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Abstract 

We address the sensor selection problem where linear measurements under correlated 
noise are gathered at the selected nodes to estimate the unknown parameter. Since 
finding the best subset of sensor nodes that minimizes the estimation error requires 
a prohibitive computational cost especially for a large number of nodes, we propose 
a greedy selection algorithm that uses the log-determinant of the inverse estimation 
error covariance matrix as the metric to be maximized. We further manipulate the met-
ric by employing the QR and LU factorizations to derive a simple analytic rule which 
enables an efficient selection of one node at each iteration in a greedy manner. We 
also make a complexity analysis of the proposed algorithm and compare with different 
selection methods, leading to a competitive complexity of the proposed algorithm. 
For performance evaluation, we conduct numerical experiments using randomly 
generated measurements under correlated noise and demonstrate that the proposed 
algorithm achieves a good estimation accuracy with a reasonable selection complexity 
as compared with the previous novel selection methods.

Keywords: Sensor selection, Greedy algorithm, QR factorization, LU factorization, 
Correlated noise

1 Introduction
In wireless sensor networks, a large number of sensor nodes are spatially distributed 
and transmit their noise-corrupted measurements which are typically formulated by a 
linear combination of the known observation matrix H and the parameter to be esti-
mated. The sensor selection is conducted so as to optimize the estimation accuracy 
[1–7]: Convex relaxation [1]- and cross-entropy optimization [2]-based methods were 
presented with a prohibitive computational complexity for large sensor networks. Not-
ing that greedy approach yields a feasible complexity, the sensor selection problem has 
been mostly tackled in a greedy manner. To guarantee near-optimality with regard to 
the mean squared estimation error (MSE), a submodular cost function called the frame 
potential was devised and a greedy removal method was proposed to find optimal sensor 
locations [3]. A QR factorization-based greedy selection method was proposed to mini-
mize the estimation error [4]. To further reduce the complexity of the selection process, 
the log-determinant of the inverse estimation error covariance matrix was employed as 
a metric to present simple greedy methods instead of directly minimizing the estimation 
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error [5, 6]. Specifically, analytic selection rules were established by proving the metric 
to be a monotone submodular function [5] and by employing the QR factorization [6], 
respectively. An efficient greedy algorithm was also developed for sensor placement by 
maximally projecting onto the minimum eigenspace of the dual observation matrix [7]. 
Clearly, the selection of the best subset of p sensor nodes corresponds to the construc-
tion of the matrix with the most informative p rows selected from the matrix H.

It should be noticed that most of the selection methods have been derived under the 
assumption of uncorrelated noise: That is, off-diagonal elements of the noise covari-
ance matrix are assumed to be approximately zero or ignorable. The sensor selection 
problem in the presence of correlated noise is challenging since the Fisher information 
(equivalently, the inverse estimation error covariance matrix) is no longer linear in the 
selected sensors [8–10]. To solve the problem, various selection algorithms have been 
previously presented in [8–12]. A multi-step sensor selection strategy was proposed 
for linear dynamic systems under correlated noise [8]. Sparsity-aware sensor selection 
approaches in centralized and distributed versions were developed in the presence of 
correlated measurements using convex relaxation for the maximum likelihood esti-
mation (MLE) [9]. Two selection algorithms were derived for estimation of random 
parameters to minimize the MSE based on convex relaxation and greedy approach [10], 
respectively. Recently, a greedy selection algorithm maximizing the log-determinant of 
the inverse estimation error covariance matrix has been presented to provide an addi-
tional increase in estimation accuracy [11, 12]. Whereas the sensor selection problem 
has been extensively studied for the additive Gaussian linear measurement model which 
is considered in this work, it has been also addressed for nonlinear measurement model 
[13, 14]. In [13], the sensor selection algorithm for target tracking was proposed based 
on the extended Kalman filtering for an additive Gaussian nonlinear model. In [14], sen-
sor selection methods for a general nonlinear model were developed with an aid of con-
vex relaxation technique for estimation of unknown parameters.

