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Abstract 

System state plays an important role in cyber-physical systems (CPSs). Ensuring 
the security of the CPSs is a key issue that can be widely applied. The confidential-
ity of system state is a fundamental feature of the CPSs security. This paper studies 
the distributed fusion estimation problem in the presence of eavesdropper, where local 
sensors send their estimates to a remote fusion center (FC). To prevent eavesdropping, 
the event triggered scheduling strategy was adopted on each sensor. Some suffi-
cient conditions on the triggers’ threshold were derived to make the eavesdropping 
expected covariance unbounded while the expected error covariance for the user 
remains bounded. Moreover, the distributed confidentiality fusion estimation algo-
rithm is provided to achieve perfect expected secrecy. Finally, simulations of different 
trigger levels for two local systems are employed to show the effectiveness of the pro-
posed methods.

Keywords: Fusion estimation, Eavesdropping, Privacy protection, Event triggering, 
Cyber-physical systems

1 Introduction
Cyber-physical systems (CPSs) have been widely integrated in many application fields, 
such as intelligent transportation, power system, and medical device systems [1, 2, 3–5]. 
Multi-sensor fusion estimation is an information processing process that uses the obser-
vations from multiple sensors to complete the system state estimation under certain cri-
teria. It is widely used in CPSs because of the high reliability and strong robustness [6, 
7, 8–10]. However, due to its open connectivity, CPSs have become the target of mali-
cious attackers. Eavesdropping attack is one of the typical network attacks [11, 12]. The 
security of CPSs has received a lot of attention, among which confidentiality is a basic 
security issue [13]. The data transmitted in channel is easily intercepted by eavesdropper 
over another channel. It can launch the complex attacks after analyzing a large amount 
of intercepted data, such as false data injection attacks [14]. Therefore, studying secure 
fusion estimation in presence of eavesdropper has great important theoretical and prac-
tical significance.
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Encrypting messages to prevent eavesdropping has been studied from the perspec-
tive of information theory [15, 16]. The energy of sensors often comes from bat-
teries, which limits their energy. Thus, it is difficult to exploit conventional strong 
encryption scheme due to the large energy demand. In recent years, secure commu-
nication problem has been studied by using physical layer information and artificial 
noise (AN). From the perspective of control theory, the concept of perfect encryp-
tion has been proposed. In [17], which required that the user’s state estimation error 
is bounded, while the eavesdropper’s estimation error tends to be unbounded over 
time. Then, an optimal confidentiality strategy against eavesdropper without feed-
back was given to obtain the perfect secrecy. Meanwhile, with feedback, similar 
results were derived in [18]. An event triggered sensor data scheduling strategy was 
designed to prevent eavesdropping by recurrent Markov chain in [19]. Moreover, 
considering the dynamic characteristics and physical layer information of the CPSs, 
state-secrecy codes was introduced to achieve the goal of perfect encryption for sta-
ble, unstable, and arbitrary systems in [20–22]. Consider the operation cost, an opti-
mal encryption schedule was proposed to improve system state confidentiality in 
[23]. Under the distributed framework, the problem of secure fusion estimation with 
state privacy protection was studied in [24], where perfect secrecy was achieved 
by injecting AN. In the framework of state component transmission, an AN design 
strategy based on the system parameters was developed, which makes the eavesdrop-
pers’ fusion error covariance became worse in [25]. Then, the strategies for actively 
polluting local estimation components were presented to enhance the privacy level 
of local estimates in [26]. The finite-horizon energy-to-peak state estimation issue 
was considered for time-varying systems in [27], where the desired time-varying 
estimator parameter was designed for online computation. For a networked system 
with multi-rate measurements, a novel encryption-decryption scheme was proposed 
to protect the privacy of the system state in [28]. Under the constraint of sensor 
energy, the confidentiality fusion estimation against eavesdroppers algorithm was 
proposed in [29] by combining event triggers and artificial noise. Recently, the AN 
based on the channel gain matrix was introduced to maintain confidentiality for dis-
tributed fusion estimation in [30]. However, the injected AN consumed more sensor 
energy, which added the challenge of anti-eavesdropping strategy design.

