n ≤ α,



Page 11 of 29Qiang et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:24  

Others,

ε is defined as the approximation error between the CPSF method and Bayesian filter, 
as follows:

C
α
p(xk−1|y1:k−1 )

∩ C
α

p(xk−1|y1:k−1 ) = ∅

C
α
p(xk−1|y1:k−1 )

∪ C
α

p(xk−1|y1:k−1 ) = C
0
p(xk−1|y1:k−1 )

∫

C
α

p(xk−1|y1:k−1 )

p
(

xk−1

∣

∣y1:k−1

)

dxk−1 = 1− α

∫

C
α

p(xk−1|y1:k−1 )

p
(

xk−1

∣

∣y1:k−1

)

dxk−1 = α

Fig. 3 Block diagram of the SI_CPSF algorithm

Table 3 SI_CPSF algorithm

Initialization:

Set α,τ

Calculate Cα
pu(x)

C
α
p(x0)

Implement partitioning sampling technique
{

X̂0,ω0

}

N0
← PST

(

p(x0),C
α
p(x0)

, τ

)

//Overall time steps:

For k ← 1 to  K  do

1): Get the expression of the posterior PDF at time step k (see Eq. 15);

2): Get the estimation of the prior CPS (see Eq. 18);

3): Get the estimation of the posterior CPS (see Eq. 19);

4): Implement partitioning sampling technique:
{

X̃k , ω̃k

}

Ñk
← PST

(

p(xk |y1:k ), C̃
α
p(xk |y1:k )

, τ

)

5): Space contraction: Obtain 

{

X̂k ,ωk

}

Nk according to (20)

6): State estimation (see Eq. 17)

end
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where xk ,bayes denotes the Bayesian estimation at time step k.
For convenience, we define:plik = p

(

xk
∣

∣y1:k
)

 , ptrk = p
(

xk
∣

∣xk−1

)

 , ppok−1
= p

(

xk−1

∣

∣y1:k−1

)

 , 
p
pr
k = p

(

xk
∣

∣y1:k−1

)

.
Then,

where

In (22), the first item is considered as the approximate expectation of p
(

xk
∣

∣y1:k
)

 in Cα

p
po
k

 . 

The second item of (22) is considered as a truncation error. In (23), the error of the first 
item is due to the absence of the Cα

p
po
k

 . The second term of (23) is the compensation of the 

first item due to the normalization of the posterior PDF at time step k in the Cα

p
po
k

 . After 

introducing (3) and (4) into the first term of (22), we have:

where

(21)ε = xk ,bayes −
∑Nk

i=1
ωk ,ixk ,i

(22)

xk ,bayes =

∫

C
0

p
po
k

xkp
po
k dxk

=

∫

C
α

p
po
k

xkp
po
k dxk +

∫

C
α

p
po
k

xkp
po
k dxk

=

∫

C
α

p
po
k

xkp
po
k dxk

/

(1− α)+ ξ1

(23)ξ1 =

∫

C
α

p
po
k

xkp
po
k dxk −

α

1− α

∫

C
α

p
po
k

xkp
po
k dxk

(24)

∫

C
α

p
po
k

xkp
po
k

1− α
dxk

=

∫

C
α

p
po
k

xkp
li
k

∫

C
0

p
pr
k

ptrk p
po
k−1

dxk−1dxk

(1− α)p
(

yk
∣

∣y1:k−1

)

=

∫

C
α

p
po
k

xkp
li
k

(

∫

C
α

p
pr
k

ptrk p
po
k−1

dxk−1 +
∫

C
α

p
pr
k

ptrk p
po
k−1

dxk−1

)

dxk

(1− α)p
(

yk
∣

∣y1:k−1

)

=

∫

C
α

p
po
k

xkp
li
kAdxk

/

[

(1− α)p
(

yk
∣

∣y1:k−1

)]

+ ξ2

(25)A =

∫

C
α

p
pr
k

ptrk p
po
k−1

dxk−1

/

(1− α)
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The first item of (24) is the approximate expectation of the posterior PDF, when the 
posterior PDF in the posterior CPS at time step k−1 transfers to that of the time step 
k. A denotes the normalized results of the prior PDF in the Cα

p
pr
k

.The second item of 

(24) is another truncation error. The magnitude of ξ2  is mainly dominated by (27). 
When α → 0 , the two items in (27) tend to 0; then, ξ2 tends to 0.