In this paper, we consider the scenario where a given number of sensor nodes with meas-
urements corrupted by correlated noise are selected to estimate the parameter. We aim to 
find the subset of sensor nodes that minimizes the estimation error. We first formulate the 
estimation error covariance matrix as a function of the matrix HS with rows selected from 
H and the covariance matrix KS of noise samples at the selected nodes. To expedite the 
selection procedure, we adopt the log-determinant of the inverse estimation error covari-
ance matrix as a metric to be maximized, which allows us to avoid a large matrix inver-
sion. We choose one node at each iteration in a greedy manner until the selection set of the 
desired cardinality is constructed. To simplify the metric, we factor the matrices HS and KS 
based on the QR and LU factorizations, respectively, to obtain the upper triangular matrix 
R and the lower triangular matrix M . We show that the factored matrices R and M can be 
updated by simply appending the newly computed column or row vector to the last posi-
tions of those matrices at the previous iteration, respectively. This simple computation of 
the key matrices R and M leads to an analytic rule which enables an efficient selection of 
such a maximizing node at each iteration. We also make a complexity analysis of the pro-
posed algorithm, resulting in a competitive complexity of the same order as that of [4]. We 
evaluate the performance of the proposed method through numerical experiments using 
randomly generated measurements under correlated noise. We demonstrate the advantage 
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of the proposed technique over previous selection methods in terms of the estimation per-
formance and the selection complexity.

Compared with [4, 11, 12], we have the new contributions in this paper:

• In [4], the MSE is minimized by applying the QR factorization to HS in the assump-
tion of uncorrelated noise. However, in the presence of correlated noise, the MSE is not 
manageable using only the QR factorization. The main contributions are given in two 
aspects: First, in order to yield a simple selection process, the final selection rule should 
be expressed as the first term related with the previous iteration plus the second term 
determined by only the current selection. The LU factorization of the covariance matrix 
KS is proved to generate the desired expression of the final rule. Second, the overall deri-
vation process is completely different from [4] except for the QR factorization of HS . 

• The only similarity with [11, 12] is to optimize the same metric which is the log-deter-
minant of the inverse estimation error covariance matrix. Except for that, the optimiza-
tion process to derive the proposed selection rule in this paper is totally different from 
[11, 12]. Furthermore, the proposed method is shown to operate faster than the method 
in [11, 12] in numerical experiments while preserving the same estimation performance.

This paper is organized as follows. The problem is formulated in Sect. 2 in which the met-
ric is shown to be expressed in terms of the sampled matrix HS , the covariance matrix KS 
and the statistics of the parameter. In Sect. 3, the QR and LU factorizations are employed 
to simplify the metric and a simple selection criterion is derived. The complexity analysis 
of the proposed algorithm is provided in Sect. 4.1. Extensive experiments are presented in 
Sect. 4.2 and conclusions in Sect. 5.

2  Problem Formulation
Suppose that N wireless sensors deployed in a sensor field generate the measurements 
y ∈ R

N . We seek to estimate the parameter vector θ ∈ R
p with a Gaussian distribu-

tion N (0,�θ ) by using n(< N ) measurements gathered by the n selected sensors in the 
set S. We assume that the measurements are corrupted by the additive correlated Gauss-
ian noise w ∼ N (0,K) ∈ R

N independent of θ where the covariance matrix K is positive 
definite and symmetric. We also assume that the measurements are produced by a linear 
model with the known observation N × p full column rank matrix H with N row vectors 
h⊤i , i ∈ V = {1 · · ·N } : Specifically,

We denote the estimator by θ̂ (yS) where yS is the |S| × 1 column vector with entries of y 
indexed by S. In this work, we use an optimal Bayesian linear estimator (e.g., maximum a 
posteriori (MAP) estimator or minimum mean squared error (MMSE) estimator). Note 
that the MAP estimator is equivalent to the MMSE estimator in our formulation where 
the parameter and the noise are assumed to be Gaussian. Then, we can derive the esti-
mator θ̂ (yS) and the estimation error covariance matrix �(S) as follows [5, 15]:

