
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Schranz et al.
EURASIP Journal on Advances in Signal Processing (2024) 2024:46
https://doi.org/10.1186/s13634-024-01143-1

EURASIP Journal on Advances
in Signal Processing

Nearest advocate: a novel event‑based time
delay estimation algorithm for multi‑sensor
time‑series data synchronization
Christoph Schranz1*   , Sebastian Mayr1, Severin Bernhart1 and Christina Halmich1 

Abstract 

Estimating time delays in event-based time-series is a crucial task in signal process-
ing as it affects the data quality and is a prerequisite for many subsequent analyses. In
particular, data acquired from wearable devices often suffer from a low timestamp pre-
cision or clock drift. Current state-of-the-art methods such as Pearson Cross-Correlation
are sensitive to typical data quality issues, e.g. misdetected events, and Dynamic Time
Warping is computationally expensive. To overcome these limitations, we propose
Nearest Advocate, a novel event-based time delay estimation method for multi-sensor
time-series data synchronisation. We evaluate its performance using three independ-
ent datasets acquired from wearable sensor systems, demonstrating its superior
precision, particularly for short, noisy time-series with missing events. Additionally, we
introduce a sparse variant that balances precision and runtime. Finally, we demonstrate
how Nearest Advocate can be used to solve the problem of linear as well as non-
linear clock drifts. Thus, Nearest Advocate offers a promising opportunity for time
delay estimation and post-hoc synchronization for challenging datasets across various
applications.

Keywords:  Event-based time-series, Time delay estimation, Synchronization, Clock
drift, Cross-correlation, Kernel cross-correlation, Dynamic time warping, Wearable
devices

1  Introduction
Time delay estimation is the process of quantifying the relative time shift between two
time-series that observe the same quantities [1, 2]. This technique is critical in various
domains, including signal processing, control systems, and multimedia analysis.
This paper focus on the time delay estimation of event-based time-series data. Unlike
continuous signals with a constant sample rate, event-based time-series consist of
a sequence of timestamps that indicate the re-occurrence of similar events in time.
Common examples of such data are heartbeat, stride, or fault events.

In general, datasets created by multi-sensor data collections contain time offsets
if no automated time synchronization device is applied in advance. Therefore,
manually induced synchronization points at data collection, i.e. events easy to detect,

*Correspondence:
christoph.
schranz@salzburgresearch.at

1 Human Motion Analytics,
Salzburg Research,
Jakob‑Haringer‑Strasse 5/3,
5020 Salzburg, Austria

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-024-01143-1&domain=pdf
http://orcid.org/0000-0002-5786-7807

Page 2 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

enable a manual time offset removal in the data post-processing by identifying the
synchronization events in all sensor systems and shifting the different time-series on one
mutual timeline. However, this method is often not feasible, leads to a more complex
experiment setup, and also additional work in post-processing [3–6].

Clock drifts are timeline deviations from an ideal timeline that cause varying additional
time delays and are usually measured in parts per million (ppm) or seconds per second,
e.g. clocks with crystal oscillators have an accuracy of 10–100 ppm [3, 7]. They occur
in custom sensor hardware as well as in high-end devices. Whereas inter-device clock
drifts between different devices can be relatively large, inter-device clock drifts between
devices of the same type can also occur, but are more likely to be negligible. Constant
clock drifts are caused by oscillator irregularities that are triggered by crystal production
errors or aging. Moreover, temperature fluctuations, concussions, or power supply
alterations interfere regular oscillating clocks and raise erratic clock drifts [4, 7].

The standard procedure for synchronizing event-based time-series is to interpolate
the temporal differences of all subsequent events to a constant sampling rate and a
subsequent time delay estimation. Common methods for time delay estimation on a
signal include Pearson Cross-Correlation (PCC), Kernel Cross-Correlation (KCC), and
Dynamic Time Warping (DTW), each with its own strengths and weaknesses [8, 9].

By shifting one signal across various time offsets and computing the correlation at
each shift, PCC considers the time delay that yields the highest cross-correlation as
the most likely estimate [10–12]. This can be computationally expensive ( O(n · T) ),
but a performance gain to O(n · log(n)) can be achieved by applying the Fast Fourier
Transform (FFT) [13, 14]. However, the application of PCC has several drawbacks: The
precision of the determined time offset decreases if the inherent frequency of the signal
variability is lower than that of the occurring events [12]. In addition, PCC also shows
low robustness in case of too short time-series as well as missing events or imprecise
timestamps, which often requires an expensive correction [12, 15].

Kernel Cross-Correlation (KCC) is a time delay estimation method that builds on the
concept of PCC while incorporating a kernel function to enhance accuracy. The KCC
algorithm for event-based time-series data converts the events into equidistant arrays
with binary event-hot encoding and convolves this discrete representation with the
kernel function before computing their Cross-Correlation. Finally, it shifts one input
across multiple candidate time delays to find the delay that maximizes the Cross-
Correlation similar to PCC [16, 17]. The type of kernel function is chosen based on the
specific characteristics of the event-based time-series being analyzed, such as noise level
or frequency content. In the case of event-based time-series, a triangular kernel can be
used, which reduces noise and improves time delay estimation precision [16].

Dynamic Time Warping (DTW) is a method for aligning two similar time-series
signals based on a distance-like similarity measure. This measure is calculated by
finding the minimal sum of distances in a cross-distance matrix containing the
differences between all elements of the test and reference sequences. The advantage of
DTW lies in its ability to allow a nonlinear mapping between signals, accounting for
local time domain distortions. However, this flexibility comes at the cost of significant
computational demands of O(n ·m) [18]. DTW is particularly suited for systems or
objectives that experience severe clock drifts or irregular connection issues [19].

Page 3 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

We identified a gap in methods and research on how to estimate time delays in
event-based multi-sensor time-series data, such as two identical measurements
shifted relatively in time (see example in Fig. 1). Additionally, we state that the trans-
formation of inter-event interpolation can result in information loss, which makes
existing methods less accurate. Despite the growing importance of accurately esti-
mating time delays due to the rise of wearable devices and the combination of data
from multiple sensors, the body of research dedicated to this subject remains dispro-
portionately scant.

