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1 Introduction
Recently, there has been a growing prevalence of modern data analysis that involve 
structured data with non-Euclidean support. In the real world, numerous examples of 
such data can be found, including weather measurements data in wireless sensor net-
works, stock price measurements in financial networks and human behaviors in social 
networks [1–4]. Typically, graphs are used as efficient mathematical tools to describe the 
latent structures of such data, where nodes act as entities of the graph and edges model 
the pairwise relationship between the function values at the nodes. Such graph-based 
data representation leads to the emerging field of graph signal processing (GSP) [5–7].

In some situations, the underlying network topology is known, but in most cases, 
there are often settings where the graph is not readily available. However, it is feasible 
to infer the graph structure from a collection of nodal observations in order to capture 
the relationships between the different entities. This process is known as graph learning 
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[8–13]. So far, a significant amount of literature has been proposed to learn graph topol-
ogy, which is summarized in [11–13]. Particularly, the GSP viewpoint provides a new 
technique for inferring the graph topology from a set of observations. In general, the 
GSP-based approaches can generally be categorized into three main groups. The first 
category of approaches makes assumption about the graph by enforcing properties such 
as smoothness or sparsity of the graph signals [14–16]. Instead of smoothness/sparsity-
based approaches, the second category of approaches assumes that the graph signals are 
generated from a Laplacian constrained Gaussian–Markov random field (GMRF) [17, 
18]. The third category of approaches exploits diffusion model [9, 19] to learn graph 
topology. The model considers that the observed signals are the outcome of a diffusion 
process on the graph, where each node continuously influences its neighborhoods.

It should be noted that all the aforementioned graph topology inference works focus 
on the scenario where observations from all the nodes are available. However, in numer-
ous pertinent scenarios, the observed graph signals may correspond only to a subset of 
the original graph nodes, while the rest graph nodes are hidden. Neglecting these hid-
den nodes can drastically hinder the performance of graph topology inference methods. 
Consequently, some recent works have begun to address this related issue, including 
Gaussian graphical model selection [20–22], linear Bayesian model [23], and nonlin-
ear regression [24]. More recently, the problem of constructing a graph when consider 
the existence of hidden nodes has been investigated within the context of GSP [25–27]. 
Notably, two related works have proposed leveraging, respectively, smoothness prior 
[5] or stationarity prior [28, 29] to infer graph topologies from incomplete data [25, 26]. 
Another work has focused on estimating multi-layer graphs in the presence of hidden 
nodes, assuming that the observed graph signals follow a GMRF model [27]. The exist-
ing three GSP-based graph learning methods with hidden nodes are limited to learning 
static graph or multi-layer graphs.

It came to our attention that some scenarios involve the consideration of time-varying 
generation models to capture the relationships between data variables in the real world. 
For example, this is observed when estimating the time-varying brain functional con-
nectivity using electroencephalography recordings (EEGs) or resting-state functional 
magnetic resonance imaging (fMRI) [30]. Additionally, identifying temporal transitions 
in biological networks, such as protein, RNA, and DNA [31], and inferencing relation-
ships between stock trading from financial market data [32] also exhibit the time-vary-
ing nature. To address the growing demand for understanding these time-varying graph 
structures, several approaches have been proposed. These approaches have leveraged 
prior assumptions about the evolutionary patterns of time-varying graphs to tackle the 
problem of learning their topology. In a recent study [33], the authors have proposed 
an efficient method for inferring time-varying topology. They have utilized Tikhonov 
regularization to ensure smooth temporal changes in edge weights, thereby capturing 
the evolving nature of the graphs. To apply additional constraints on the sparse changes 
of graph, the authors in [34] have introduced a l1 regularization term for graph varia-
tion. Additionally, another time-varying graph learning work has been described in [35], 
where the authors have proposed to extend the graphical Lasso [36] to account for the 
temporal variability. While these works in [33–35] did not explicitly incorporate scenar-
ios involving hidden nodes, they served as inspiration for our research. We recognize 
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the significance of collecting observations from related graphs and leveraging informa-
tion across time-varying graphs to address the challenge of hidden nodes. However, it 
remains uncertain how existing algorithms can be adapted to measure graph similarity 
between unobserved nodes. Consequently, modeling the influence of hidden nodes in 
the context of time-varying graph learning becomes crucial. For a summary of the pro-
posed method and related graph learning methods, please refer to Table 1.

Building on the preceding discussion, the primary objective of this paper is to address 
the inference problem of time-varying graphs with the presence of hidden nodes. Our 
two primary contributions are formulating this problem as a convex optimization prob-
lem and devising an algorithm to effectively solve it. Our method is predicated on the 
assumption that the observed signals exhibit simultaneous smoothness and stationarity 
on the given graphs. While this assumption has proven successful in the riled of static 
graph inference, a robust formula for time-varying graph learning with the hidden nodes 
has not yet been established. To fill this gap, it is necessary to modify the classic inter-
pretations of smoothness prior and stationarity prior, in order to account for the impact 
of hidden nodes. We first adopt a block matrix factorization methodology to revise the 
smooth and stationary assumptions. Then, we exploit the inherent low-rank and sparse 
patterns within the blocks associated with hidden nodes. The patterns enable the smooth 
evolution of graph edges, thereby capturing the temporal dynamics across the sequence 
of graphs. Furthermore, to fully leverage the characteristics of time-varying graphs, it 
is crucial to capture the similarity among graphs, accounting for both the observed and 
hidden nodes. This is achieved through utilization of a similar column-sparsity pattern, 
which emerges from the similarity analysis of each time slot graph. We test the proposed 
approach on synthetic and real-world data. Experimental results show that the effective-
ness of our proposed approach.