(1)y = Hθ + w

(2)θ̂ (yS) = �
−1
θ +H⊤

S K
−1
S HS

−1
H⊤

S K
−1
S yS
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where HS is the matrix with rows of the matrix H indexed by S and KS the |S| × |S| 
covariance matrix of the noise vector wS with entries of w indexed by S. Notice that the 
estimation of deterministic and unknown parameters can be also conducted by letting 
�θ

−1 = 0 in (2) and (3).
In this work, we aim to find the best subset S with |S| = p that maximizes the log-deter-

minant of the inverse estimation error covariance matric given by log det
(

�(S)−1
)

 which 
has been employed as a metric for the sensor selection problem in previous work [1, 5, 
11, 12] and shown to produce a good estimation performance with a reduced complexity. 
We also seek to select one node at each iteration in a greedy manner. More specifically, 
given the set Si of i nodes already selected until the ith iteration, we select one node from 
the set of the remaining nodes, SCi ≡ (V − Si) that maximizes the intermediate metric 
log det

(

�(Si+1)
−1

)

 at the (i + 1) th iteration where Si+1 = Si + {j}, j ∈ SCi  . The selection 
process is expressed by

where HSi+1 is simply created from HSi and the jth row vector h⊤j  selected from H:

and KSi+1 is also constructed from KSi and the jth node selected from SCi :

where the subscript (i) indicates the number of the node selected at the ith iteration and 
k⊤i+1 denotes the 1× (i + 1) row vector with k = [k(1)j · · · k(i)j] and k = kjj . Notice 
that k(i)j represents the covariance of the noise samples at the (i)th and jth nodes. The 
process in (4) is performed repeatedly until the selection set S with |S| = p is constructed.

3  Method: efficient sampling algorithm
In this section, we present an analytic result for a simple selection process by manipulating 
the matrix H⊤

Si+1
 and the covariance matrix KSi+1 based on the QR and LU factorizations, 

respectively. Note that the Householder transformation is employed to perform the QR fac-
torization since it has strength in terms of complexity and sensitivity to rounding error in 
comparison with the Gram–Schmidt orthogonalization [16]. First, noting that the covari-
ance matrix KSi+1 is symmetric, we can factor it as follows:

where MSi+1 is the (i + 1)× (i + 1) lower triangular matrix. We also do the QR factoriza-
tion of H⊤

Si+1
= QR̄i+1 where Q is the p× p orthogonal matrix with p column vectors 

qj , j = 1, . . . , p and R̄i+1 the p× (i + 1) matrix. Then, we manipulate the metric in (4) to 

(3)�(S) =
(

�
−1
θ +H⊤

S K
−1
S HS

)−1

(4)j∗ = arg max
Si+1=Si+{j},j∈SCi

log det
(

�
−1
θ +H⊤

Si+1
K−1
Si+1

HSi+1

)

(5)H⊤
Si+1

=
[

H⊤
Si

hj
]

(6)
KSi+1 =

[

KSi k

k⊤ k

]

k⊤i+1 ≡
[

k⊤ k
]

=
[

k(1)j k(2)j · · · k(i)j kjj
]

(7)KSi+1 = MSi+1M
⊤
Si+1
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derive a simpler form with assumption of �θ = σ 2
θ Ip where Ip indicates the p× p iden-

tity matrix. Specifically,

where (8) follows from the notion that detQ detQ⊤ = 1 . Note that R̄i+1 can be written 
by

where Ri+1 is the (i + 1)× (i + 1) upper triangular matrix and 0a×b indicates the a× b 
zero matrix. Then, plugging (9) into (8) yields