This paper introduces the Nearest Advocate (NAd) algorithm, a novel approach
designed for event-based multi-sensor time-series data synchronization. Building
on an initial idea from [20], the NAd algorithm has been significantly improved and
expanded, and it has been rigorously validated. It is compared against current state-
of-the-art methods to demonstrate its effectiveness for varying magnitudes of typical
data quality issues in three event-based time-series. To the best of our knowledge,
this work represents the first comparison of time delay estimation methods for
event-based time-series data. Additionally, the NAd algorithm is evaluated for the
challenge of non-linear clock drift correction, introduces advancements in event-
specific weightings, and provides a proof-of-concept for measuring the synchronicity
of different observation quantities. These contributions address critical gaps found in
the existing literature and constitute advancements in the field of time-series analysis.

Section 2 formulates the problem of time delay estimation and clock drift for event-
based time-series. Then, Sect. 3 proposes the Nearest Advocate algorithm and its
properties. Section 4 presents the three elaborated datasets on which the algorithms
were evaluated in Sect. 5. Section 6 presents an empirical evaluation of the Nearest
Advocate algorithm for clock drift correction, introduces advancements in event-spe-
cific weightings, and provides a proof-of-concept for measuring the synchronicity of
different observation quantities. These three problems still pose a challenge for state-
of-the-art algorithms. The findings are discussed in Sect. 7 and concluded in Sect. 8.

2 � Problem formulation
We differentiate three interconnected problems of time synchronization: time offset
estimation (i.e. time delay), linear clock drift (i.e. skew) correction, and non-linear
clock drift correction, each being a subset of the subsequent. This terminology is

Fig. 1  Two identical ECGs with a relative time delay of φ (gray) with their characteristic beats, i.e., R-peaks
depicted in orange

Page 4 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

consistent with existing definitions of Meier and Holz [4], Tirado-Andrés and Araujo
[7], and Mills [21].

While the basic implementation of the NAd algorithm aims to solve the time offset
issue in Sects. 5, 6.1 will demonstrate how it can also be utilized for a clock drift
correction. Additionally, Sect. 6.2 will show how to incorporate the events’ confidences
in NAd using event-specific weighting and Sect. 6.3 illustrates a proof-of-concept of how
to process distinct observations.

2.1 � Time offset estimation

Consider an event-based time-series Tn = {ti : ti ∈ R ∧ ti − ti−1 > 0 ∀i = 1, 2, . . . , n} ,
representing strictly increasing sets, and Sm = {sj : sj ∈ R ∧ sj − sj−1 > 0 ∀j

= 1, 2, . . . ,m} , the measurement of Tn , with a time delay φs between the event-based
time-series. The relationship between the two series is given by:

Assuming the distribution of errors ε is centered around zero, i.e. E[ε] = 0 , the time
delay φs can be estimated for m = n and i = j using the Mean Absolute Error (MAE):

In cases where events in S are undetected or unmatched, this estimation becomes
invalid. Assuming m ≤ n and a known injective and strictly monotonically increasing
mapping function between events f : j �→ i , the time delay φ can be estimated by:

However, the mapping function f is not known in practical scenarios, complicating the
time delay estimation problem. To address this, we propose the NAd algorithm, which
operates independently of the mapping function f.

2.2 � Linear clock drift

There is a linear clock drift between two event-based time-series, if there is a function
f : S → R such that sj → (1+ α)sj + φ + εj ∀j = 1, 2, . . . ,m with α ∈ (−1,∞) . There
is no clock drift if α = 0 , but only a constant time offset φ.

2.3 � Non‑linear clock drift

There is a non-linar clock drift between two event-based time-series, if there is a non-
linear monotonically increasing function f : S → R , i.e. ∀f (sj) ≥ f (si) ⇒ sj > si.

In many practical scenarios, the non-linear portion of clock drift is negligible,
especially for short measurements at nearly constant temperatures [7]. Therefore,
the need for the correction of non-linear clock drifts has to be assessed. E.g., our
measurements spanning up to eight hours revealed that the non-linearity’s magnitude
was about a second, while the linear part reached up to a minute.

(1)∀j ≤ m : ∃i ≤ n : sj = ti + φs + εj

(2)φ̂s = arg min
φ∈R

n

i=1

|si − ti − φ|

(3)φ̂s = arg min
φ∈R

m
∑

j=1

|sj − tf (j) − φ|

Page 5 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

3 � Nearest advocate algorithm
3.1 � Algorithm

The Nearest Advocate (NAd) algorithm, based on a zipper principle adapted from a
stream-stream join algorithm [22], estimates the time delay between two event-based
time-series data. The core concept involves calculating the distance between each event
in one time-series and the nearest event (i.e., advocate) in another time-series for a given
time offset φ . The average of these distances indicates the synchrony between the two
time-series.

The method estimates the time delay between two event-based time-series by calcu-
lating the synchrony measure for multiple potential time offsets in a one-dimensional
search space, T = {φ : φ ∈ R} . The evaluation of a specific time delay is the inner part of
the algorithm, while looping through the search space T is the outer part. After skipping
leading reference events (see Pseudocode 1, phase 1), the inner part is based on the zip-
per principle to match each test event with the nearest advocate event (see pseudocode 1,
phase 3). Leading and trailing test events must be considered separately (see pseudocode
1, phases 2 and 4, respectively). A simplified depiction of the inner part is shown in Algo-
rithm 1, with the full code available at https://​github.​com/​iot-​salzb​urg/​neare​st-​advoc​ate.

Algorithm 1  Nearest Advocate, inner part

https://github.com/iot-salzburg/nearest-advocate

Page 6 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

In the first phase, leading reference events are skipped by incrementing the reference
array indices until the first test element lies between two reference events, expressed by
the inequalities ar[ir] ≤ as[is] < ar[ir + 1] . In this phase the cumulative distance dcum is
not incremented.

The second phase processes leading test events. This is relevant when the test time-
series start precedes the reference time-series. Each test event is matched with the first
reference element as long as the respective invariant holds.

In the third phase, the loop invariant ar[ir] ≤ as[is] < ar[ir + 1] is exploited and
maintained. In each iteration, the average distance between each event in the test array
and its nearest counterpart in the reference array is calculated and cumulated.

The final phase processes trailing test events, a similar case to the second phase but
for trailing events instead of leading ones. Finally, the mean of all matched distances
is returned, given by the fraction of cumulative distance and the cardinality of the test
array.

This inner algorithm has a linear runtime complexity. For the overall time delay
estimation, the inner part is evaluated for multiple time offsets φ ∈ T which are by
default equally spaced within a given interval. Therefore, the runtime complexity is
|T | · (|ar | + |as|).