The remainder of this paper is structured as follows. Section 2 provides a comprehen-
sive review of fundamental concepts related to signals defined over graphs, as well as an 
overview of the associated graph learning methods. Section 3 introduces a time-varying 
graph learning problem with hidden nodes at hand. Section  4 proposes optimization 
frameworks to solve this problem. Section 5 is dedicated to the evaluation of the perfor-
mance of our proposed method. Finally, we conclude the paper in Sect. 6.
Notations: The following notations will be used in this paper. All the vectors are 

denoted by boldface lower case letters, and the matrices by boldface upper case letters. 
We use calligraphic font capital letters to denote sets. RN×N denotes the set of matrices 

Table 1 Comparison between proposed method TGSm‑St‑GL and alternative

Graph type Method Approach Hidden 
nodes

Static graph GS‑Rw [25] Signal stationarity model �

GSm‑St‑GL [26] Signal smoothness and stationarity model �

Time‑varying graph TGSm‑St‑GL (proposed) Signal smoothness and stationarity model �

TVGL‑TS [33] Signal smoothness model –

TVGL‑SV [34]  Signal smoothness model –

TVGL [35] Graphical lasso‑based model –

Multi‑layer graphs PGL [27] Signal stationarity model �
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of size N × N  with nonnegative. For vector x , E[x] represents the expected value of x . 
For matrix X , ||X||F represents the Frobenius norm, ‖X‖0 represents the l0 norm, �X�|F,off 
is the Frobenius norm of X that does not include the diagonal elements, �X�∗ represents 
the nuclear norm, ‖X‖2,1 represents the l2,1 norm and can be understood as a two-step 
process where one first obtains the l2 norm of each of the matrix X , then, the l1 norm 
of the resulting row vector is computed. Moreover, diag(·) is a diagonal matrix with its 
argument along the main diagonal, tr(·) is the trace of the matrix, 1 stands for all-one 
vectors and I stands for the identity matrix. Finally, the minimization operator, the trans-
pose and pseudo-inverse denoted by min , superscript ⊤ and superscript † , respectively.

2  Preliminaries
In this section, we first outline some basic GSP definitions. Then, we provide a con-
cise overview of two pivotal models of graph signals, namely smooth graph signals and 
stationary graph signals. Building on these insights, antecedent works of graph learn-
ing problem based on these two graph signal models are introduced. Finally, a general 
framework for learning time-varying graphs is briefly reviewed.

2.1  Basic definitions for GSP

An undirected and weighted graph G = (V , E ,W) with N nodes are considered here, 
where V = {1, . . . ,N } represents the set of nodes, E ⊆ V × V is the set of edges. The 
weighted adjacency matrix W ∈ R

N×N is a symmetric matrix, each element of the 
matrix characterizes the strength of the connection. We also assume that there are no 
self-loops or directed edge in the graph, which implies diag(W) = 0 . The (i, j)-th entry 
Wij of the adjacency matrix is assigned a nonnegative value if (i, j) ∈ E , i and j represent 
two nodes. We utilize a vector x = [x1, . . . , xN ]

⊤ ∈ R
N to represent graph signals, where 

xi denotes the value measured at the node i.
In graph theory, the graph Laplacian L is defined as L := D−W . The degree matrix 

D is a diagonal matrix that contains the degrees of the nodes along diagonal with entries 
Dii =

N
j=1Wij and Dij = 0 for i  = j . The matrix L can be decomposed into L = U�U

⊤ 
due to its symmetry, where U = [u1, . . . ,uN ] ∈ C

N×N is a matrix consisting of the eigen-
vectors of L , and � ∈ C

N×N is a diagonal matrix containing the corresponding eigen-
values arranged in increasing order. The graph shift operator (GSO) is a N × N  square 
matrix S that captures the underlying topology of graph. The entries of S , denoted as Sij , 
can be only nonzero if i = j or there exists an edge (i, j) ∈ E in the graph. The adjacency 
matrix [37] and the Laplacians [15] are selected as popular options for the GSO. Without 
loss of generality, S possesses a complete set of orthonormal eigenvectors and associated 
eigenvalues.

2.2  Graph signal models

2.2.1  Smooth graph signals

In the node domain, the smoothness of graph signals refers to the tendency for the val-
ues of graph signals associated with the two end nodes of edges with significant weights 
in the graph to exhibit similarity. Typically, in the field of GSP, the total variation (TV) of 
graph signals x is commonly interpreted as a smoothness measure, quantified through a 
quadratic form [5]
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Intuitively, graph signals x are said to be smooth when the Laplacian quadratic form 
TV(x) is small. In particular, the smaller the values of TV(x) , the smoother the graph 
signals.

When comes to graph learning problem, the smooth property is widely used as a 
prior information. Considering the matrix X = [x1, . . . , xK ] contains K observations, a 
general graph learning framework is proposed in the works of [14, 15]

The penalty function f (L) = α�L�2F − β1⊤ log(diag(L)) is employed to prevent the 
acquisition of a trivial solution and controls the sparsity of the learned graph. Param-
eters α and β are constants. The term log(diag(L)) is a two-step process. Firstly, the pro-
cess obtains the diagonal elements of matrix L using the diag operation, and then the log 
operation is applied to the resulting row vector. Therefore, log is an element-wise opera-
tion. The learned Laplacian matrix has to be in the valid combinatorial Laplacians set, by 
defining L := {Lij ≤ 0, i �= j;L = L

⊤;L1 = 0;L ≻ 0} . This constraint emphasizes that L 
is a symmetric positive semidefinite matrix. The smoothness of all observed signals over 
the selected graph is quantified by the first term of equation (2).

2.2.2  Stationary graph signals

Given an undirected graph G , obviously, GSO S is symmetric matrix. A linear 
shift-invariant graph filter H ∈ R

N×N  can be written as H =
∑L−1

l=0 hlS
l , where 

h = [h0, . . . , hL−1]
⊤ is a vector composed of the graph filter coefficients and L− 1 

denotes the filter degree. Since H is a polynomial of S , it readily follows that the 
matrix H is also symmetric. For a given input signal s , the output of the graph filter is 
simply defined as x = Hs . Assuming that the s is a white signal follows a normalized 
i.i.d Gaussian distribution with mean zero, the output of filter H is stationary on the 
graph. This is because the following properties are satisfied

where mx denotes the expected value and C represents the covariance matrix of the 
graph signals x . Moreover, since G is undirected, both S and C are symmetric. It becomes 
apparent that the two diagonalizable matrices GSO S and C share common eigenvectors 
U in the spectral domain [38] from (3). As a result, we also have that the matrices S and 
C commute.