Based on the above-analysis, we shall study the event-based confidentiality fusion 
estimation problem with limited sensor energy for CPSs. To save the sensor power, 
we do not encrypt signals, but schedule the transmission based on event triggers. In 
our scenario, the sensors transmitting their outputs to a user, where all transmission 
channels may be tapped by the eavesdroppers. Under this case, the eavesdroppers 
can obtain an accurate state estimation result through the fusion estimation method. 
From the user’s perspective, in order to protect state privacy, each local sensor needs 
to design rules for transmitting local estimates to prevent the eavesdropper from 
getting the real system state through fusion estimation. This is the most important 
goal of this article, and the main contributions include: (1) We provide some suffi-
cient conditions about the threshold of event triggering to achieve perfect expected 
secrecy. (2) The event-based distributed confidentiality fusion estimation algorithm 
is proposed to ensure the effective of the transmission scheduling strategy.
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2  Problem formulation
2.1  System model

The system structure is shown in Fig.  1, which is described by the following physical 
model:

where x(t) ∈ Rn is state vector with dimension n, and yi(t) ∈ Rqi is sensor observation 
value of the i-th sensor with dimension qi. w(t) and vi(t) are Gaussian white noise with 
zero mean value, and the variances are Q and Ri respectively. L means there are L sen-
sors to observe the system state. Assume that the matrix pair (Ci,A) is detectable and 
(A,Q1/2) is controllable.

In our scenario, all sensors are smart sensors with computing capability [31]. At time 
t, the i-th sensor observes the physical process to obtain the observation yi(t) . After 
collecting the observations until time t, the information set of the ith local estimator is 
given as Yi(t) = yi(1), . . . , yi(t) with Yi(−1) = ∅ . Further, define

where x̂−i (t)and x̂i(t) are a priori and a posteriori MMSE estimates,P−
i (t) and Pi(t) are 

estimation error covariance, and E[·] represents the mathematical expectation. Recall 
from the standard Kalman filter [32], x̂i(t) and Pi(t) can be obtained according to the 
local estimator (LE) of the i-th sensor:

According to literature [33], it usually takes only a few iterations for Pi(t) to converge 
exponentially to the steady-state value. Therefore, for simplicity, let Pi(0) be the initial 

(1)
x(t + 1) = Ax(t)+ w(t)

yi(t) = Cix(t)+ vi(t) (i = 1, 2, ..., L)

(2)

x̂−i (t) � E[x(t)|Yi(t − 1)], ŷ−i (t) � E[yi(t)|Yi(t − 1)]

e−i (t) � x(t)− x̂−i (t),P
−
i (t) � E[e−i (t)e

−T
i (t)|Yi(t − 1)]

x̂i(t) � E[x(t)|Yi(t)], ei(t) � x(t)− x̂i(t),

Pi(t) � E[ei(t)e
T
i (t)|Yi(t)]

(3)







x̂−i (t) = Ax̂i(t − 1),P−
i (t) = APi(t − 1)AT + Q

Ki(t) = P−
i (t)C

T
i (CiP

−
i (t)C

T
i + Ri)

−1

x̂i(t) = x̂−i (t)+ Ki(t)Ŵi(t),Pi(t) = [In − Ki(t)Ci]P
−
i (t)

Fig. 1 Block diagram of the system model
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error covariance of the i-th sensor, and it is equal to Pii . Further, we know that Pi(t) = Pii 
for all times t.

After obtaining the LE x̂i(t) , the i-th sensor decides whether to transmit it to the 
fusion center (FC). We introduce the binary variable αi(t) to model the decision pro-
cess. αi(t) = 1 indicates that the LE x̂i(t) is sent by the i-th sensor, otherwise it will 
not send. The channels between the sensors and the FC are not reliable, which may 
lead to data packet loss. In addition, the packets transmitted on the channel can be 
intercepted on another channel by eavesdroppers. Let the binary variable βi(t) = 1 
and 0 denote whether the i-th LE is intercepted by the eavesdropper or not. Let the 
binary variable γi(t) = 1 and 0 denote whether the i-th LE is successfully received by 
the user or not.

In the FC, in order to obtain accurate state estimation, user and eavesdropper use 
the weighted matrix fusion method to obtain the final state estimation based on the 
received LE. To avoid symbol misuse, the fusion estimation of the user’s FC is taken 
as an example to illustrate how to implement the weighted matrix fusion algorithm. 
Let h and hk be functions. In specific, h(X) � AXAT + Q and hk(X) � h ◦ h ◦ · · · ◦ h

︸ ︷︷ ︸

k times

(X) . 