The granularity, i.e. the interval between these evaluated time offsets T affects the
quality of the characteristic curve. This curve oscillates approximately with the maximal
event frequency of the reference and test time-series. To achieve a characteristic curve
that is not aliased and suitable for accurately detecting its minimum—which serves as
the time offset estimator—it is advisable to use a frequency at least ten times higher than
the expected Nyquist frequency [23].

3.2 � Characteristic synchronisation curve

In Fig. 2, the characteristic curve of the NAd method is shown in blue. The x-axis depicts
the evaluated time delay φ ∈ R , where the detected offset is marked as a vertical red line
in the proximity of the true time delay π . The y-axis shows the NAd synchrony measure
with the black horizontal line representing the mean over all time shifts. It can be seen
that the curve oscillates noticeably in proximity to the estimated time shift.

The global minimum of the characteristic curve constitutes the estimator of the test
array’s time delay The mean distance metric increases during test array shifting and
reaches a maximum when the majority of test events are approximately halfway between
the reference events. A secondary (or minor) minimum occurs when the shift is one
mean inter-event interval (or a multiple of it), but it’s less significant due to the inherent
pattern’s variability. Increased variability of event intervals, like heart rate variability or
varying running speeds, improves the time delay estimation’s accuracy by dampening
local minima.

3.3 � Nearest advocate as a metric space

The NAd algorithm is proposed as a novel approach to address the challenge of time
delay estimation in event-based time-series. This section investigates under which
constraints the NAd’s mean distance measure constitutes a metric.

Page 7 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

3.3.1 � Definition of a metric space

Formally, a metric space is an ordered pair (M, D) where M is a set and D is a function
D : M ×M → R satisfying the following axioms for all elements x, y, z ∈ M :

1.	 Positive definiteness The distance from a point to any other point is non-negative
D(x, y) ≥ 0 and the distance is only zero if and only if the two elements are equal:
D(x, y) = 0 ⇐⇒ x = y.

2.	 Symmetry The distance from x to y is always the same as the distance from y to x:
D(x, y) = D(y, x).

3.	 Triangle Inequality The distance between two elements is always less than or
equal to the sum of the distances of a third element from each of these points:
D(x, z) ≤ D(x, y)+ D(y, z)

3.3.2 � Application to nearest advocate

Here we want to show if (or under which constraints) (M,DNAd) is a metric space,
where M = {T ⊂ R : T = {ti : ti ∈ R ∧ ti − ti−1 > 0 ∀i ≤ n}} ⊂ P(R) and
X ,Y ,Z ∈ M are sets with strict increasing order with their elements in R . The function
DNAd : M ×M → R is the inner part of the NAd algorithm as illustrated in the
pseudocode 1 depended of it’s single parameter dmax > 0.

3.3.3 � Symmetric nearest advocate

Similarly to the Kullback–Leibler Divergence [24], the NAd requires also a symmetric
version which is simply constructed by averaging the function with both orders of their
arguments.

To shorten the notation we call DNAd-symmetric = D and for some cases, we want to
emphasize the single parameter dmax with a subscript Ddmax

.

DNAd-symmetric(X ,Y) :=
1

2
(DNAd(X ,Y)+ DNAd(Y ,X))

Fig. 2  Characteristic curve of NAd, global minimum indicates the time offset

Page 8 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

3.3.4 � Theorem

The Symmetric NAd Ddmax
 over M�tmin

= {T ⊂ R : T = {ti : ti ∈ R ∧ ti − ti−1

≥ �tmin ∀i = 1, 2, . . . , n}} is a metric space for all �tmin > 0 if the inequality
dmax ≤ �tmin holds.

Specifically, the following properties can be shown:

1.	 (M,DNAd) is not positive definite: We show that the non-symmetric NAd distance
function is in general not positive definite.

2.	 (M, D) is positive-definite: We show that the Symmetric NAd distance function is
positive-definite.

3.	 (M,DNAd) is not symmetric: We show that the symmetry property does not hold in
general.

4.	 (M, D) is symmetric: We show that the Symmetric NAd distance function is
symmetric.

5.	 Contradiction of the Triangle Inequality for (M,DNAd) : We show that the NAd
distance function DNAd does not satisfy the triangle inequality in general.

6.	 Proof of the Triangle Inequality for (M�tmin ,DNAd) : We prove that under a certain
constraint, the NAd distance function DNAd satisfies the triangle inequality.

Thus, we conclude that (M�tmin ,Ddmax
) constitutes a metric space. The proofs for all

statements are provided in the “Appendix A”. Additionally, simulations are provided in
the same appendix and under https://​github.​com/​iot-​salzb​urg/​neare​st-​advoc​ate/​blob/​
main/​exper​iments/​metric_​proof_​simul​ation.​ipynb for an empirical demonstration of
the theorem.

3.4 � Implementation details

The NAd implementation sets the maximum distance dmax to a quarter of the median
inter-event interval of the reference array ( median(diff(ar) ). The search space ranges
from -300 s to 300 s, with increments of 0.1 s each. Various NAd versions (‘NAd-
dense‘, ‘NAd-sparse10‘, and ‘NAd-sparse100‘) with different sparse_factor parameters
were implemented to balance precision and computational efficiency. The method was
implemented in Python 3.10 and the just-in-time (JIT) compiler Numba 0.55 [25] to
optimize performance.

Both Cross-Correlation methods utilized the scipy package (version 1.7.3), while the
Dynamic Time Warping (DTW) method employed the dtw-python package (version
1.3.0) [19].

4 � Evaluation
The previously described methods (PCC, KCC, DTW, and NAd) are compared using
three distinct datasets to evaluate their efficacy in diverse applications characterized by
variable inter-event intervals and long-term event patterns. Each dataset comprises pairs
of events, denoted by their timestamps:

1.	 Heartbeat (HB) Dataset: The Heartbeat (HB) Dataset consists of two series of
R-peaks from the characteristic QRS-complex in electrocardiogram (ECG) signals,

https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/metric_proof_simulation.ipynb
https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/metric_proof_simulation.ipynb

Page 9 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

collected from 17 participants during sleep as part of the Virtual Sleep Lab project
[26]. The reference series was captured using the laboratory-standard BrainVision
BrainAmp ExG polysomnograph (Brain Products GmbH, Germany), and the com-
parative series was recorded with the Movesense HR+ (Suunto, Finland) sensor. Fig-
ure 1 illustrates two ECG signals with a relative time delay and their corresponding
R-peaks as event timestamps. Each session lasted approximately eight hours with an
average inter-event interval (inter-beat interval (IBI)) of 1.04 s.