Thus, the task of learning underlying graph from stationary graph signals is equiva-
lent to inferring its shift operator S . To be more precise, under the general assump-
tion of graph sparsity, the graph learning problem from stationary graph signals can 
be formulated as [12]

(1)TV(x) := x
⊤
Lx =

1

2

∑

i �=j

Wij(xi − xj)
2.

(2)min
L∈L

tr(X⊤
LX)+ f (L).

(3)
mx = E[x] = HE[s] = 0,

C = E[xx⊤] = HE[ss⊤]H⊤ = HH
⊤ = H

2,
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where the set S enforces the estimated matrix S to satisfy some specify properties. � · �0 
promotes sparse solutions of the matrix S . The equality constraint enforces that commu-
tativity of the Laplacian and the covariance matrix.

2.2.3  Time‑varying graph learning

Time-varying graph learning will learn a series of graphs L(1), . . . ,L(T ) using the graph sig-
nals X(1), . . . ,X(T ) collected during T time periods, where X(t) = [x

(t)
1 , . . . , x

(t)
K ] ∈ R

N×K  
contains K observations at a time window t. In this case, the selection of slowly changing 
time-varying graphs can be accomplished by solving [33]

where the term f (L(t) − L
(t−1)) denotes a regularization term that captures the tempo-

ral change in graph edges. The parameter η controls the temporal sparseness.

3  Time‑varying graph learning with hidden nodes
In this section, we consider situations where the graph signals are observed only from a 
subset of nodes during the data collection process. Specifically, Sect. 3.1 involves analy-
sis of latent nodal variables and their influence on the time-varying graph. This is accom-
plished through the utilization of a block matrix factorization methodology to represent 
the original matrices. Subsequently, we describe the time-varying graph topology infer-
ence problem with hidden nodes, as outlined in Sect. 3.2.

3.1  Time‑varying graph model with hidden nodes

Formally, we consider a sequence of graph signals that are partitioned into non-over-
lapping time windows {X(1), . . . ,X(T )} . In this paper, we consider an observation 
model with hidden nodes where the observed graph signals correspond to a subset of 
X
(t) , while the values of graph signal residing on the remaining nodes have never been 

observed. We partition the set of nodes V into disjoint subsets O and H , where O is the 
set of observable nodes and H is the set of hidden nodes with H = V\O . In particular, 
we set O = {1, . . . ,O} with cardinality |O| = O and H = {O + 1, . . . ,N } with cardinal-
ity |H| = H = N − O . We represent the graph signal values of observed nodes by the 
O × K  submatrix X(t)

O  associated with the first O rows of X(t) . As described in Sect. 2, the 
sample covariance matrices and GSO corresponding to the observed graph signals are 
given by Ĉ(t)

O  and S(t)O  , respectively. To this end, for each time slot graph, the matrices S(t) 
and Ĉ(t) can be described by block structure as

Here, the submatrices S(t)O , S
(t)
OH , S

(t)
H  specify the dependencies among the observed nodes, 

between the observed and hidden nodes and among the hidden nodes, respectively. 

(4)
min
S∈S

�S�0

s.t. CS = SC,

(5)min
L(t)∈L

T
∑

t=1

[

tr
(

(X(t))⊤L(t)X(t)
)

+ f (L(t))

]

+ η

T
∑

t=2

f (L(t) − L
(t−1)),

(6)S
(t) =

[

S
(t)
O S

(t)
OH

S
(t)
HO S

(t)
H

]

, Ĉ(t) =

[

Ĉ
(t)
O Ĉ

(t)
OH

Ĉ
(t)
HO Ĉ

(t)
H

]

.
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In particular, the sample covariance of the observed graph signals is represented by 
Ĉ
(t)
O = 1

K X
(t)
O (X

(t)
O )⊤ . The undirected graphs follow that S(t) = (S(t))⊤ and Ĉ(t) = (Ĉ(t))⊤ 

due to both matrices S(t) and Ĉ(t) are symmetric. Similarly, the submatrices S(t)OH and Ĉ(t)
OH 

also exhibit the property of symmetry.
As we can see, the block structure of the matrices S(t) and Ĉ(t) in (6) motivates the 

search for optimal time-varying graphs when consider the existence of hidden nodes. 
Next, the problem of time-varying graph learning with hidden nodes will be introduced.

3.2  Problem statement

Given the known nodal subset O ⊂ V , and the matrices {X(t)
O }Tt=1 collect the graph sig-

nal values of observed nodes arising from unknown time-varying graphs {G(t)}Tt=1 . Our 
objective is to learn the time-varying graph while accounting for the presence of hidden 
nodes, which is tantamount to learn the GSO sequence {S(t)O }Tt=1 from {X(t)

O }Tt=1 if the fol-
lowing assumptions hold 

1. The number of hidden nodes far less than the number of observed nodes with cardi-
nality H ≪ O;

2. The full observations {X(t)}Tt=1 satisfy the prior assumption that they are smooth and 
stationary in S(t) simultaneously;

3. The number of graph edges permitted to change between consecutive graphs is 
limited according to a particular function ψ(S(t) − S

(t−1)) , a prior that graph edges 
change smoothly in time.

The task of learning time-varying graphs encoded in the matrices {S(t)O }Tt=1 presents a 
challenging problem due to the absence of observations from nodes in set H . To address 
this problem, the above three assumptions are made to render the problem more tracta-
ble. Firstly, the assumption (1) guarantees the availability of information for the majority 
of nodes. Secondly, the assumption (2) establishes a well-defined relationship between 
the graph signals and the unknown time-varying graphs. Lastly, the assumption (3) 
enforces that the graph edges change smoothly over time, providing temporal relations 
that may exist in time-varying graphs.