The first item of (24) describes the expectation of the continuous posterior PDF in 
the posterior CPS. After the discretization, we have:

Synthesizing (22), (24), and (28):

Thus,

 Suppose

 Then,

Both ξ1 and ξ2 are truncation errors due to the absence of the low probability space. 
Specifically, ξ1 is the state estimation error due to the absence of the Cα

p(xk |y1:k ) . ξ2 is 
the state estimation error due to the absence of the Cα

p(xk−1|y1:k−1 ) . ξ3 is the quantiza-

(26)ξ2 =

∫

C
α

p
po
k

xkp
li
k Bdxk

/

[

(1− α)p
(

yk
∣

∣y1:k−1

)]

(27)B =

∫

C
α

p
pr
k

ptrk p
po
k−1

dxk−1 − α

∫

C
α

p
pr
k

ptrk p
po
k−1

dxk−1

(28)

∫

C
α

p
po
k

xkp
li
kAdxk

(1− α)p
(

yk
∣

∣y1:k−1

)

=

∫

C
α

p
po
k

xkp
li
k

∑+∞
i=1 ωk−1,ipu

(

xk − x̂k ,i
)

dxk

(1− α)p
(

yk
∣

∣y1:k−1

)

=

∫

C
α

p
po
k

xk
pv
(

yk − h(xk)
)
∑+∞

i=1 ωk−1,ipu
(

xk − x̂k ,i
)

(1− α)p
(

yk
∣

∣y1:k−1

) dxk

=
∑+∞

j=1
ωk ,jxk ,j (τ → 0)

xk ,bayes =
∑+∞

j=1
ωk ,jxk ,j + ξ1 + ξ2

ε = xk ,bayes −
∑Nk

i=1
ωk ,ixk ,i

= ξ1 + ξ2 +
∑+∞

j=1
ωk ,jxk ,j −

∑Nk

i=1
ωk ,ixk ,i

ξ3 =
∑+∞

j=1
ωk ,jxk ,j −

∑Nk

i=1
ωk ,ixk ,i

ε = ξ1 + ξ2 + ξ3
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tion error which is dominated by the sample interval. According to the above deriva-
tion, the approximate errors between the CPSF method and Bayesian filter are divided 
into two parts: the space truncation error ( ξ1 and ξ2 ) and quantization error ( ξ3 ). Note 
that the magnitude of the space truncation error can be adjusted by the value of α , 
and the magnitude of the quantization error can be adjusted by the choice of τ . Mean-
while, when α → 0 , ξ1 → 0, ξ2 → 0, when τ → 0 , ξ3 → 0 . Therefore, the CPSF and 
Bayesian filter are theoretically consistency. In addition, we have the following Propo-
sition for a particular posterior PDF.

Proposition 2 When the posterior PDF is always a unimodal symmetric function, then 
ξ1 = 0.

Proof See Appendix C.

Remark 3 The selection of α determines the size of the posterior CPS, which affect the 
stability of the CPSF method for filtering. The smaller the value of α , the better the sta-
bility of CPSF method. Meanwhile, the amount of the computation increases. The mag-
nitude of the sampling interval determines the sample number, which affects the accu-
racy of the CPSF method for filtering. The smaller the sample interval, the better the 
accuracy of the CPSF method.

5  Numerical simulation
In this section, the performances including the accuracy, efficiency and robust-
ness of the SI_CPSF algorithm are evaluated using four representative simulation 
experiments.

5.1  Simulation experiment 1

Consider a classical two-dimensional linear Gaussian filtering system [57]

where xk and yk denote the state and measurement at time step k, respectively. 

F =

[

cos (θ) − sin (θ)

sin (θ) cos (θ)

]

 , H =
[

1 1
]

 , uk−1 and vk denote the process noise sequence and 

measurement noise sequence, respectively. In this experiment, the system parameters 
are set as follows: θ = π

/

18 ; x0 =
[

1 1
]T ; pu ∼ N

(

0, diag
([

1 1
]))

 ; pv ∼ N (0, 0.1) . In 
this sense, the CPS of the process noise is a circle of equal probability. Therefore, the 
approximate prior CPS is the union of several circles. The likelihood CPS is a space made 
up of two straight lines. The posterior CPS is the intersection of the prior CPS and the 
likelihood CPS.