Hence, we can further simplify the log-determinant in (8) as follows:

where (12) follows since the second term in (11) is irrelevant in finding the maximizing 
node at (i + 1) th iteration. In this paper, noting that det(A)+ det(B) ≤ det(A + B) for 
positive definite matrices A and B [17], we propose to maximize the lower bound of (12) 
to yield a low-complexity selection process: Specifically, the selection process in (4) is 
approximated by

(8)

log det
(

�(Si+1)
−1

)

= log det

(

1

σ 2
θ

Ip +QR̄i+1
(

MSi+1M
⊤
Si+1

)−1
(R̄i+1)⊤Q⊤

)

= log det

(

Q

(

1

σ 2
θ

Ip + R̄i+1
(

MSi+1M
⊤
Si+1

)−1
(R̄i+1)⊤

)

Q⊤

)

= log det

(

1

σ 2
θ

Ip + R̄i+1
(

MSi+1M
⊤
Si+1

)−1
(R̄i+1)⊤

)

(9)R̄i+1 =

[

Ri+1

0(p−i−1)×(i+1)

]

(10)

�

1

σ 2
θ

Ip + R̄i+1
�

MSi+1M
⊤
Si+1

�−1
(R̄i+1)⊤

�

=





Ri+1
�

MSi+1M
⊤
Si+1

�−1
(Ri+1)⊤ + 1

σ 2
θ

Ii+1 0⊤(p−i−1)×(i+1)

0(p−i−1)×(i+1)
1
σ 2
θ

Ip−i−1





(11)

log det
(

�(Si+1)
−1

)

= log det

(

Ri+1
(

MSi+1M
⊤
Si+1

)−1
(Ri+1)⊤ +

1

σ 2
θ

Ii+1

)

+ log det

(

1

σ 2
θ

Ip−i−1

)

(12)∝ log det

(

Ri+1
(

MSi+1M
⊤
Si+1

)−1
(Ri+1)⊤ +

1

σ 2
θ

Ii+1

)

(13)j∗ ≈ arg max
j∈SCi

log

(

det

(

Ri+1
(

MSi+1M
⊤
Si+1

)−1
(Ri+1)⊤

)

+ det

(

1

σ 2
θ

Ii+1

))
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where (13) follows from the notion that Ri+1 and MSi+1 are positive definite since the 
covariance matrix K is positive definite and H a full column rank matrix and (14) from 
the irrelevancy of det

(

1
σ 2
θ

Ii+1

)

 in (13) to the selection at (i + 1) th iteration. In the opti-

mization perspective, the selection process in (14) corresponds to the methodology 
which makes the worst case as good as possible for the estimation of the parameters 
with equal variances (i.e., �θ = σ 2

θ Ip ). Notably, the proposed process in (14) is equiva-
lent to the selection process for the estimation of unknown and deterministic parame-
ters (i.e., �θ

−1 = 0 in (3)). Later in Sect. 4.2, the assumption of �θ = σ 2
θ Ip is relieved to 

evaluate the proposed method in numerical experiments.
We prove a theorem which presents a simple criterion to enable an efficient selec-

tion of the node that maximizes the log-determinant in (14) at each iteration.

Theorem Let the ( i + 1)th column vectors ri+1 of Ri+1 and ki+1 of KSi+1 be given by 
r⊤i+1 = [r⊤ r] and k⊤i+1 = [k⊤ k] , respectively. Let the ( i + 1)th row vector m⊤

i+1 of 
MSi+1 be given by m⊤

i+1 = [m⊤ m] . Then, the node at the (i + 1) th iteration that maxi-
mizes the log-determinant in (14) is simply selected from the set SCi  consisting of (N − i) 
remaining nodes:

where m2 = k− � m �2.