4  Proposed optimization framework
In this section, the influence of hidden nodes on smoothness prior and stationarity 
prior is presented, respectively. Following this, an optimization framework is designed 
to address the time-varying graph learning problem with hidden nodes, considering the 
scenario where the observed graph signals are both smooth and stationary.

4.1  Influence of hidden nodes on smoothness prior

The smoothness of signals on time-varying graphs can be computed as 
1
K tr

(

(X(t))⊤L(t)X(t)
)

 . In this part, we focus on Ĉ(t) = 1
K X

(t)(X(t))⊤ , and thus, the TV of 
graph signals is equal to tr(Ĉ(t)

L
(t)) . However, the existence of hidden nodes restricts 

our access solely to the observed sampled covariance matrices Ĉ(t)
O  . Regarding the block 

structure of matrices Ĉ(t) and S(t) defined in (6), the smoothness of signals within the 
context of time-varying graphs can be rewritten as



Page 8 of 20Ye et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:33 

where the matrices P
(t) := Ĉ

(t)
OH (L

(t)
OH )

⊤ ∈ R
O×O , R

(t) := Ĉ
(t)
H L

(t)
H ∈ R

H×H , and 
r(t) := tr(R(t)) are nonnegative variables. The first equation in (7) represents the block-
wise smoothness of graph signals. However, we do not have knowledge of most of the 
submatrices related to the hidden nodes. By lifting the matrices P(t) and R(t) , we circum-
vent this challenge and solve the time-varying topology inference as a convex problem.

Notice that the matrices L
(t)
O  belong to the set 

L̄ := {Lij ≤ 0, i �= j;L = L
⊤;L1 ≥ 0;L ≻ 0} , which are different from the set of valid 

combinatorial Laplacians L . The only difference between the two set is to replace the 
condition L1 = 0 with L1 ≥ 0 , while others remain unchanged. The existence of links 
between the elements in O and the elements in H gives rise to nonzero (negative) entries 
in L(t)OH and, as a result, the sum of the off-diagonal elements of can be smaller than the 
value of the associated diagonal elements (which account for the links in both O and H ). 
Therefore, L(t)O  is not a combinatorial Laplacian.

Indeed, we encounter the challenge that L(t)O  are not Laplacians themselves, while 
tackling the time-varying graph topology inference from smooth observations with 
hidden nodes. In order to circumvent this challenging issue, we turn to estimating 
L̃
(t)
O := diag(A

(t)
O 1)− A

(t)
O  rather than L(t)O  , where A(t)

O  represent the adjacency matrices 
of the observed graph signals in the t th time slot. With this consideration in mind, the 
matrices L̃(t)O  are proper combinatorial Laplacians satisfy the conditions for the valid set 
of graph Laplacians L . We formulate the relation between L(t)O  and L̃(t)O  with equation 
L̃
(t)
O = L

(t)
O −D

(t)
OH . We use degree matrices D(t)

OH to represent the edges existing between 
the observed and hidden nodes, which is defined as D(t)

OH := diag(A
(t)
OH1) ∈ R

O×H . By 
leveraging the matrices L̃(t)O  , we take the place of the smoothness penalty in (7) as

where P̃(t) := Ĉ
(t)
O D

(t)
OH/2+ P

(t) . With the assumption (1), it is obvious that the matrices 
P
(t) are low-rank matrices with rank(P(t))≤ H ≪ O . Furthermore, the matrices D(t)

OH are 
low-rank matrices, if the graphs are sparse. Thus, it can be inferred that P̃(t) also exhibits 
a low-rank structure.

4.2  Influence of hidden nodes on stationarity prior

Upon evaluating the impact of the smoothness assumption on the time-varying graph 
learning problem involving hidden nodes, we proceed to consider that the graph sig-
nals to be stationary over the whole graphs. This graph signals model leads us to the 
conclusion that the eigenvectors of C(t) and S(t) are identical, thereby the equation 
C
(t)
S
(t) = S

(t)
C
(t) holds. To this end, we leverage the block structure of matrices C(t) 

and S(t) , with a specific focus on the upper left block on both sides of the equation 
C
(t)
S
(t) = S

(t)
C
(t) , to model the impact of hidden nodes on the stationarity prior

(7)

tr(Ĉ(t)
L
(t)) = tr(Ĉ

(t)
O L

(t)
O )+ 2tr

(

Ĉ
(t)
OH (L

(t)
OH )

⊤
)

+ tr(Ĉ
(t)
H L

(t)
H )

= tr(Ĉ
(t)
O L

(t)
O )+ 2tr(P(t))+ tr(R(t))

= tr(Ĉ
(t)
O L

(t)
O )+ 2tr(P(t))+ r(t),

(8)
tr(Ĉ(t)

L
(t)) = tr(Ĉ

(t)
O L̃

(t)
O )+ tr(Ĉ

(t)
O D

(t)
OH )+ 2tr(P(t))+ r(t)

= tr(Ĉ
(t)
O L̃

(t)
O )+ 2tr(P̃(t))+ r(t),
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Equation (9) reveals that we can’t simply focus on C(t)
O S

(t)
O = S

(t)
O C

(t)
O  when the hidden 

nodes are presented, but also need to notice that the associate terms C(t)
OH (S

(t)
OH )

⊤ and 
S
(t)
OH (C

(t)
OH )

⊤ . Furthermore, we set the matrices P̄(t) = C
(t)
OH (S

(t)
OH )

⊤ , similar to the defini-
tion of P(t) . The key distinction lies in our utilization of the matrices S(t)OH instead of the 
Laplacians L(t)OH to associate the matrices P̄(t) . Under this setting, equation (9) can be 
formulated as

Similar to the analysis of P̃(t) in section 4.1, the matrices P̄(t) are also low-rank matrices. 
We will exploit the low-rank structure of the matrices P̄(t) and P̃(t) in our formulation.