2.	 Breath Rate (BR) Dataset: This dataset comprises breathing data recorded during
running using a custom smart textile chest sensor [27]. A custom flow reversal
detection algorithm detected expiration and inspiration events, marking the
beginning of the exhalation and inhalation phases, respectively. Additionally,
reference flow reversal events were obtained from a spirometry system. Participants
were instructed to maintain two different average breathing rates (39 ± 3 bpm and
27 ± 2.4 bpm). The average inter-event interval was 1.07 s.

3.	 Step Rate (SR) Dataset: Chest-worn inertial measurement units (IMUs) captured
acceleration data during the same running experiment as (BR), with a custom
algorithm identifying step events [27]. Reference step events were determined
using a validated algorithm on data from tibia-mounted IMUs. Participants ran on
a treadmill at two different speeds, resulting in average step rates of 154.2 ± 10.8
spm and 158.4 ± 10.2 spm. The average inter-event interval was 0.467 s. Both the
BR and SR datasets included 19 pairs of measurements, each with a duration of
approximately 42 min.

As no ground truth time delay can be obtained for the given data pairs, the methods are
evaluated using simulated, semi-simulated, and real data pairs for a rigorous comparison.

1.	 Simulated reference event-based time-series data were generated using normally
distributed inter-event intervals to assess the effect of time-series lengths on
accuracy and runtime. Additionally, the errors of detected events in the test signals
can be assumed to be sampled from a stationary normal distribution. Therefore, the
test array was cloned from the reference array, with constant Gaussian noise added
to each event timestamp.

2.	 The impact of noise, missing events, and clock drift on time delay estimation
accuracy was explored for both reference and test arrays of all three datasets HB, BR,
and SR. Assuming a stationary normal distribution of the event detection in the test
signal, a standard deviation of approximately 0.1s was found to be typical across the
datasets by evaluating against the respective reference signal. Therefore, the default
Gaussian noise was set to 0.1s, default clock drift to zero, and the test array length to
1000, before removing a fraction of events.

3.	 Real heartbeat data (HB) were used to compare methods, after manual investigations
of their time delays. To increase the result’s robustness, the symmetric NAd was
assessed. The impact of length on estimation precision was examined by selecting
different test array lengths.

Page 10 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

NAd is evaluated with three different sparseness factors, PCC with DFT (discrete FT)
and FFT (fast FT), KCC with two triangular kernel widths, and DTW with an asymmet-
ric step pattern. The median mean absolute error (MAE) and runtime for each method
and setting were calculated over 25 runs and methods exceeding 3 s were omitted for
subsequently increased lengths.

5 � Results
5.1 � Method comparison on simulated data

Figure 3 compares the methods on simulated data, demonstrating the impact of time-
series length on precision and computation time.

NAd sparsity affects precision and computation time, offering an adjustable tradeoff.
PCC-FFT performs faster than PCC-DFT with the same precision. KCC methods show
comparable precision to NAd and computational time to PCC-FFT. DTW exhibits
unstable results for time-series with less than 1000 events and longer time-series have
rapidly increasing runtime complexity.

5.2 � Method comparison on semi‑simulated data

Figure 4 illustrates the effects of varying Gaussian noise, missing event fractions, and
linear clock-drift intensities (i.e. skews) on the precision. Each point shows the median
MAE of 25 runs. The top plot shows that the MAE increases with the noise magnitude,
as noise represents imprecisely detected timestamps. PCC and DTW methods, along
with NAd-dense, are robust against noise. The center plot shows that a lower retention
fraction leads to lower precision, with NAd and KCC performing well at high missing

Fig. 3  Impact of time-series length on precision and runtime of time delay estimation methods on simulated
data

Page 11 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

event fractions. The bottom plot indicates that higher clock drift results in a larger MAE.
PCC and particularly DTW show high robustness against clock drifts.

5.3 � Method comparison on real data

Figure 5 displays each method’s performance on real HB dataset measurement pairs. A
subsequence of variable length is selected from the test array to demonstrate the influ-
ence of different lengths of real data pairs on the precision. The upper plot shows median
precision as a function of length, while the bottom plot indicates the interquartile inter-
val for the most precise method variant.

It can be seen, that NAd followed by KCC yield precise time delay estimations, even
for short sub-sequences. In contrast, PCC estimation is mostly random until a length of
about 1000 due to the subsequence length constraint, as indicated by its linear increase.
DTW estimates have high variance, and the method’s runtime exceeds 3 s for time-series
with more than 2000 events.

Fig. 4  Impact of Gaussian noise, missing events, and clock drift on the precision of methods on
semi-simulated data based on HB, BR, and SR

Page 12 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

6 � Applications of nearest advocate
As the NAd algorithm prooved its ability for data of low quality and has algorithmical
flexibility, this section investigates the application of NAd for various advanced time
delay estimation problems.

6.1 � Linear and non‑linear clock drift correction

Besides the application for eliminating constant time offsets, NAd can be applied to
detect and solve the clock drift issue between sensor devices. This process exploits
the investigated property of NAd to be very precise for short time-series and robust
against some degree of clock drift (see Figs. 4 and 5), by applying it on a high number
of short (overlapping) windows of the whole time-series. Afterwards, a regression is
used to estimate the progress of the clock drift.

For the linear clock drift correction, the robust Theil-Sen estimator [28] is used
to detect (1) the optimal time delay ( φ̂(t) ) per window, (2) the relative factor of the
sample rate ( Fs ) deviation ( �Fs ) compared to the reference clock for clock drift
removal and (3) the MAE and interquartile width as indicators of the accuracy of
the resulting regression. After the regression, the test array’s timestamp are adapted
based on the estimated φ̂0 and �Fs.

Fig. 5  Impact of the length of real heartbeat dataset pairs on precision

Page 13 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

The non-linear clock drift requires the estimation of the clock drift course, which
is assumed to be continuous. Therefore, a multi-layer perceptron (MLP) with a single
input, single output neuron, one hidden layer, and a ReLU activation function [29]
succeeds in estimating this unknown continuous clock drift function [30]. After
each function estimation, the timestamps of the test array are interpolated using the
trained function estimator of the MLP.