In this linear Gaussian system, the performance of the KF, PF, and the proposed SI_
CPSF was compared. As the optimal Bayesian estimation can be obtained from KF algo-
rithm, the stability of the proposed algorithm is evaluated using the root-mean-square 
error (RMSE) as follows:

{

xk = Fxk−1 + uk−1

yk = Hxk + vk
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For the SI_CPSF algorithm, we choose α=0.0001 , and two types of sampling inter-
vals: τ =

[

0.8 0.8
]T  and τ =

[

0.3 0.3
]T  . For the PF (SIR-PF was used in this study), 

1000 and 5000 particles are used, respectively. Figure 4 shows the estimated results of 
the approximate posterior CPS at a certain time step and the process of the weighted 
grid samples generation and contraction. Figure 5 shows that the SI_CPSF can obtain 
the result closer to KF comparing with the PF. Figure  6 shows that the SI_CPSF 
requires a very small number of samples. Figures  6 and 7 show that the required 
samples number by the SI_CPSF and the computational burden increases when the 
sampling interval decreases. However, Fig. 7 shows that the time consumption of the 
SI_CPSF with τ =

[

0.3 0.3
]T  is much littler than that of the PF with 5000 particles.

RMSEKF =

√

√

√

√

∑monter
i=1

∑K
k=1

(

x̂monter,k − xKFmonter,k

)2

monter× K

Fig. 4 The sampling mechanism of the SI-CPSF algorithm in one step

Fig. 5 Estimated relative errors compared with KF estimation for the different algorithms
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To evaluate the stability of the proposed algorithm, we ran 5000 rounds of Monte 
Carlo. The result can be seen from Table 4. The RMSEs of the KF are the smallest. The 
RMSEs of the SI_CPSF decrease with the decrease in the sampling interval. The RMSEs 
of the PF are always larger than that of the SI_CPSF. The SI_CPSF adds the calculation 
step of the sample weight comparing with the PF. Therefore, the computational burden 
of the SI_CPSF is bound to be much greater than that of the PF for the same sample 
number. However, the SI_CPSF just need 50 samples to obtain a better estimate result 

Fig. 6 Samples number for SI_CPSF with different τ

(s
)

Fig. 7 Computational time cost for the different algorithms

Table 4 The performance of different filter algorithms with different parameters in linear/Gaussian 
system

Algorithms RMSEKF Sampling numbers Time (s)

x1 X2

KF 0 0 – 2.197 ×  10–5

PF (particles) 0.4035 0.3959 1000 0.0033

0.1876 0.1843 5000 0.0931

SI_CPSF

τ=[0.8, 0.8]
T 0.0374 0.0066 50 7.358 ×  10–4

τ=[0.3, 0.3]
T 0.0058 0.0056 322 0.0079
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than the PF with 5000 particles, when τ =
[

0.8 0.8
]T . The large reduction of sample 

number effectively improves the filtering efficiency. Table  4 shows that the time cost 
of the SI_CPSF with τ =

[

0.8 0.8
]T is about 1/126 of the PF with 5000 particles. It is 

worth noting that the posterior PDF always satisfies the Gaussian distribution. Then, we 
have ξ1=0 for the SI_CPSF according to Proposition 2. Therefore, the SI_CPSF devia-
tions with Bayesian filter mainly come from the ξ2 and ξ3 . In addition, Table  4 shows 
that the RMSEs decrease slightly when the sampling interval decreases from 0.8 to 0.3. 
It shows that the quantization error has very little effect on RMSEs. At this point, a huge 
computational cost might be paid for improving the accuracy by reducing the sampling 
interval. In this case, increasing the posterior CPS by decreasing the α might be worth 
trying. Of course, a huge computational cost might be paid for improving the filter accu-
racy when the posterior CPS increases to a certain extent. In short, the improvement of 
filtering accuracy usually is not linear with the increase in computation burden. How-
ever, the SI_CPSF can obviously approximate the recursive Bayesian filtering faster with 
less computation than the PF in this case.