Proof We continue to simplify the metric in (14) to yield

where (16) follows from det(A) = det(A⊤) and det(A−1) = 1/ det(A) . In order to com-
pute det

(

Ri+1
)

 and det
(

MSi+1

)

 , it is noted that the matrices Ri+1 and MSi+1 can be sim-
ply obtained from those at the previous iteration. Specifically, for each j ∈ SCi  we com-
pute KSi+1 from (6) and also construct Ri+1 and MSi+1 as follows:

Here, ri+1 is given by r⊤i+1 = [r⊤ r] = [q⊤
1 hj q⊤

2 hj · · · q⊤
i+1hj] where r = q⊤

i+1hj . 
Also, the row vector m⊤

i+1 = [m⊤ m] can be easily computed by the LU factorization of 
the symmetric matrix KSi+1:

(14)= arg max
j∈SCi

log det

(

Ri+1
(

MSi+1M
⊤
Si+1

)−1
(Ri+1)⊤

)

(15)j∗ = arg max
j∈SCi

r2

m2

(16)log det
(

�(Si+1)
−1

)

≈ log

(

det
(

Ri+1
)2

/ det
(

MSi+1

)2
)

(17)Ri+1 =

[

Ri r

0⊤ r

]

(18)MSi+1 =

[

MSi 0

m⊤ m

]
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Then, we have from (19)

Therefore, the log-determinant in (16) can be further simplified as follows:

where (22) follows since the first term in (21) is irrelevant in finding the maximizing 
node at the ( i + 1)th iteration.  �

It should be noted that since MSi is lower triangular, m in (20) can be directly 
obtained by the forward substitution without computing the inverse of MSi . However, 
(20) requires i floating-point divisions repeated over (N − i) remaining nodes at the 
(i + 1) th iteration. Further, the division operation typically spends much more time 
than the multiplication. Hence, we avoid those divisions by computing m as follows:

where M−1
Si+1

 can be easily computed from M−1
Si

 without inversion of large matrices by 
using

Note that (24) can be verified by multiplying M−1
Si+1

 by MSi+1 in (18). It is obvious that 
(23) and (24) runs faster than (20) since (23) without divisions is repeated over ( N − i ) 
remaining nodes and (24) with one division is conducted once at each iteration.

Initially, q1 = hj/ � hj � , KS1 = k = kjj with k = 0 for j ∈ V . Then we have 
r = q⊤

1 hj =� hj � and m2 = k with m = 0 and the first node is selected as follows:

Once the first node is selected, we update M−1
Si+1

 by (24) (e.g., M−1
S1

= 1/m ) and Q by the 
QR factorization. The updated matrices M−1

Si+1
 and Q are used at the next iteration. In 

what follows, the proposed selection algorithm is briefly explained.

(19)KSi+1 =

[

KSi k

k⊤ k

]

=

[

MSi 0

m⊤ m

] [

M⊤
Si

m

0⊤ m

]

(20)MSim = k, m2 = k− � m �2

(21)
log

(

det
(

Ri+1
)2

/ det
(

MSi+1

)2
)

= log

(

det
(

Ri
)2

/ det
(

MSi

)2
)

+ log
r2

m2

(22)∝ log
r2

m2

(23)m = M−1
Si

k, m2 = k− � m �2

(24)M−1
Si+1

=

[

M−1
Si

0

−
m⊤M−1

Si
m

1
m

]

(25)j∗ = arg max
j∈V

r2

m2
= arg max

j∈V

� hj �
2

kjj
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Algorithm 1 Efficient greedy sensor selection algorithm

4  Results and discussion
4.1  Complexity analysis of proposed algorithm

Given the covariance matrix K of the correlated noise vector w in (1), the proposed algo-
rithm aims to construct the best set S∗ by conducting two main tasks. First, computa-
tion of the last column vector ri+1 of Ri+1 is performed by using the QR factorization 
of H⊤

Si+1
= QR̄i+1 . Specifically, given Q and Ri at the previous iteration, the last entry of 

ri+1 is computed for each hj , j ∈ SCi  . Once the maximizing node is selected, Q is updated 
for the next iteration by the Householder transformation. The second is to compute mi+1 
by using (23) given M−1

Si
 and ki+1 for each node j ∈ SCi  . After the selection of the maxi-

mizing node, M−1
Si+1

 is updated for the next iteration by (24). Since these two tasks are 
repeated |S| − 1 times, the proposed algorithm yields the complexity of O(Np|S|2) which 
is the same complexity order as that of [4].