Figure 6 presents two iterations of a linear and a non-linear clock drift correction,
respectively. Each plot depicts a scatterplot of estimated time delays for the individual
windows along a respective regression. The interquartile range indicates the accuracy
of the correction. Figure 6a depicts a strong linear clock drift: The estimated time offset
of each window (blue dot) is aligned approximately on a line, that is calculated by the
robust linear regression.

As we can see in Fig. 6b the non-linear clock-drift wanders (nearly continuously)
between −0.5s and 1.0s within the temporal span of about eight hours. This non-linear
portion of the clock drift cannot be further corrected by a linear regression. However,
in Fig. 6c we can see that the non-linear approach incorporating a MLP for the func-
tion approximation can capture the trend and therefore decreases the residuals substan-
tially. After three iterations of non-linear clock drift corrections, as shown in Fig. 6d, the
90% interquantile range was reduced to less than 0.13s, indicating a precise time delay

Fig. 6  Iterative linear and subsequent non-linear corrections of the clock drift using a robust linear regression
and MLP regression

Page 14 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

synchronization. The median residual is 11ms, which is less than half of the median error
of 33.4ms reported by Meier and Holz [4] using BMAR.

In experiments, it was shown that one or two linear corrections suffice. Heuristically,
starting with a smaller window width in the first iteration is recommended, because
narrow windows are more robust against a high magnitude of linear clock drift (skews).
A high initial sample rate deviation could lead to incoherence in wide windows.

A weight decay helped successfully to regularize the estimated function. We
experienced high slopes in the beginning and end of the function’s definition space,
as strong neuron activations in this part are hardly regularized. To mitigate this
effect, two dummy points were added 20 % outside the range of the times both before
and after the measurement with the value of zero. This led to more conservative
function estimations at the borders and also allowed extrapolations to some extent.
The full implementation is available under https://​github.​com/​iot-​salzb​urg/​neare​st-​
advoc​ate/​blob/​main/​exper​iments/​appli​cation_​nonli​near_​corre​ction.​ipynb.

6.2 � Event‑weighted nearest advocate

In many event detection algorithms, some kind of confidence or precision can be
assigned to each detected event. In contrast to algorithms based on the Pearson
correlation (PCC and KCC), this additional information can be incorporated into
NAd. A weighted NAd aims to weigh events that were confidently detected higher
while weakening the influence of temporal areas with poor data quality or uncertain
event detection. Therefore, any match of test and reference event can be weighted by
multiplying their respective distance as proposed in the original algorithm (1) with a
predefined weighting factor related to the test event. A pseudocode for the weighted
NAd is provided in “Appendix 8”.

6.3 � Synchronicity of different observations quantities

There is a decent interdependency between breath and stride during running, the
so-called locomotor-respiratory (LRC) coupling [31]. The LRC-ratio describes the
number of strides per breath cycle, e.g. common human LRC-ratios are 2:1, 2.5:1, 3:1,
or 4:1 [32, 33]. The BR and SR datasets were acquired simultaneously during the same
experiment. Within this experiment, the participants were instructed to accomplish
four runs and breathe with LRC ratios of 2:1 and 3:1, i.e., four and six steps per
breath cycle, respectively [27]. The authors raised the question of whether it would
be possible to use this LRC to estimate the time delay based on breathing and stride
events and, therefore on observations of different quantities.

Figure 7 shows the time delay estimation between a breathing and a step event-
based time-series. The NAd algorithm was applied with a dmax of a quarter of the
minimal median inter-event difference of the arrays. The basic time delay estimation
was performed for multiple highly overlapping windows with a window length of
250 s and a sliding rate of 5 s. Each optimal time delay is illustrated in the upper scat-
ter plot in Fig. 7 as blue point, with an additional robust linear regression showing a
linear trend over time.

https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/application_nonlinear_correction.ipynb
https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/application_nonlinear_correction.ipynb

Page 15 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

In the heatmap of Fig. 7 the windows’ characteristic curves within the search
space of ±60s were stacked horizontally for each window. The brown colors in the
heatmap matrix indicate lower mean distances of the NAd runs, thus higher syn-
chronicity. Within the heatmap, the four runs can be recognized by four batches of
more intense brown between windows 460 and 1104 and around the time offset of
10 to 25 s.

Finally, the respective time delays were aggregated over all windows and summarized
in the bottom right plot in Fig. 7. The mean aggregation utilizes the full information
of all time delay estimations, instead of using only one optimum for the regression.
The resulting mean time delay shows a clear minimum at 17.4s, constituting a robust
estimation of the test measurement’s relative shift in time. However, this estimation
might suffer from a time delay that originates from a relative phase shift between their
frequencies.

Using the described process, 22 out of 24 pairs of corresponding BR and SR time-
series could be synchronized successfully, emphasizing a successful proof-of-concept of
the NAd method for time offset estimation on different observations. The full imple-
mentation is available under https://​github.​com/​iot-​salzb​urg/​neare​st-​advoc​ate/​blob/​
main/​exper​iments/​appli​cation_​diffe​rent_​obser​vatio​ns.​ipynb.

Fig. 7  Windowed time delay estimation between breathing and step events: linear regression, heatmap for
estimated time offset and window, and mean time offset across offsets

https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/application_different_observations.ipynb
https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/application_different_observations.ipynb

Page 16 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

7 � Discussion
7.1 � Method comparison

The NAd method demonstrates precision and stability in time delay estimation for
event-based time-series, excelling when few events are present. With only 1% retained
events (10 out of 1000), the method estimates time delays with a median MAE of under
0.5s. Our results are consistent with Vio and Wamsteker [12] that PCC yields unstable
results for short time-series.

NAd’s drawback is its higher runtime compared to FFT-based cross-correlation
methods. However, adjusting the sparseness parameter trades runtime for precision,
achieving higher precision and similar runtimes compared to PCC and KCC for long
time-series.

Given a number of n respectively m events and a search space T = {φ : φ ∈ R} , NAd’s
runtime complexity is O((n+m) · |T |) . Based on interpolated arrays of tmax events,
PCC and KCC using FFT are O(tmax · log (tmax)) [13]. NAd’s runtime complexity
becomes lower than the runtimes of PCC and KCC for long measurements because the
search space is independent of the measurement length. DTW has O(n ·m) complexity
[18], making it suitable only for short time-series where it has a significant higher MAE.