5.2  Simulation experiment 2

To evaluate the performance of the SI_CPSF in the generical nonlinear system, a typical 
one-dimensional nonlinear Gaussian system was considered [14]

The system parameters were set as follows: x0 = 1 ; pu(x) ∼ N (0, 10) ; and 
pv(x) ∼ N (0, 1) . In this sense, the CPS of the process noise is an interval 

[

−xuα xuα
]

 , 
where xuα is determined by α . The approximate prior CPS is the union of several shifted 
interval. The likelihood CPS is:

The posterior CPS is the intersection of the prior CPS and the likelihood CPS.
The EKF, the PF and the SI_CPSF are used to estimate the sequence of the state 

{xk}
60
k=1

 . For the SI_CPSF, we choice α =
[

10−4 10−7
]

 , τ =
[

0.3 0.8
]

 , which forms four 
sets of parameters in the SI_CPSF. For the PF, 500 and 1000 particles are used respec-
tively. It is worth noting that this state equation is a highly nonlinear function. The like-
lihood PDF is bimodal type. Most local inference methods are invalid for this filtering 
example. Meanwhile, many improved PF (e.g., extended PF, unscented PF) does also not 
work well [14, 58].

Figure 8 shows that the PF and the SI_CPSF can obtain the estimate results with 
comparable accuracy. The EKF is much less accurate, which is due to the bimodal 
character of the likelihood distribution. From the time step 21–23, Fig. 9 shows the 
change of the PDF in the filtering process. We use the distribution obtained by the 
PF with 10,000 particles as a reference. It can be seen from Fig. 9 that the posterior 
CPS can accurately find the high probability region of the posterior PDF. Combine 
the expression of the posterior PDF in (15), the SI_CPSF can describe the posterior 







xk+1 =
1
2
xk + 25

xk
1+x2k

+ 8 cos (1.2k)+ uk

yk =
x2k
20

+ vk

[

−xuα −
√

20yk xuα −
√

20yk
]

∪
[

−xuα +
√

20yk xuα +
√

20yk
]
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PDF with a small amount of weighted grid samples. Figures 10, 11 and 12 show the 
performance of filtering based on the Monte Carlo simulation with 30,000 instan-
tiations. Figure  10 shows that the computation of the SI_CPSF is much less than 
that of the PF. It can be seen from Fig. 11 that the SI_CPSF and the PF have similar 
state estimation results, which also verifies the consistency of the CPSF method and 
Bayesian filtering. To verify the robustness of the CPSF method, Fig. 12 (left) shows 
the cumulative probability function (CDF) of errors of the state results for different 
algorithms. As the error curves of different algorithms are very close, CDF curve of 

Fig. 8 Estimated relative errors for different algorithms in one simulation

Fig. 9 Weighted samples at time steps for SI_CPSF

(s
)

Fig. 10 Computational time cost for the different algorithms
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the PF with 1000 particles is used as the reference line, and Fig. 12 (right) shows that 
the robustness of the PF increases as the particle number increases. (The pink curve 
is above the green curve in the region with large error (when the error is greater 
than 16.).) The robustness of the SI_CPSF is always better than that of the two PFs. 
The robustness of the SI_CPSFs from good to bad is yellow curve, black curve, cyan 
curve and red curve. This shows that the change of the α has a significant impact on 
the robustness of filtering. When the error is about 13, the curves of the SI_CDSF 
from top to bottom are: yellow curve, cyan curve, black curve and red curve. In this 
region, the sampling interval becomes the dominant factor affecting the error. When 
the error is about 4, the red curve is the worst, which is influenced by both the sam-
pling interval and the α.

Table 5 shows that the RMSEs of the SI_CPSF are all better than that of the two 
PFs with lower computational burden. Note that the RMSE of the SI_CPSF with 
α = 10−4τ = 0.3τ = 0.8 is equal to the SI_CPSF with α = 10−7τ = 0.8 . However, 

Fig. 11 Comparison of the RMSEs for different algorithms

Fig. 12 Comparison of the CDFs between PF and the proposed algorithm
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the computational burdens of them are different. This shows that we can further 
improve the filtering efficiency by adjusting the sampling interval and the α.

5.3  Simulation experiment 3

To evaluate the performance of the SI_CPSF in the multiple dimensions generical non-
linear system, the Lorenz system is considered to verify the performance of the proposed 
algorithm [59].

The system parameters were set as follows: x0 = [−100, 100 50]T , 
� = 10, β = 28, γ = 8

/

3 , pu ∼ N
(

0, diag
([

1 1 1
]))

 ; pv ∼ N (0, 1) . In this sense, the 
CPS of the process noise is a sphere of equal probability. Therefore, the approximate 
prior CPS is the union of several spheres. The likelihood CPS is a ring of two concen-
tric spheres:yk − rα ≤ r ≤ yk + rα , where rα is determined by the α . The PF and the 
SI_CPSF are used to estimate the sequence of the state {xk}100k=1

 . For the PF, the particle 
numbers are 500 and 10,000, respectively. We choice α = 10−4 ,  τ =

[

2.5 2.5 2.5
]T and 

τ =
[

1.5 1.5 1.5
]T , which form two sets of parameters for the SI_CPSF. This experi-

ment is also a typical general nonlinear filtering scenario. The filtering effect of most 
local inference and improved PFs is not good.