According to [34, 35], if k1 ≤ k2,k1, k2 ∈ Z+ , then Pii < hk1(Pii) ≤ hk2(Pii).
In the user’s FC, the LE of the i-th sensor cannot be successfully received in two 

cases by. One is that the i-th sensor does not send LE to the FC, in which case 
αi(t) = 0 . The second is that the i-th LE is sent, but packet loss occurs in the channel 
with γi(t) = 0 . In this case, it needs to perform a one-step prediction compensation 
on the local estimate. Therefore, the final LE x̂ui (t) and covariance Pu

ii(t) is computed 
as

Further, the distributed matrix-weighted fusion filter x̂u(t) can be obtained by4

where,

Then, define �(t) �






Pu
11(t) . . .P

u
1L(t)

...
...

Pu
L1(t) . . .P

u
LL(t)




 , where Pu

ij(t) (i ≠ j) is cross-covariance 

matrix between any two LEs, which is calculated by:

It usually takes only a few iterations for Pu
ij(t) to converge exponentially to the 

steady-state value [36]. For simplicity, we represent the initial error cross-covariance 

(4)(x̂ui (t),P
u
ii(t)) =

{

(x̂i(t),Pii), if αi(t)γi(t) = 1
(Ax̂ui (t − 1), h(Pu

ii(t − 1))), otherwise

(5)x̂u(t) =

L∑

i=1

Wi(t)x̂
u
i (t)

(6)
L∑

i=1

Wi(t) = In

(7)Pu
ij(t) = [In − Ki(t)Ci][AP

u
ij(t − 1)AT + Q][In − Kj(t)Cj]

T
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matrix as Pij(0) for the i-th sensor, and it is equal to Pij . Then, it can be concluded that 

Pu
ij(t) = Pij for all times t, and the initial of �(0) is 







P11 . . . P1L

...
...

PL1 . . .PLL






.

Under the linear minimum variance criterion, in terms of the result in [37], the optimal 
W1(t), W2(t),…,WL(t) in (6) can be given by:

where ϒ s = [In, In, . . . , In]
T . Further, the fusion error covariance Pu(t) � E{(x(t)−

x̂
u(t))(x(k)− x̂

u(t))T }. can be computed by:

Remark 1 For the eavesdropper, if he is strong enough to eavesdrop on the transmis-
sion data of multiple sensors at the same time, he can use the intercepted LEs to obtain 
more accurate state estimation through fusion estimation method. This brings chal-
lenges to the distributed secure fusion estimation.

2.2  Problem of interest

First, we denote by pi the probability that the i-th sensor decides to send the LE to the FC. 
To prevent eavesdropping, the stochastic event triggering strategy is adopted for all sensors. 
In detail, the processor of the i-th sensor can generate a random variable ζi at each time t. 
These variables obey a uniform distribution on (0, 1), i.e.,ζi ∼ U(0, 1) . The stochastic event 
triggers are given by

Further, assume that each sensor always decides to send LE to the FC, i.e., αi(t) = 1 for 
all time t. We model the packet drops and packet interceptions as i.i.d. over time, which are 
commonly used assumptions by researchers. In particular, we let ρi represent the probabil-
ity that the i-th local estimate is intercepted by the eavesdropper. Similarly, �i denotes the 
probability that the i-th local estimate is received by the user. Thus, the channel model can 
be given as follows:

Remark 2 In the description of physical layer security problems, knowing exactly 
the channel model of the eavesdropper for the user is a common assumption[38]. The 
channel gain can be obtained by using blind estimation, pilot-based estimation, etc. 
Under this case, knowing the probability ρi is less restrictive than knowing the exact 

(8)[W1(t), . . . ,WL(t)] = ((ϒ s)T�−1(t)ϒ s)−1(ϒ s)T�−1(t)

(9)Pu(t) = ((ϒ s)T�−1(t)ϒ s)−1

(10)αi(t) =

{
1, 0 < ζi ≤ ηi,
0, ηi < ζi < 1.

(11)







βi(t) =

�
1, with probability ρi,
0, with probability 1− ρi.

,

γi(t) =

�
1, with probability �i,
0, with probability 1− �i.
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eavesdropper’s channel model. In fact, ρi can be considered as the confidence level of the 
system designer on the ability of the eavesdropper to successfully eavesdrop data packs.

Next, the concept of perfect encryption is introduced in the following definition.

Definition 1 (Perfect Expected Secrecy) [17]. For any initial condition P(0) , a secrecy 
mechanism achieve perfect expected secrecy if and only if both of the following condi-
tion hold:

where the covariance of the state estimation error for the eavesdropper is denoted by 
Pe(t) , Sup represents upper bound, and Tr denotes trace operator.