7.2 � Performance test

Table 1 summarizes the performance results of three implementations of the NAd
method. To obtain statistically significant results, each implementation was measured
seven times. The algorithm was executed 1000 times for both the Numba [25]
and Cython [34] implementations, while it was only executed once for the Python
implementation for runtime reasons.

The pure Python implementation required an execution time more than 200 times longer
than the optimized versions, due to the intensive use of increment operations which are not
efficiently handled by dynamically typed programming languages like Python. On the other
hand, the JIT-compiled version of Numba required only marginally more time compared to
the pre-compiled C-code generated by the Cython compiler.

7.3 � Applications

In Sect. 6.1, the ability of the NAd method to correct both the linear and also non-linear
clock drifts of real pairs of measurements is demonstrated. This is particularly important
for real-world applications where clock drift comes in combination with other data quality
issues, including imprecisely detected event timestamps and missed events. The median
residual of NAd is 11 ms for a non-linear clock-drift, which is less than half of the median
error of 33.4 ms reported by Meier and Holz [4] using BMAR.

Table 1  Performance comparison of NAd implementations

Implementation Mean with std.

Python 213ms± 1.25ms

Numba 907µs± 3.98µs

Cython 905µs± 776 ns

Page 17 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

Typically, existing synchronization algorithms prioritize minimizing error over reduc-
ing power consumption. The power efficiency, has not been extensively assessed in prior
research, especially in the context of online synchronization algorithms. Our method
offers a distinct advantage for wearable devices. These devices regularly collect events that
are either extracted from time-series signals or detected directly on the embedded device,
which further reduces power-intensive data traffic. Consequently, our approach does
not incur extra power usage during operation and may even offer a promising possibility
to minimize data transfer. Moreover, it is well suited for use with devices not specifically
designed to function within the same wireless network.

Additionally, the algorithmic flexibility of NAd allows to weight events separately and
thereby, allowing the incorporation of the event detection algorithm’s confidence into the
process of time delay estimation. Furthermore, even events of different but dependent
observations can be processed, thus emphasizing the robustness of this method against
poor data quality.

7.4 � Limitations

Experiments in this study focus on event-based time-series data which requires
transforming event time-series into continuous signals for methods like PCC. Future
research could compare methods on continuous signals, whereby NAd is applied on events
detected in those signals to make the experiment setup more challenging and broaden its
area of application.

Further investigation of time-series properties affecting NAd precision and stability
is needed. Time-domain features like entropy or autocorrelation and the power density
distribution might explain NAd’s oscillation width and magnitude around the estimated
time offset and its estimate’s confidence interval.

The study’s datasets consist of nearly periodic events with similar sampling frequencies.
Examining NAd’s robustness for non-periodic events and time delay estimation on different
types of measurements could further broaden its applicability.

8 � Conclusion
We proposed NAd, a novel algorithm for synchronizing sensor data across various
devices, eliminating the necessity for communication or direct user engagement during
runtime while minimizing data traffic. The NAd method offers improved precision in
time delay estimation compared to existing methods, particularly for short time-series
and those with imprecise or missing events. The sparse variant provides computational
efficiency at a slight precision tradeoff. NAd may not be optimal for applications
prioritizing runtime but excels in precision for data with quality issues.

Overall, NAd provides a robust and precise solution for time delay estimation in event-
based time-series data. The algorithm’s efficiency and robustness against outliers make
it suitable for time delay estimation in noisy event-based data with challenging event
detection, where it can also incorporate the event detection’s confidence. It also allows
the correction of even non-linear clock drifts and the time delay estimation based on
events of different but dependent observations.

Page 18 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

Appendix A: Proof of (M′,D) being a metric space
In this appendix, the statements from Sect. 3.3 are proven.

A.1 (M,DNAd) is not positive definite

Consider sets X = {1, 2, 3} and Y = {1, 3} . For any dmax > 0 , from the regular case, i.e.
step two, of the Pseudocode 1, we have (it can be analogously shown for the other steps):

Each element in Y is matched with its nearest advocate in X  . Therefore, we find that
DNAd(X ,Y) = 0 while X = Y , contradicting the positive-definiteness of (M,DNAd).

A.2 (M, D) is positive‑definite

Showing D(X ,Y) ≥ 0 indirectly
Suppose ∃X ,Y ∈ M : D(X ,Y) < 0

We show the matching Case 3 as it is the most complex one and the other can be shown
analogously. The invariant we have in this case is xi ≤ yj < xi+1:

As we know distcum is initialized with 0, there must exist at least one loop iteration for
which holds:

Case yj − xi < 0 ∧ xi+1 − yj < 0 contradicts the loop invariant of the matching Case 3.
Case dmax < 0 contradicts the definition.

Therefore, D(X ,Y) ≥ 0 holds ∀X ,Y ∈ M, ∀dmax ∈ R.
Showing X = Y ⇒ D(X ,Y) = 0

Therefore, in each loop iteration distance = min(yj − xi, xi+1 − yj , dmax) = 0

Showing D(X ,Y) = 0 ⇒ X = Y indirectly
Suppose X = Y

As we have the invariant xi ≤ yj < xi+1 , it follows:

DNAd(X ,Y) =
1

2
(min(|1− 1|, dmax)+min(|3− 3|, dmax)) = 0

w.l.o.g ⇒ DNAd(X ,Y) < 0

distcum < 0 (as the pseudocode 1)

xi ∈ X , yj ∈ Y : distance = min(yj − xi, xi+1 − yj , dmax) < 0

X = Y ⇒ ∀yj ∈ Y : ∃xi ∈ X : xi = yj

⇒ distcum = 0 ⇒ DNAd(X ,Y) = 0 ⇒ D(X ,Y) = 0

w.l.o.G ⇒ ∃yj ∈ Y : ∀xi ∈ X : xi �= yj

⇒ distance = min(yj − xi, xi+1 − yj , dmax) > 0

⇒ DNAd(X ,Y) = 0 ⇒ D(X ,Y) = 0

Page 19 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

Therefore, D is symmetric for all X ,Y ∈ M

A.3 (M,DNAd) is not symmetric

Let X = {1, 2, 3} , Y = {1, 3} , then for any dmax > 0 :

DNAd(X ,Y) = DNAd(Y ,X) contradicts the symmetry property.