Figure  13 shows the weighted grid samples, generated in the posterior CPS, for the 
SI_CPSF with different sampling intervals. As we can see that the samples are evenly dis-
tributed in the space, their probability information is completely focused on the weight. 
Figure  14 shows that the RMSEs of the SI_CPSF with two sets of sample interval are 
similar to that of the PF with 500, 10,000 particles, respectively. Figure 15 shows that the 
time consumption of the SI_CPSF with   τ = 1.5 is less than that of the PF with 10,000 
particles. Figure 16 shows the number of samples required for the SI_CPSF at different 
sampling intervals. It shows that the number of samples required by the SI_CPSF under 
these two sets of sample interval is much less than that of the PF. This is an important 





ẋ1
ẋ2
ẋ3



 =





�(−x1 + x2)
βx1 − x2 − x1x2
−γ x3 + x1x2+



+ Ŵ(t)

yk =

�

(x1(tk))
2 + (x2(tk))

2 + (x3(tk))
2 + vk

Table 5 Comparison of the filter accuracy and time cost for different algorithms in one-dimensional 
nonlinear system

Algorithms Parameters RMSE Sampling number Time (s)

EKF – 12.34 – 1.97 ×  10–9

PF 500 4.727 500 8.46 ×  10–4

1000 4.676 1000 2.47 ×  10–3

SI_CPSF (α/ τ )

10–4 0.8 4.671 20 1.06 ×  10–5

0.3 4.631 47 1.19 ×  10–4

10–7 0.8 4.631 23 7.67 ×  10–5

0.3 4.618 61 1.45 ×  10–4
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reason that the SI_CPSF is superior to the PF in filtering efficiency, which can be seen 
from Fig.  15. Similar to the experiment 2, we obtain Fig.  18 according to Fig.  17. The 
robustness of the two SI_CPSFs is better than that of the two PFs, respectively.

Table  6 shows the accuracy and effectiveness of the filtering based on the Monte 
Carlo simulation with 5000 instantiations. It shows that the SI_CPSF with τ = 1.5 
can obtain a better accuracy of filtering using a lower computation burden compared 

Fig. 13 The sampling mechanism of the SI_CPSF algorithm in one step

Fig. 14 Comparison of the RMSEs for different algorithms

(s
)

Fig. 15 Computational time cost for the different algorithms
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with the PF with 10,000 particles. Compared with the PF, the simulation shows that 
the SI_CPSF has a faster convergence rate in the process of approaching the Bayesian 
filtering.

Fig. 16 The average samples number for SI_CPSF with different parameters

Fig. 17 Comparison of the CDFs for PF and the proposed algorithm

Fig. 18 Comparison of the CDFs between PF and the proposed algorithm
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5.4  Simulation experiment 4

To evaluate the performance of the SI_CPSF in a real-life scenario, the proposed algo-
rithm is verified by the target tracking of the UAV with radar. The dynamic models 
adopted in this work is:

where pk =
[

pxk , p
y
k , p

z
k

]T , pxk , pyk and pzk are the position of the aircraft in three direc-
tions at time step k; vxk , vyk and vzk are real velocities corresponding to these two position 
directions (provided by the IMU) at time step k. uk−1 is zero-mean Gaussian processes 
characterizing the IMU measurement noise.

The dynamic measurement model characterizing the radar system is:

where 
[

pxradar , p
y
radar , p

z
radar

]T is the coordinates of the radar and is known. vk is a zero-
mean Gaussian processes characterizing the radar measurement noise.