4.3  Smoothness prior versus stationarity prior

Supposing that we are given with two datasets, X1 and X2 , each containing an equal num-
ber of graph signals. Specifically, we known that the signals in X1 exhibit smoothness char-
acteristics on the graph, and another set of the signals in X2 are stationary on the graph. 
Based on this information, we are able to identify the underlying graph. It is of interest to 
see which one leads to a better graph topology inference result. Without loss of generality, 
graph smoothness is a more lenient assumption that limits the TV of the observed values of 
the graph signal to be small. However, graph stationary outperforms the smoothness-based 
method, as it has a much better prior assumption with significantly restricts the GSO. In 
the meantime, there may arise an instance where the observations are both stationary and 
smooth on the graph. More precisely, it means that the covariance matrix of the obser-
vations is diagonalized by eigenvectors with the graph Laplacian and the graph signals is 
low-frequency-based. In such settings, two graph recovery methods can be combined to 
enhance recovery performance, which will be explored in the subsequent subsection.

4.4  Topology inference based on smoothness prior and stationarity prior

Taking the assumption (3) into account, the task of learning time-varying graph with the 
presence of hidden nodes involves acquiring knowledge of a sequence of graphs {S(t)O }Tt=1 
from the observed graph signals X(1)

O , . . . ,X
(T )
O  collected during T time periods. The task 

specifically concentrates on the scenario where the GSO is represented by the Laplacian 
matrix, namely, our ultimate target corresponds to infer {L(t)O }Tt=1 . We assume that the 
observed signals exhibit both smoothness and stationarity characteristics on unknown 
time-varying graphs. As a result, the smoothness penalty described in (8) and the commu-
tativity constraint accounting for stationary equation in (10) can be jointly considered to 
approach time-varying graph learning problem. More specifically, this problem can be for-
mulated as the ensuing objective function

(9)C
(t)
O S

(t)
O + C

(t)
OH (S

(t)
OH )

⊤ = S
(t)
O C

(t)
O + S

(t)
OH (C

(t)
OH )

⊤.

(10)C
(t)
O S

(t)
O + P̄

(t) = S
(t)
O C

(t)
O + (P̄(t))⊤.
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where γ∗ and η are tuning parameters. The term �L̃(t)O �2F ,off  offers a handle on the level of 
sparsity. The penalty function ψ(·) imposes a constraint that limits the number of edge 
changes between consecutive graphs to a small value and we set function 
ψ(L̃

(t)
O − L̃

(t−1)
O ) = �L̃

(t)
O − L̃

(t−1)
O �2F . The first constraint ensures that the TV of graph 

signals is non-negative. The equality constraint enforces that commutativity of the 
Laplacians and the covariance matrices when consider the presence of hidden nodes. 
The two rank constraints capture the fact that the low rankness property of P̃(t) and P̄(t).

In most instances, it is not feasible to obtain the entire covariance C(t)
O  . Therefore, 

we resort to relying on the sample covariance matrices Ĉ(t)
O  and relax the stationary 

constrain to guarantee that the left and right terms of the original equation (10) are 
roughly equivalent, though not entirely so. It is worth noting that under this more 
lenient condition, P̄(t) and P(t) are equivalent. In such circumstances, we focus on 
rank(P̃(t) ) only and exploit the nuclear norm to capture the low-rank structure of 
matrices P̃(t) . To this end, we reformulate the optimization objective function (11) as

where the nuclear norm penalty �P̃(t)�∗ is employed to encourage low-rank solutions by 
favoring matrices with sparse singular values. The non-negative constant ǫ is an essen-
tial parameter that characterizes the accuracy of the sample covariance. The value of the 
parameter under consideration is inherently related to the amount of noise and the total 
number of samples K. This value is used as an indicator of the accuracy and faithfulness 
of the estimated covariance.

Based on previous analysis, the matrices P̃(t) are not only inseparable from the 
product of the matrices Ĉ(t)

O  and D(t)
OH but also related to the matrices P(t) . Recalling 

that the diagonal of D(t)
OH are sparse, it is obviously that Ĉ(t)

O D
(t)
OH are the matrices with 

(11)

min
{L̃

(t)
O ,P̃(t),P̄(t),r(t)}Tt=1

T
∑

t=1

[

tr(Ĉ
(t)
O L̃

(t)
O )+ 2tr(P̃(t))+ r(t) + α�L̃

(t)
O �2F ,off

− β1⊤ log(diag(QL
(t)
O ))

]

+ η

T
∑

t=2

ψ(QL
(t)
O −Q

L
(t−1)
O )

s.t. tr(Ĉ
(t)
O L̃

(t)
O )+ 2tr(P̃(t))+ r(t) ≥ 0,

C
(t)
O L̃

(t)
O + P̄

(t) = L̃
(t)
O C

(t)
O + (P̄(t))⊤,

rank(P̃(t)) ≤ H ,

rank(P̄(t)) ≤ H ,

L̃
(t)
O ∈ L,

(12)

min
{L̃

(t)
O ,P̃(t),r(t)}Tt=1

T
∑

t=1

[

tr(Ĉ
(t)
O L̃

(t)
O )+ 2tr(P̃(t))+ r(t) + α�L̃

(t)
O �2F ,off

− β1⊤ log(diag(QL
(t)
O ))+ γ∗�

Q
P
(t)�∗

]

+ η

T
∑

t=2

�QL
(t)
O −Q

L
(t−1)
O �2F

s.t. tr(Ĉ
(t)
O L̃

(t)
O )+ 2tr(P̃(t))+ r(t) ≥ 0,

�Ĉ
(t)
O L̃

(t)
O + P̃

(t) − L̃
(t)
O Ĉ

(t)
O − (P̃(t))⊤�2F ≤ ǫ,

L̃
(t)
O ∈ L,
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several zero columns. More precisely, the assumption (1) reveals the presence of a 
column-sparse structure in the matrices P̃(t) . However, the rank constraint fails to 
preserve the desired columns sparsity characteristic. Following the classical approach 
in the literature, an efficient way to circumvent this issue is to replace the nuclear 
norm with the group Lasso penalty. This penalty not only reduces the number of 
nonzero columns but also promotes solutions with a low rankness.