Remark 3  For any initial system estimation error covariance, when the data transmit-
ted is encrypted according to a scheduling mechanism, the trace of the user’s covariance 
tends to be bounded in the expected sense over time, while the trace of the eavesdrop-
pers’ tends to be unbounded. In this case, the eavesdropper’s state estimation error is 
infinite, and the accurate information of the system state cannot be obtained. There-
fore, it can be said that perfect expected encryption is achieved under this encryption 
mechanism.

Further, the problems we need to solve is described as follows:

(1)  For the distributed fusion estimation, the first aim of this paper is to answer “how 
to design event-triggered data scheduler for the sensors so that the user’s esti-
mation error is convergent, but the estimation error for the eavesdropper will be 
unbounded”.

(2) From the perspective of the defender, another goal is to design the event-triggered 
confidentiality fusion estimation algorithm, which guarantee the effectiveness of 
our data scheduling method.

3  Main results
For a stable system, as long as the eavesdropper has the system model parameters, the 
system state can be predicted in real time without eavesdropping, and the prediction 
error is always bounded. Therefore, we studies the problem of confidentiality fusion 
estimation for unstable systems. As pointed out in the literature [17], fusion estima-
tion to against eavesdroppers for unstable systems is more interesting than that for 
stable systems. Let the spectral radius of A in the unstable system (1) satisfy ρ(A) > 1 . 
We will explore some sufficient conditions under which we can obtain the distributed 
security fusion estimation algorithm to protect state privacy.

(12)lim
t→∞

Sup Tr{E{Pu(t)}} < ∞

(13)lim
t→∞

Tr{E{Pe(t)}} = ∞
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Theorem 1 For the unstable system (1) with channel model (11), under the encryption 
mechanism (10), if the trigger thresholds of all sensors satisfy:

 (i)  There is an positive integer i such that

 (ii) For any positive integer i, the following inequality holds

Then the Perfect Expected Secrecy can be obtained.

Proof According to the Definition 1, we need to prove that Eqs.  (12) and (13) holds 
simultaneously under condition (14) and (15). We first prove that the Perfect Expected 
Secrecy condition (12) is satisfied under the condition (14). Suppose that the event trig-
ger threshold ηi of the s0th sensor satisfies ηi > 1

�i
(1− 1

ρ(A)2
) , then we have

In this case, the probability that the user’s FC can successfully receive the LE of the s0 th 
sensor always satisfies p(αi(t)γi(t) = 1) > 1− 1

ρ(A)2
 . Then, according to [37], the esti-

mation error covariance of the s0 th sensor is bounded, i.e. Pu
ii(t) < ∞ . Denote 

ϒ s
i = [0, . . . , In, . . . , 0]

T ∈ RnL×n , where, the i-th block place is an identity matrix In.0 
represents zero matrix with dimension n. Then, we have

This means that as long as the LE error covariance of one sensor is bounded, the state 
error covariance obtained after the FC fuses all local estimates must be bounded. There-
fore, the conditions (12) is satisfied.
Further, we prove that the Perfect Expected Secrecy condition (13) is satisfied under 
the condition (15). Let � denote the event that the event triggers of all sensors are not 
triggered and all LEs are not successfully intercepted when the LEs are transmitted. �⊥ 
represents its complement. Further, we consider the probability of the event � over the 
finite time N, one has

(14)ηi >
1

�i

(

1−
1

ρ(A)2

)

(15)ηi < min

{
1

ρi
(1− ρ(A)−

2
L ), 1

}

(16)ηi�i > 1−
1

ρ(A)2

(17)

Pu(t) = ((ϒ s)T�−1(t)ϒ s)−1

= ((ϒ s)Tϒ s
i )

T ((ϒ s)T�−1(t)ϒ s)−1((ϒ s)Tϒ s
i )

= [(�−1/2(t)ϒ s)T (�1/2(t)ϒ s
i )]

T

× [(�−1/2(t)ϒ s)T × (�−1/2(t)ϒ s)]−1

× [(�−1/2(t)ϒ s)T (�1/2(t)ϒ s
i )]

≤ (�1/2(t)ϒ s
i )

T (�1/2(t)ϒ s
i ) = Pu

ii(t) < ∞
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where t = 1, 2, . . . ,N , i = 1, 2, . . . , L.
Similar to (9), for all times N in event � , we have the terminal estimation error covari-
ance for the eavesdropper Pe(N ) = ((Ia)T (