A.4 (M, D) is symmetric

∀X ,Y ∈ M, ∀dmax > 0 :

Therefore, the symmetric Nearest Advocate distance D is symmetric over M.

A.5 Contradiction of the Triangle Inequality for (M,DNAd)

Let X = {1, 2} , Y = {2.1, 2.9} , Z = {3, 4} , then for any dmax ≥ 2 :

DNAd(X ,Z) > DNAd(X ,Y)+ DNAd(Y ,Z) ∀dmax ≥ 2 contradicts the triangle
inequality.

Analogously, we can show that for this case DNAd(Z ,X) > DNAd(Z ,Y)+ DNAd(Y ,X)
also does not hold and therefore the triangle equation is violated for the symmetric D.

However, we see that we could constrain D(dmax) such that this equation could still
hold for a given M.

A.6 Proof of the Triangle Inequality for (M′,DNAd)

The triangle inequality is demonstrable when M is restricted to M′ = M�tmin , defined
as {T ⊂ R : T = {ti : ti ∈ R ∧ ti − ti−1 > �tmin ∀i = 1, 2, ..., n}} ⊂ P(R) , a set with
strictly ascending order and a minimum distance of �tmin > 0 between elements.

We will show that

DNAd(X ,Y) =
1

2
(min(|1− 1|, dmax)+min(|3− 3|, dmax)) = 0

DNAd(Y ,X) =
1

3
(min(|1− 1|, dmax)+min(2− 1, 3− 2, dmax)

+min(|3− 3|, dmax)) =
1

3
min(1, dmax) > 0

D(X ,Y) :=
1

2
(DNAd(X ,Y)+ DNAd(Y ,X))

=
1

2
(DNAd(Y ,X)+ DNAd(X ,Y))

= D(Y ,X)

2 · DNAd(X ,Z) = 2+ 1 = 3.0

2 · DNAd(X ,Y) = 0.1+ 0.9 = 1.0

2 · DNAd(Y ,Z) = 0.1+ 1.1 = 1.2

∀�tmin : ∃d′max : (DNAd(dmax),M�tmin) is a metric space

∀dmax ≤ d′max = �tmin/2

Page 20 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

Lemma 1  In order to prove the triangle inequality, we first need to show that for any
pair of added elements:

Proof of Lemma 1  This is the case if every yn+1 is only matched with xn+1 . As this
should hold for newly added elements regardless of their order in the respective
sets, we notate these elements by xj and yi . W.l.o.g., we prove Lemma 1 by showing
xj − yi ≤ yi+1 − xj ∀yi ≤ xj < yi+1 by constraining the differences of two
measurements over their true event timestamps:

We use again the distance function d(xi, yi) := min(xi − yi, dmax) ≥ 0 (which is not
symmetric).

This term can be limited by either constraining dmax or the difference between |xj − tl |
rsp. |yi − tl | with an upper threshold ε + |φ| where ε is the maximal error in measuring
the true timestamp and φ the time delay. Then two limits follow:

Therefore, Lemma 1 holds ∀dmax ≤ �tmin/2 . The second limit is of theoretical interest
as it shows that the triangle inequality holds for any �tmin if an arbitrarily high data
quality and with already corrected time delay φ can be achieved.

Proof of the Triangle Inequality using Lemma 1

∀�tmin : ∃d′max :

DNAd(Xn+1,Yn+1) =
1

n+ 1

(

n · DNAd(Xn,Yn)+ |yn+1 − xn+1|
)

(yi+1 − xj)− (xj − yi) = (yi+1 − tl+1 +�tmin + tl − xj)

−(xj − tl + tl − yi)

(yi+1 − xj)− (xj − yi)

= d(yi+1, tl+1)+�tmin + d(tl , xj)− d(xj , tl)− d(tl , yi)

≥ �tmin − d(xj , tl)− d(tl , yi)

(yi+1 − xj)− (xj − yi) ≥ �tmin − 2dmax ≥ 0

∀dmax ≤ �tmin/2

(yi+1 − xj)− (xj − yi) ≥ �tmin − 2(ε + |φ|) ≥ 0

∀2(ε + |φ|) ≤ �tmin/2

DNAd(Xn+1,Yn+1)+ DNAd(Yn+1,Zn+1)

=
1

n+ 1
(n · DNAd(Xn,Yn)+ n · DNAd(Yn,Zn)

+ |yn+1 − xn+1| + |zn+1 − yn+1|)

≥
1

n+ 1
(n · DNAd(Xn,Zn)+ |zn+1 − xn+1|)

= DNAd(Xn+1,Zn+1)

Page 21 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

From now on, it is trivial to show that this also holds for the symmetric Nearest
Advocate.

A.7 Conclusion of the shown statements

The properties of positive-definiteness, symmetry, and triangle inequality have been
established, confirming that (Ddmax

,M�tmin) is a metric. �

A.8 Empirical Simulation

As the metric space (Ddmax
,M�tmin) depends on its parameters dmax and �tmin , it is of

practical interest to empirically show their influence of them on the fraction of violated
triangle inequalities. In Fig. 8 the number of violated triangle inequalities for 105 runs
of each different parameter configuration is shown as a heatmap. The arrays have equal
lengths for between two to 40 randomly sampled elements and randomly sampled ε and
φ . The diagonal represents the constraint dmax = �tmin/2 , thus all entries in and above
the diagonal must be zero.

Appendix B: Event‑weighted nearest advocate
This pseudocode depicts the changes in teal necessary to weight individual events of
the test array with a given weight.

Fig. 8  Impact of the parameters dmax and �tmin on the number of violated triangle inequalities from 105 runs
each

Page 22 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

Algorithm 2  Weighted Nearest Advocate, inner part

Acknowledgements
The authors thank Elisabeth Haeusler for supporting the development of this algorithm and paper as well as Rade Kutil
and Mathias Tonis-Schmoigl for their feedback on state-of-the-art methods and valuable feedback on the algorithm.

Author contributions
CS conceptualized and implemented the algorithm, designed and performed experiments, and analytical validation.
SM and SB conducted the literature review, contributed to algorithm validation, algorithm applications, and assisted
in manuscript writing and proofreading. CH validated the algorithm, its analytical proof, and also aided in manuscript
writing and proofreading.

Funding
This work was thankfully supported by the Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility,
Innovation and Technology under Contract No. 2021-0.641.557.