To further improve the performance of graph topology inference, we consider leverag-
ing the aforementioned column-sparsity regularization. Taking this consideration into 
account, a convex optimization problem for solving the time-varying graph learning 
with hidden nodes is proposed

The assumption (3) guarantees the similarity of temporally adjacent graphs. To exploit 
this property, we construct a tall matrix consisting of the matrices P̃(t) and P̃(t−1) . By 
applying the l2,1 norm to the tall matrix, we are able to capture and preserve the desired 
column-sparsity characteristic. This approach allows us to effectively leverage the tem-
poral similarity between adjacent graphs, ensuring that columns with nonzero entries 
are likely to be consistently positioned across the varying matrices P̃(t) . This is particu-
larly important to consider this additional structure, which is helpful to improve the esti-
mation of P̃(t) and result in a better recovery performance of L̃(t)O  . The effectiveness of 
the formulation (13) in promoting the desired column-sparsity pattern is demonstrated 
through the experimental results in Sect. 5.3.

We solve the optimization problem (13) by adopting an alternating minimization 
scheme. To find a numerically efficient solution, we decouple (13) into three simpler 
optimization problems. Specifically, with m = 0, . . . ,M − 1 being the iteration index, 
we initialize two variables P̃(t),(m) and r(t),(m) . At the first step, for the given P̃(t),(m) and 
r(t),(m) , we solve the following optimization problem with respect to L̃(t)O

(13)

min
{L̃

(t)
O ,P̃(t),r(t)}Tt=1

T
∑

t=1

[

tr(Ĉ
(t)
O L̃

(t)
O )+ 2tr(P̃(t))+ r(t) + α�L̃

(t)
O �2F ,off

− β1⊤ log(diag(QL
(t)
O ))+ γ2,1�

Q
P
(t)�2,1

]

+ θ

T
∑

t=2

∥

∥

∥

∥

[

P̃
(t)

P̃
(t−1)

]
∥

∥

∥

∥

2,1

+ η

T
∑

t=2

�L̃
(t)
O − L̃

(t−1)
O �2F

+ ρ

T
∑

t=1

�Ĉ
(t)
O L̃

(t)
O + P̃

(t) − L̃
(t)
O Ĉ

(t)
O − (P̃(t))⊤�2F

s.t. tr(Ĉ
(t)
O L̃

(t)
O )+ 2tr(P̃(t))+ r(t) ≥ 0,

L̃
(t)
O ∈ L.



Page 12 of 20Ye et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:33 

At the second step, we fix r(t),(m) and leverage the estimate L̃(t),(m+1)
O  from the previous 

step to optimize the objective function with respect to P̃(t),(m+1) , which leads to the fol-
lowing optimization problem

Algorithm 1 Time‑varying graph learning method with hidden nodes

At the last step, according to the L̃(t),(m+1)
O  and P̃(t),(m+1) obtained in the first two steps, 

we solve the following convex optimization problem with respect to r(t),(m+1)

(14)

L̃
(t),(m+1)
O := min

L̃
(t)
O ∈L

T
∑

t=1

[

tr(Ĉ
(t)
O L̃

(t)
O )+ α�L̃

(t)
O �2F ,off − β1⊤ log(diag(QL

(t)
O ))

]

+ ρ

T
∑

t=1

�Ĉ
(t)
O L̃

(t)
O + P̃

(t),(m) − L̃
(t)
O Ĉ

(t)
O − (P̃(t),(m))⊤�2F

+ η

T
∑

t=2

�L̃
(t)
O − L̃

(t−1)
O �2F

s.t. tr(Ĉ
(t)
O L̃

(t)
O )+ 2tr(P̃(t),(m))+ r(t),(m) ≥ 0.

(15)

P̃
(t),(m+1) := min

P̃(t)

T
∑

t=1

[

2tr(P̃(t))+ γ2,1�P̃
(t)�2,1

]

+ θ

T
∑

t=2

∥

∥

∥

∥

[

P̃
(t)

P̃
(t−1)

]∥

∥

∥

∥

2,1

+ ρ

T
∑

t=1

�Ĉ
(t)
O L̃

(t),(m+1)
O + P̃

(t) − L̃
(t),(m+1)
O Ĉ

(t)
O − (P̃(t))⊤�2F

s.t. tr(Ĉ
(t)
O L̃

(t),(m+1)
O )+ 2tr(P̃(t))+ r(t),(m) ≥ 0.

(16)
r(t),(m+1) := min

r(t)

T
∑

t=1

r(t)

s.t. tr(Ĉ
(t)
O L̃

(t),(m+1)
O )+ 2tr(P̃(t),(m+1))+ r(t) ≥ 0.
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We alternate between the three steps outlined in (14), (15) and (16) to obtain the final 
solution for the optimization problem described in (13). We generally observe conver-
gence within a few iterations. The algorithm is summarized in Algorithm 1.

5  Numerical experiments
In this section, we present some numerical results validating the effectiveness of the 
proposed time-varying graph learning method for both synthetic and real-world data. 
The proposed method (hereinafter called TGSm-St-GL ) is compared with benchmark-
ing methods, including static graph learning from smooth and stationary graph signals 
with hidden nodes (GSm-St-GL) [26], time-varying graph learning method based on 
temporal smoothness (TVGL-TS) [33] and time-varying graph learning method based 
on sparse variation (TVGL-SV) [34]. We commence with an introduction of the general 
experimental settings. Next, we assess the efficacy of our method using synthetic data 
and conduct a comparative analysis of our method against established classical methods. 
Finally, we introduce the simulation performed over one real-world data. In our experi-
ments, we solve optimization problems using CVX [39], which is a package for solving 
convex programs.

5.1  Experimental settings

5.1.1  Evaluation metrics

We employ five evaluation metrics to access the performance of our proposed method. 
The first evaluation metric is Mean Error that measures the estimation accuracy of 
recovered graphs. The Mean Error is defined as �L̂(t)O − (L

(t)
O )∗�

2

F/�(L
(t)
O )∗�2F , where L̂(t)O  

are the estimated Laplacian matrices and (L(t)O )∗ are the ground truth. Additionally, we 
utilize three metrics, namely Precision, Recall and Fscore, to evaluate how effectively 
the true edge structure of the graph is captured. More precisely, the Fscore provides a 
measure of the accuracy in estimating the graph topology, which is closely related to 
the metrics Precision and Recall. The Fscore ranges between 0 and 1, with higher values 
indicating better performance in capturing the graph topology. The mutual dependence 
between the obtained edge set and the ground-truth graph is measured by the last evalu-
ation metric Normalized Mutual Information (NMI).