∑e
(N ))−1Ia)−1 . Then, according to the defi-

nition of � , we know that the eavesdropper cannot successfully intercept the LEs of all 
sensors at all times N. In this case, the eavesdropper can only perform one-step predic-
tion instead of LE. According to (4), we have

where, hN (Pij) = ANPij(A
T )N +

N−1∑

s=0

AsQ(AT )s。

Taking the trace of terminal estimation error covariance Pe(N ) , one can get:

Then, there is an positive integer i, which makes the following equation hold:

Furthermore, according to the condition (15), we can get ηiρi < 1− ρ(A)−
2
L . Combing 

(21), the following inequality can be obtained:

Therefore, it can be concluded that Tr{E{Pe(N )}} → ∞ when N goes to infinity, 
i.e. lim

t→∞
Tr{E{Pe(t)}} = ∞.

Remark 4 The above theorem shows that as long as the event trigger threshold of one 
sensor is greater than 1

�i
(1− 1

ρ(A)2
) , the user’s fusion estimation error can be guaranteed 

to be bounded. On this basis, if the event trigger thresholds of all sensors are controlled 
to satisfy the condition (15), the state estimation error for eavesdropper will tend to be 
unbounded. For the perspective of user, to protect the privacy of state data from leakage, 

(18)

pe(�) = pe(αi(t) = 0,βi(t) = 0|αi(t) = 1)

=

L∏

i=1

N∏

t=1

(1− pe(αi(t) = 1)× pe(βi(t) = 1|αi(t) = 1))

=

L∏

i=1

N∏

t=1

(1− ηiρi)

(19)
e�

(N ) =







hN (P11) . . . h
N (P1L)

...
...

hN (PL1) . . . h
N (PLL)






� hN (

�

(0))

(20)

Tr{E{Pe(N )}} = Tr{E{Pe(N )|�}}pe(�)

+ Tr{E{Pe(N )|�⊥}}pe(�⊥)

> Tr(ITa (

e∑

(N ))−1Ia)
−1pe(�)

(21)Tr{E{Pe(N )}} >
1

L
Tr(ANPii(A

T )N )pe(�)

(22)
Tr{E{Pe(N )}} >

1

L
Tr(Pi(A

T )NAN )

L∏

i=1

N∏

k=1

(1− ηiρi)

>
1

Lρ(A)2N
Tr(Pii(A

T )NAN )
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the event trigger thresholds should be reduced as much as possible when the condition 
(14) is satisfied. In this case, the probability that the eavesdropper successfully intercepts 
each local estimation is small, which makes the fusion estimation performance worse. In 
addition, the larger the number of sensors L is, the more local estimates the eavesdrop-
per may intercept. Then, the user needs to reduce the event trigger threshold to a greater 
extent to ensure confidentiality. In the special case of only a single sensor with L = 1, the 
result 1− ρ(A)−

2
L degenerate into 1− 1

ρ2(A)
 , which is consistent with the result in litera-

ture [39].

Remark 5 The proposed stochastic event triggering strategy ensures that eavesdrop-
pers cannot obtain the true system state information by fusing data from the local sen-
sors intercepted on unreliable channels. At the same time, the energy of local sensors is 
saved under the event triggering mechanisms. It is worth noting that the fusion estima-
tion performance of the user will also decrease. This is a compromise on the fusion esti-
mation performance for the sake of confidentiality.

We provide two sufficient conditions for event triggered security fusion estimation 
above. Next, we present a distributed confidentiality fusion estimation algorithm to 
achieve the Perfect Expected Secrecy. The specific steps are as follows (Table 1):

4  Result and discussion
Consider a scene where two sensors observe a dynamic system. The model parameters 
are given as follows

Through several iterations, the steady-state covariance matrices can be obtained as:

Suppose that the probability �i (i = 1, 2) of successful data reception between the 
user’s FC and the two local sensors are 0.7 and 0.9, respectively. Both channels are 

A =

[
1.2 1
0.3 1.1

]

, C1 = [1 0], C2 = [1 1], Q =

[
1 0.5
0.5 2

]

, R1 = 1, R1 = 2.

P11 =

[
0.8656 0.6412
0.6412 2.6544

]

, P22 =

[
1.1354 −0.3315
−0.3315 1.1855

]

, P12 =

[
0.0080 0.0602
−0.9288 1.2829

]

.