We evaluate three previous selection methods for the performance comparison. First, 
we consider the sensor selection method denoted by greedy sensor selection (GSS) [5] 
which seeks to maximize the log-determinant of the inverse error covariance matrix 
�(S)−1 . GSS assumed uncorrelated noise (equivalently, K = IN ) and the metric is given 
by log det�(S)−1 ≈ log detH⊤

S HS under the assumption of �θ
−1 = 0 . Secondly, We 

compare with the method denoted by greedy sensor selection based on QR factorization 
(GSS-QR) in [4] which has been developed by applying the QR factorization of the 
matrix H⊤

S  in the MSE in (3). Unlike GSS, it aims to directly minimize the MSE(S) with 
K = IN . For this case, the MSE(S) is given by tr

[

(

H⊤
S HS

)+
]

=� H+
S �2F when �θ

−1 = 0 

is assumed. Thirdly, we evaluate the method denoted by greedy sensor selection under 
correlated noise (GSS-CN) [11, 12] which maximizes the same metric as the proposed 
algorithm. In Table  1, the complexity and the metrics of the selection methods are 
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summarized for comparison. As seen, the proposed algorithm, GSS-QR and GSS-CN 
offer the same complexity order for the case of |S| = p . In the following section, the esti-
mation performance of the methods is experimentally investigated for the case of |S| = p

.

4.2  Experimental results

In this section, we conduct the extensive experiments to validate the proposed sensor 
selection algorithm by comparing with various selection methods in three different cases 
as follows:

• Case 1: Random matrix H with Gaussian iid entries, hij ∼ N (0, 0.12).
•  Case 2: Random matrix H with Bernoulli iid entries, hij which take binary values (0 

or 1) with the probability 0.5.
•  Case 3: Random matrix H and covariance matrix K generated by using the linear 

reduced-order modeling [11, 12].

In Case 1 and 2, we generate 50 different realizations for each type of H ∈ R
N×p with 

N = 1000 and p = 10, 15, . . . , 40 . For each realization of H , we generate 100 test sam-
ples of the parameter vector θ and the correlated noise w drawn from N (0,�θ ) and 
N (0,K) , respectively. The covariance matrix K is constructed from random data gener-
ated from uniform distribution over [0 1] . In Case 3, 100 measurement vectors 
y ∈ R

1000 are generated from the normal distribution N (0, 1) and H and K are con-
structed by using the linear reduced-order modeling with the order equal to p = |S| (see 
[11, 12] for the details). From the matrices H and K , we construct the set S with the car-
dinality |S| = p by using the various sensor selection methods such as GSS, GSS-QR, 
GSS-CN and the proposed algorithm. We then select the measurements yi, i ∈ S from 
the measurement vector y and estimate the parameter vector θ by employing the opti-
mal linear estimator in (2). For evaluation of the estimation performance, we compare 
the MSEs of the selection methods given by E �θ−θ̂�2

�θ�2
.

4.2.1  Performance evaluation with respect to parameter dimension

In this experiment, we generate the parameters by assuming �θ = σ 2
θ Ip, σθ = 0.1 and run 

the selection methods in order to construct the sets S with |S| = p by varying the param-
eter dimension p = 10, 15, . . . , 40 and compare the MSEs which are plotted in Figs. 1, 2 
and 3. It is noted that the proposed method shows better performance than GSS and GSS-
QR since unlike the methods, the proposed algorithm takes into account the correlation of 

Table 1 Comparison with various greedy selection methods

Method Optimality criteria Decomposition Operation count

GSS [5] log det
(

H
⊤
S HS

)

- O(Np2|S|)

GSS-QR [4] � H
+
S �2F QR O(Np|S|2)