5.1.2  Baseline methods

We discuss various related graph learning strategies to compare with our proposed 
method. The first is GSm-St-GL, stands for the static graph learning method. This 
method considers the existence of hidden nodes and assumes that the entire graph sig-
nals exhibit both smoothness and stationarity simultaneously. The second is TGSm-St-
GL-nh, a time-varying graph inference method that aims to address the same problem 
as TGSm-St-GL but ignores the presence of hidden nodes. The other two baseline time-
varying graph learning schemes are TVGL-TS and TVGL-SV. These two schemes are 
applicable when all nodes are available and the graph signals satisfy the stationarity 
assumption.
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5.2  Synthetic data

We create a type of synthetic graph signals generated from a time-varying Erdös–
Rényi graph (abbreviated as TV-ER graph). The process of constructing the data 
involves two steps: firstly, the creation of the TV-ER graph; secondly, the generation 
of time-varying graph signals by utilizing probability distributions based on the graph 
Laplacians of the aforementioned TV-ER graph.

5.2.1  Time‑varying graph construction

In general, the generation of a TV-ER graph involves two steps. At the first step, an 
initial static ER graph G(1) is constructed. The graph G(1) consists of N = 20 nodes, 
and we set the edge connection probability s = 0.3 . At the second step, we change 
the connections of edges in the original ER graph over time to construct the TV-ER 
graph. The t th graph G(1) is obtained by resampling 10% of edges from the previous 
graph G(t−1) . In this way, we construct a set of graphs, such that only a few edges 
switch at a time while most of the edges remain unchanged, i.e., the set of graphs fol-
low the assumption (3). The edge weights of graphs belong to the set {0, 1}.

5.2.2  Generating synthetic graph signals

We generate time-varying graph signals by utilizing distributions derived from the 
graph Laplacians of the TV-ER graph that we construct. Let L(t) represents the graph 
Laplacian of a graph at a certain time slot t, we can write its eigendecomposition as 
L
(t) = U

(t)�(t)(U(t))⊤ . We create the smooth graph signals as X(t) = U
(t)
Z
(t) with 

K = 50 , where Z(t) ∼ N (0, (�(t))†) . It is worth mentioning that the covariance of X(t) 
is represented as C(t) = ((L(t))†)2 . Hence, the graph signals generated from this model 
satisfy the assumption of being both smooth and stationary on the time-varying 
graphs.

5.3  Results on synthetic data

We conduct several experiments to investigate the behavior of our proposed method 
and the other baseline methods on synthetic data. Different settings are considered 
in these experiments, including the number of hidden nodes, the noise level, and the 
column-sparse structure of matrices P̃(t).

5.3.1  Number of hidden nodes

We assess the performance of each method by varying the number of hidden nodes 
and set H = {1, 2, 3, 4, 5} . We select the hidden nodes from all nodes in the graph by 
random selection.

The results in Fig. 1 show that the performance comparisons for different number 
of hidden nodes based on the TV-ER graph. The Mean Error of recovered graphs and 
variation of the Fscore are reported in Fig. 1a, b, respectively. It can be seen that the 
Mean Error increases with the growing H and the Fscore decreases with the grow-
ing H for TGSm-St-GL . This observation highlights the significant influence of hidden 
nodes on time-varying graph recovery. The comparison depicted in Fig. 1 further sup-
ports the conclusion that the proposed method outperforms TGSm-St-GL-nh . This 
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is because TGSm-St-GL-nh ignores the presence of hidden nodes. As the same time, 
TVGL-TS and TVGL-SV present the worst performance since that these two methods 
not only ignore the presence of hidden nodes but also only account for smoothness 
assumption for the graph signals. TGSm-St-GL outperforms GSm-St-GL because the 
latter lacks consideration of the temporal relationship between graphs.

5.3.2  Noisy observations

The effect of different noise levels is evaluated in the second experiment. We use 
TV-ER model with edge probability values of s = 0.3 to generate random time-vary-
ing graphs and set H = 2 . Assuming that the ground-truth graph signals X(t)

O  are cor-
rupted by a multivariate Gaussian distribution noise with mean zero and covariance 
σ 2

I , resulting in the observed noise graph signals X̃(t)
O  . As depicted in Fig. 2, the Fscore 

of the learned graphs is plotted on the y-axis, while the power of noise is represented 
on the x-axis. Notably, TGSm-St-GL demonstrates superior performance compared 
to GSm-St-GL . This finding is consistent with the previous experimental results. 
Besides, compared to TGSm-St-GL , we observe that the performance of TGSm-St-nh , 
TVGL-TS and TVGL-SV deteriorates significantly with increase in noise power, 

Fig. 1 Numerical validation of the proposed algorithm. a Mean Error of the recovered graphs for several 
algorithms as the number of hidden nodes increases. b Fscore of TV‑ER graphs as the number of hidden 
nodes increases for different algorithms

Fig. 2 Fscore of inferred graphs from observed graph signals against the noise level



Page 16 of 20Ye et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:33 

further emphasizing the necessity of considering the existence of hidden nodes. Fur-
thermore, the result of TGSm-St-GL in terms of Fscore decays slightly when the noise 
power increases, demonstrating the proposed method is robust to noise.

5.3.3  Structure properties of P̃(t)

Although the primary objective of this study is to achieve the recovery of {L̂(t)O }Tt=1 , 
the structure properties of {P̃(t)}Tt=1 make a significantly contribution to our proposed 
method at the same time. Consequently, illustrate the recovered {L̂(t)O }Tt=1 and {P̂(t)}Tt=1 
is the purpose of this experiment. In this way, we can gain a clearer understanding 
of the impact of different methods on graph structure recovery. The outcomes are 
depicted in Figs. 3 and 4.