The system parameters were set as follows: p0 = [2600, 2800, 800]T , 
pradar = [3500, 2300, 0]T , uk−1 ∼ N

(

0, diag
([

1 1 1
]))

 ; vk ∼ N (0, 0.1) . We choice 

pk =





1 0 0

0 1 0

0 0 1



pk−1 +





vxk−1
�t

v
y
k−1

�t

vzk−1
�t



+ uk−1

Zk =

√

(

pxk − pxradar
)2

+
(

p
y
k − p

y
radar

)2
+

(

pzk − pzradar
)2

+ vk

Table 6 Comparison of the filter accuracy and time cost for different algorithms in three-
dimensional nonlinear system

Algorithms RMSE Sampling number Time (s)

PF 5.07 500 0.0045

4.95 10,000 0.2725

SI_CPSF τ=[2.5 2.5 2.5]
T 5.04 158 0.0058

SI_CPSF τ=[1.5 1.5 1.5]
T 4.94 725 0.0814

Fig. 19 The average samples number for SI_CPSF with different parameters for target tracking of the UAV 
with radar
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α = 10−4 ,  τ =
[

1 1 1
]T and τ =

[

0.8 0.8 0.8
]T , which form two sets of parameters 

for the SI_CPSF. For the PF, the particle numbers are 500 and 10,000, respectively. In this 
scenario, we ran 100 rounds of Monte Carlo simulations. The average number of particles 
used by the proposed algorithm during the recursive process is shown in Fig. 19. It can be 
seen that, in the initial stages, the number of particles steadily increases and eventually sta-
bilizes. This is due to the continuous accumulation of IMU errors during the target track-
ing process, while observations continually correct its state. Therefore, the variance of the 
posterior distribution of the target state is a process of continuous amplification that even-
tually reaches stability. The proposed algorithm closely aligns with this variation process. 
Figure 20 shows the RMSEs of CPSFs and PFs based on the Monte Carlo simulation with 
1000 instantiations. It can be observed that increasing the number of particles in PF from 
3000 to 10,000 has a negligible impact on the filtering accuracy. However, the computa-
tional cost experiences a significant increase. When the CPSF sampling interval is set to 
1, its performance is similar to that of the PF with 10 K particle number; when the CPSF 
sampling interval is set to 0.8, its performance is significantly better than that of the PF with 
10 K particle number. For further comparison, we provide Table 7. It is evident that when 
the sampling interval is set to 1, CPSF passes an average of just over 1500 samples, and 
its computational cost is much lower than that of PF with 10 K particles. When the sam-
pling interval is set to 0.8, CPSF exhibits an improvement of nearly 10% in filtering accuracy 
compared to PF with 10 K particles, and its computational cost is lower than that of PF.

Fig. 20 Comparison of the CDFs for PF and the proposed algorithm for target tracking of the UAV with radar

Table 7 Comparison of the filter accuracy and time cost for different algorithms in target tracking 
scenario

Algorithms RMSE Sampling number Time (s)

PF 3.5698 3000 0.0251

3.4595 10,000 0.2386

SI_CPSF τ=[1 1 1]
T 3.4285 1549 0.0347

SI_CPSF τ=[0.8 0.8 0.8]
T 3.2829 3156 0.1876
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6  Conclusion
The CPSF method was proposed to solve the generic nonlinear filtering problem in this 
paper. This method has absorbed the idea of the SMC method, where the high probabil-
ity region of the posterior PDF dominates the performance of filtering. Meanwhile, the 
transfer of the posterior PDF was based on the idea of the numerical integration in GF 
and the local inference. The posterior CPS was used to select the high probability region. 
The weighted grid samples in the posterior CPS were calculated by the PST. The approx-
imate expression of the posterior PDF, as key for the PST implementation, was obtained 
by using the properties of the impulse function in the integral operation. On this basis, 
we proposed the CPSF framework for solving the generic nonlinear filtering problem. 
As finding the posterior CPS is difficult directly, SI method was proposed to obtain the 
approximate posterior CPS, which formed the SI_CPSF algorithm. The approximate 
error from the CPSF framework to the recursive Bayesian filter is analyzed. The consist-
ency of the CPSF framework to the recursive Bayesian filter is proved in this paper. Four 
typical simulation experiments were used to evaluate the performance of the proposed 
method.