GSS-CN [11, 12] log det
(

H
⊤
S K

−1
S HS

)

- O(N|S|3)

Proposed method log det
(

H
⊤
S K

−1
S HS

)

QR, LU O(Np|S|2)
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the noise to construct the set S. As expected, the proposed algorithm and GSS-CN yield 
identical MSEs because both of them optimize the same metric. Notably, as the parameter 
dimension increases, the estimation accuracy becomes improved because the optimal lin-
ear estimator using more measurements can suppress the effect of correlated noise more 
efficiently. Furthermore, we investigate the estimation performance of the methods with 
p = |S| = 50 for different signal-to-noise ratios (SNRs) by varying the standard deviation 
of the parameter, σθ from 0.1 to 0.5. In Fig. 4, the MSEs are demonstrated in Case 1 (ran-
dom Gaussian matrix H ). Obviously, the selection methods yield more accurate estimation 
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Fig. 1 Evaluation of estimation performance in Case 1 (random Gaussian matrix): the proposed algorithm is 
compared with different selection methods with σθ = 0.1 by varying the dimension of the parameter, p = |S|
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Fig. 2 Evaluation of estimation performance in Case 2 (random Bernoulli matrix): the proposed algorithm is 
compared with different selection methods with σθ = 0.1 by varying the dimension of the parameter, p = |S|
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performance with higher SNR. We also test the methods by relaxing the assumption of 
�θ = σ 2

θ Ip and generate the parameters from the non-diagonal covariance matrix �θ con-
structed by using random data uniformly distributed over [0 1] . Notice that the p diag-
onal entries of the covariance matrix �θ take much higher values than σ 2

θ = 0.12 used in 
the experiment for the case of �θ = σ 2

θ Ip . The MSEs are provided in figure 5, showing a 
robust estimation performance of the proposed method for the case of the non-diagonal 
covariance matrix. The complexity of the selection methods is experimentally examined by 
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Fig. 3 Evaluation of estimation performance in Case 3 (linear reduced-order model): the proposed algorithm 
is compared with different selection methods by varying the dimension of the parameter, p = |S|
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Fig. 4 Evaluation of estimation performance in Case 1 (random Gaussian matrix): the proposed algorithm 
is compared with different selection methods with p = |S| = 50 by varying the standard deviation of the 
parameter, σθ
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measuring the execution time in second. Figure 6 plots the execution times of the meth-
ods in Case 1 (random Gaussian matrix H ) with respect to the parameter dimension 
p = |S| = 10, . . . , 40 . The proposed method offers a competitive complexity as compared 
with GSS-QR and GSS-CN. Specifically, the proposed method operates about twice as fast 
as GSS-CN in all three cases.
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Fig. 5 Evaluation of estimation performance for non-diagonal covariance matrix of the parameter in Case 1 
(random Gaussian matrix): the proposed algorithm is compared with different selection methods by varying 
the dimension of the parameter, p = |S|
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Fig. 6 Evaluation of complexity in Case 1 (random Gaussian matrix): the various selection algorithms are 
evaluated in terms of the execution time in second by varying the dimension of the parameter, p = |S|
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5  Conclusions
In a situation where the measurements at sensor nodes are contaminated by correlated 
noise, we considered a problem of finding the best set of sensor nodes which minimizes 
the estimation error computed by the signal values at the selected nodes. Instead of 
directly minimizing the estimation error, we focused on maximizing the log-determinant 
of the inverse estimation error covariance matrix and applied the QR and LU factoriza-
tions so as to present a simple analytic selection rule. We also provided a complexity 
analysis of the proposed algorithm to reveal a competitive complexity when compared 
with the previous novel selection methods. We finally investigated the performance of 
the proposed algorithm in various cases in terms of estimation performance and execu-
tion time and demonstrated that the proposed algorithm yields more accurate estima-
tion with a reasonable complexity than the previous methods.
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MMSE  Minimum mean squared error
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