In Fig.  3, the first column corresponds to ground-truth graph topology and the 
corresponding covariance matrix separately. The second column corresponds to 
the ground-truth values of L̃(1)O  and P̃(1) . The last two columns present the estimates 
obtained by the group Lasso scheme TGSm-St-GL [cf. (13)] and the low-rank scheme 
TGSm-St [cf. (12)], respectively. It is apparent that for the depicted example, the low-
rank scheme TGSm-St is not capable of recovering the column-sparse structure of the 
original matrix P̃(1) . On the contrary, the estimated matrix P̂(1) in Fig. 3g exhibits sim-
ilar column sparsity as the ground truth P̃(1) . Significantly, from the perspective of the 
estimated L̂(1)O  , it becomes evident that the more precise estimation of P̂(1) leads to a 
superior inference of the graph topology. Thus, the group Lasso scheme TGSm-St-GL 
yielding better estimates than the low-rank scheme TGSm-St.

In Fig. 4, we show that the learned matrices P̂(t) of time-varying graph, where the 
value of t range from 1 to 4. It is apparent that the columns with nonzero entries 
maintain consistent positions across adjacent time slots for the learned matrices 

Fig. 3 Graphical representation of the ground‑truth graph and the estimated graph at t=1 time slot with N 
= 20 and H = 1. a represents the ground‑truth graph and the corresponding covariance matrix in (e). The 
ground‑truth matrices L̃(1)

O
 and P̃(1) are represented in the second column [cf. panels (b) and (f)]. Analogously, 

the estimates L̂(1)
O

 and P̂(1) generated by (13) are represented in panels (c) and (g), those generated by (12) in 
panels (d) and (h)



Page 17 of 20Ye et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:33  

P̂
(t−1) . In other words, the scheme TGSm-St-GL captures the similar column-sparsity 

pattern of P̂(t) resulted from the temporal similarity of time-varying graph.

5.4  Experiments on real‑world data

In this section, we evaluate our algorithms using two real-world data and compare 
their recovery performance with existing alternatives in the literature.

5.4.1  Application to PM 2.5 data

We start by considering the daily mean PM 2.5 concentration data from California 
provided by the US Environmental Protection Agency [40]. The dataset contains 
daily measurements collected from 93 sensors in California over the initial 304 days 
of 2015. According to the longitude and latitude coordinates of these 93 sensors, we 
build an initial graph. To infer best-represented time-varying graphs from incomplete 
graph signals, we make the assumption that only the 15 first sensors are observed. In 
this case, the goal is to infer the connections between those 15 sensors. Moreover, we 
divide 304 days into 10 time slots in equal proportion, and thus, each sensor includes 
data from 30 days, i.e., X(t) ∈ R

15×30.
The comparative outcomes between the proposed approach and other relevant 

alternatives are shown in Table 2. We notice that the proposed TGSm-St-GL obtains 
the higher Fscore 0.5011 and the higher NMI than the other methods.

Table 2 The performance achieved by the schemes TGSm‑St‑GL, GSm‑St‑GL, TVGL‑TS and TVGL‑SV 
while learning time‑varying graphs

Datasets Algorithm Fscore Precision Recall NMI

PM 2.5 TGSm‑St‑GL 0.5011 0.5597 0.4605 0.1249

GSm‑St‑GL 0.3672 0.2268 0.9721 3.049e−5

TVGL‑TS 0.2268 0.5055 0.1628 0.0409

TVGL‑SV 0.2295 0.5257 0.1488 0.0430

COVID‑19 TGSm‑St‑GL 0.2629 0.1775 0.7890 0.0603

GSm‑St‑GL 0.2546 0.1496 0.8923 0.0410

TVGL‑TS 0.0938 0.1494 0.2967 0.0590

TVGL‑SV 0.1577 0.1494 0.5627 0.0290

Fig. 4 The visualization of the matrices P̂(t) in time‑varying graph learned from the synthetic data based on 
TGSm‑St‑GL method



Page 18 of 20Ye et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:33 

5.4.2  Application to COVID‑19 data

Finally, we use the global COVID-19 dataset provided by the Johns Hopkins Univer-
sity [41]. The dataset contains the cumulative number of COVID-19 cases for each 
day and each locality between January 22 and April 6, as well as the geographical 
localization of 259 places including some regions of the world, i.e., overall the dataset 
has 7 time slots with N = 259 and M = 10. As we want to take into account the pres-
ence of hidden variables, we are going to assume that O = 1, . . . , 30 , so that only the 
30 first stations are observed, with our goal being inferring the connections between 
those stations.

The results are listed in Table  2. We observe that the proposed TGSm-St-GL out-
performs GSm-St-GL , TVGL-TS and TGSm-St-SV . In particular, TGSm-St-GL and 
GSm-St-GL have comparable performance for the Fscore. This is not surprising, 
since the value of time slot T is relatively small. On the other hand, TVGL-TS and 
TGSm-St-SV get worse performance than TGSm-St-GL . The result once again clearly 
reflects that the explicit consideration of hidden variables when inferring the graph 
structure leads to better performance.

6  Conclusion
In this paper, we introduced an optimization framework aimed at addressing the 
issue of time-varying graph learning with hidden nodes. The framework relied on 
the assumption that the observed signals are both smooth and stationary on learned 
graphs and identified graph topologies by leveraging the similarity in time-varying 
graphs. Specially, the key was to leverage the block structure of matrix to handle the 
presence of hidden nodes, and an optimization framework based on the graph topol-
ogies and the graph signals constraints is proposed. Moreover, in order to capture 
the characteristics of the learned graphs precisely, we augmented the objective func-
tion with a column-sparsity constrain and considered the connection of the similar-
ity of different time slots graphs on column-sparsity. The experimental results from 
both simulated and real-world data verified the effectiveness and superiority of our 
method. Our future work includes considering the inference problem of time-varying 
graphs under different evolutionary modes in the presence of hidden nodes.
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