Appendix A
Proof of Theorem 1

Proof As τ → 0 , the size of each block � → 0 , where � = τ1 × τ2 × · · · × τD . When 
α → 0 , Cα

p(x) → C
0
p(x) , and we have:

according to the property of the PDF. p(x) can be expressed as follows:

Substitute (8) into the above equation and we have:

As � is a constant,

Appendix B
Proof of Proposition 1

Proof  Each sample x̂k−1,n in the X̂k−1 represents a subspace of the Cα
p(xk−1|y1:k−1 )

 . The 

C
α
p(xk−1|y1:k−1 )

 is the union of each subspace. For an arbitrary sample x̂k−1,n , it will be 

transferred to �xk ,n without the process noise, where �xk ,n = f
(

x̂k−1,n

)

 . After introducing 
the additive noise uk , x̂k−1,n will be transferred to the x̂k−1,n + C

α
pu

 under the confidence 

lim
α,τ→0

∑+∞

l=1
p(xl)� =

∫

p(x)dx = 1

p(x) =
p(x)

lim
α,τ→0

∑+∞
l=1 p

(

x̂l
)

�

p(x) =
1

�
lim

α,τ→0

∑+∞

l=1
ωlδ

(

x − x̂l
)

p(x) ∝ lim
α,τ→0

∑+∞

l=1
ωlδ

(

x − x̂l
)
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1− α . When τ → 0 , the subspace, represented by x̂k−1,n , approximates to be transferred 
to x̂k−1,n + C

α
pu

 under the confidence 1− α.

According to the addition property, the Cα
p(xk−1|y1:k−1 )

 will be transferred to the 

C̃
α
p(xk |y1:k−1 )

 under the confidence 1− α , where:

Consider:

according to Definition 1. Then,

and

For the likelihood CPS Cα
p(yk |xk )

 , we have:

which means:

The complete prior state space, likelihood state space and posterior state space belong to 
the same space. That is:

As:

We rewrite it as:

where

Then,

C̃
α
p(xk |y1:k−1 )

=
Nk−1

∪
n=1

(

�xk ,n + C
α
pu

)

∫

C
α

p(xk−1|y1:k−1 )

p
(

xk−1

∣

∣y1:k−1

)

dxk−1 = 1− α

P
(

xk ∈ C
α
p(xk−1|y1:k−1 )

)

= 1− α

P
(

xk ∈ C̃
α
p(xk |y1:k−1 )

)

≥ (1− α)2

∫

C
α

p(yk |xk )

p
(

yk |xk
)

dxk = 1− α

P
(

xk ∈ C
α
p(yk |xk )

)

= 1− α

C
0
p(xk |y1:k−1 )

= C
0
p(xk |y1:k )

= C
0
p(xk |y1:k )

C̃
α
p(xk |y1:k )

= C̃
α
p(xk |y1:k−1 )

∩ C
α
p(yk |xk )

C̃
α
p(xk |y1:k )

= Q+
(

C
0
p(xk |y1:k−1 )

− C̃
α
p(xk |y1:k−1 )

)

∩
(

C
0
p(yk |xk )

− C
α
p(yk |xk )

)

Q = C̃
α
p(xk |y1:k−1 )

+ C
α
p(yk |xk )

− C
0
p(xk |y1:k )
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As

Meanwhile, we can obtain the optimal state estimation from the expectation of the 
p
(

xk
∣

∣y1:k
)

 . Then,

Therefore, the lower bound of the confidence of C̃
α
p(xk |y1:k )

 approximates to 

1−
(

3α − α2
)

.

Appendix C
Proof of Proposition 2

Proof As:

according to Definition 1. When the posterior PDF is always a unimodal symmetric 
function, then

Furthermore,

Then,

P(xk ∈ Q)

= P
(

xk ∈ C̃
α
p(xk |y1:k−1 )

)

+ P
(

xk ∈ C
α
p(yk |xk )

)

+ P
(

xk ∈ C
0
p(xk |y1:k )

)

≥ (1− α)2 + (1− α)− 1

= 1−
(

3α − α2
)

Q ⊆ C̃
α
p(xk |y1:k )

P
(

xk ∈ C̃
α
p(xk |y1:k )

)

≥ P(xk ∈ Q) ≥ 1−
(

3α − α2
)

∫

C
α

p
po
k

p
po
k dxk = α

∫

C
α

p
po
k

xkp
po
k dxk

∫

C
α

p
po
k

p
po
k dxk

=

∫

C
α

p
po
k

xkp
po
k dxk

∫

C
α

p
po
k

p
po
k dxk

= xk ,bayes

∫

C
α

p
po
k

xkp
po
k dxk = αxk ,bayes

∫

C
α

p
po
k

xkp
po
k dxk = (1− α)xk ,bayes

ξ1 = αxk ,bayes −
α

1− α
(1− α)xk ,bayes

= 0
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