Table 1 Event-triggered confidentiality fusion estimation against eavesdroppers algorithm

1: Input parameter: Pδ , σ  , σ  P . Input system parameter A, Ci, Q, Ri, Pi(0) , Pij(0) , �i , ρi (i = 1, 2, 1,…, L);

2: for i: = 1 to L do

3: Step 1: Calculate the stable error covariance Pii of each local estimation system;

4: Step 2: Compute 1
�i

(

1− 1

ρ(A)2

)

, 1
ρi

(

1− ρ(A)−
2
L

)

;

5: Step 3: Select event trigger thresholds ηi according to conditions (14)–(15), and feed back to each local sensor;

6: end for
7: Step 4: The user’s FC processes the received signal according to (4), and performs state fusion estimation 
according to formulas (5)–(9);

8: Step 5: Go to step (4) and continue to calculate the fusion estimate value at the next time
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eavesdropped, and the data interception probability ρi (i = 1, 2) are both 0.4. We can 
calculate the values of 1

�i
(1− 1

ρ(A)2
) (i = 1, 2) as 0.5080 and 0.3951 respectively, and 

the values 1
ρi
(1− ρ(A)−

2
L ) (i = 1, 2) are both 0.4932. All results are 1000 Monte Carlo 

simulations. To better interpret the simulation results, we define the following abbre-
viations: trace of error covariance (TEC), and trace of fusion error covariance (TFEC).

First, we do not set event triggers for all local sensors, and observe the fusion esti-
mation performance for the eavesdropper and the user. In fact, this is equivalent to 
making the event trigger thresholds ηi (i = 1, 2) of both sensors. The specific simula-
tion results are shown in Figs. 2 and 3.

Figure 2 shows the final LE error covariance curve of the eavesdropper and user’s 
FC, and Fig. 3 shows the trace curve of their fusion estimation error covariance. It is 
seen that the final LE error of the eavesdropper is much larger than that of the user. 
This is because the successful reception rate of the user’s FC is higher than that of 
the eavesdropper. Notice that both the eavesdropper and the user can obtain much 
smaller estimation error than the final local estimation through the fusion estimation 
method. Therefore, the fusion estimation can greatly reduce the user’s state estima-
tion error, but at the same time, it may lead to more state privacy disclosure. Next, the 
anti-eavesdropping strategy based on event triggering is verified.

The stochastic event triggers are designed for two local sensors according to (10). Let 
the trigger thresholds combinations for two local sensors be (0.4, 0.4), (0.45, 0.9), (0.9, 
0.9). The specific simulation results are shown in Figs. 4 and 5.

Figure  4 shows the final local estimation curve of the eavesdropper’s FC, and Fig.  5 
reflects the fusion estimation performance under different event trigger threshold 
combinations of two sensors. It is seen from Fig. 4 that the eavesdropper’s TEC grows 
unbounded when the communication rate between the sensors and the FC is low. From 
Fig. 5, when the trigger thresholds is selected as (0.4, 0.4), the eavesdropper’s estimation 
performance is poor. Its TFEC grows unbounded over time. This is because the suffi-
ciency condition (15) is satisfied under this communication rate combination, so that the 

Fig. 2 The TEC of final local estimates without event triggers
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eavesdropper cannot obtain the real state information. In this case, the user’s TFEC is 
bounded. This is because the user’s FC has a high successful rate of receiving data from 
the local sensors, which makes the sufficiency condition (14) satisfied. For other combi-
nations, the conditions (14) and (15) are not satisfied at the same time. The eavesdropper 
can always obtain a bounded estimation error, which makes the event trigger inva-
lid. Therefore, in order to prevent the disclosure of state privacy, the user must design 
smaller trigger thresholds so that the sufficiency conditions of Theorem 1 are satisfied.

Fig. 3 The TFEC without event triggers

Fig. 4 The TEC of final local estimate for the eavesdropper
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5  Conclusions
This paper studied the state privacy protection of distributed fusion estimation for 
CPSs. The goal was to make the TFEC matrix of the eavesdropper become unbounded 
over time while the expected error covariance for the user remained bounded. The ran-
dom event triggering strategy was adopted to maintain confidentiality. The relationship 
between event triggering thresholds and estimation performance in FC was established. 
Some sufficient conditions of trigger thresholds were derived to guarantee the Perfect 
Expected Secrecy. Finally, a simulation example was employed to verify the effectiveness 
of the proposed method. Future research topics include (1) the privacy protection for 
stable systems; (2) the perfect encryption strategies based on encryption and decryp-
tion, and (3) the encryption strategy design and security fusion estimation for nonlinear 
systems.
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