Availability of data and materials
The authors ensure the reproducibility of all experiments by providing all code and data on Github under https://​
github.​com/​iot-​salzb​urg/​neare​st-​advoc​ate. The experiments were run in Python 3.9 on a single core of an AMD Ryzen
Threadripper PRO 5975WX processor inside a container environment using the Docker orchestration software with the
image ‘cschranz/gpu-jupyter‘ and tag ‘v1.4_cuda-11.0_ubuntu-20.04‘, available on Dockerhub.

Declarations

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

https://github.com/iot-salzburg/nearest-advocate
https://github.com/iot-salzburg/nearest-advocate

Page 23 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46 	

Received: 8 December 2023 Accepted: 20 March 2024

References
	1.	 G. Carter, Coherence and time delay estimation. Proc. IEEE 75, 236–255 (1987)
	2.	 F. Viola, W. Walker, A spline-based algorithm for continuous time-delay estimation using sampled data. IEEE Trans.

Ultrason. Ferroelectr. Freq. Control 52, 80–93 (2005)
	3.	 M. Guggenberger, M. Lux, L. Böszörmenyi, An analysis of time drift in hand-held recording devices. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8935, 203–213 (2015)

	4.	 M. Meier, C. Holz, BMAR: barometric and motion-based alignment and refinement for offline signal synchronization
across devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7(2), 259 (2023). https://​doi.​org/​10.​1145/​
35962​68

	5.	 D. Bannach, O. Amft, P. Lukowicz, Automatic event-based synchronization of multimodal data streams from wear-
able and ambient sensors, in Smart Sensing and Context: 4th European Conference, EuroSSC, Guildford, UK, September
16–18, 2009. Proceedings 4. Springer 2009, pp. 135–148 (2009)

	6.	 S. Shabani, A. K. Bourke, A. Muaremi, J. Praestgaard, K. O’Keeffe, R. Argent, M. Brom, C. Scotti, B. Caulfield, L.C. Walsh,
An automatic foot and shank IMU synchronization algorithm: proof-of-concept, in 2022 44th Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4210–4213 (IEEE, 2022)

	7.	 F. Tirado-Andrés, A. Araujo, Performance of clock sources and their influence on time synchronization in wireless
sensor networks. Int. J. Distrib. Sens. Netw. 15(9), 1550147719879372 (2019)

	8.	 J. Cheong, Four ways to quantify synchrony between time series data. https://​towar​dsdat​ascie​nce.​com/​four-​ways-​
to-​quant​ify-​synch​rony-​betwe​en-​time-​series-​data-​b9913​6c4a9​c9 (2019)

	9.	 M. Ferreira, M. Rodriguez, Exploring time series correlation. https://​www.​resea​rchga​te.​net/​publi​cation/​36900​9724
(2023)

	10.	 C.H. Knapp, G.C. Carter, The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech
Signal Process. 24, 320–327 (1976)

	11.	 D. Maskell, G. Woods, The estimation of subsample time delay of arrival in the discrete-time measurement of phase
delay. IEEE Trans. Instrum. Meas. 48, 1227–1231 (2000)

	12.	 R. Vio, W. Wamsteker, Limits of the cross-correlation function in the analysis of short time series. Publ. Astron. Soc.
Pac. 113(779), 86 (2001)

	13.	 J. P. Lewis, Fast normalized cross-correlation (2010). https://​api.​seman​ticsc​holar.​org/​Corpu​sID:​23972​91
	14.	 D. Lyon, The discrete Fourier transform, part 6: cross-correlation. J. Object Technol. 9(2), 17 (2010)
	15.	 R.K. Pearson, Mining Imperfect Data. Society for Industrial and Applied Mathematics (2005). http://​epubs.​siam.​org/​

doi/​book/​10.​1137/1.​97808​98717​884
	16.	 H. Park, S. Nam, Time-delay estimation using m-band wavelet transform and projection cross-correlation. Electron.

Lett. 38(9), 1 (2002)
	17.	 C. Wang, L. Zhang, L. Xie, J. Yuan, Kernel cross-correlator. Proc. AAAI Conf. Artif. Intell. 32, 4179–4186 (2018)
	18.	 E. Keogh, S. Lonardi, C.A. Ratanamahatana, Towards parameter-free data mining, in Proceedings of the Tenth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 206–215 (ACM, Seattle, 2004). https://​
dl.​acm.​org/​doi/​10.​1145/​10140​52.​10140​77

	19.	 T. Giorgino, Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw.
31(7), 259 (2009)

	20.	 C. Schranz, S. Mayr, Ein neuer algorithmus zur zeitsynchronisierung von ereignis- basierten zeitreihendaten als
alternative zur kreuzkorrelation, 9 (2022). https://​zenodo.​org/​record/​73709​58

	21.	 D. Mills, Network time protocol (version 3) specification, implementation and analysis. Technical report (1992)
	22.	 C. Schranz, P. Michael Jeremias, Deterministic time-series joins for asynchronous high-throughput data streams, in

2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 1031–1034
(2020)

	23.	 T. Wescott, Sampling: what nyquist didn’t say, and what to do about it (2016). https://​neuron.​eng.​wayne.​edu/​auth/​
ece43​30/​pract​ical_​sampl​ing.​pdf

	24.	 S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951). https://​doi.​org/​10.​
1214/​aoms/​11777​29694

	25.	 S.K. Lam, A. Pitrou, S. Seibert, Numba: a LLVM-based python JIT compiler, in Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC, ser. LLVM ’15 (Association for Computing Machinery, New York, 2015).
https://​doi.​org/​10.​1145/​28331​57.​28331​62

	26.	 S. Kranzinger, S. Baron, C. Kranzinger, D. Heib, C. Borgelt, Generalisability of sleep stage classification based on inter-
beat intervals: validating three machine learning approaches on self-recorded test data. Behaviormetrika 85, 1–18
(2023)

	27.	 S. Bernhart, E. Harbour, S. Kranzinger, U. Jensen, T. Finkenzeller, Wearable chest sensor for stride and respiration
detection during running. Springer Nature Sports Engineering (2023)

	28.	 R. Wilcox, A note on the Theil–Sen regression estimator when the regressor is random and the error term is hetero-
scedastic. Biom. J. 40(3), 261–268 (1998)

	29.	 V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in Proceedings of the 27th Inter-
national Conference on International Conference on Machine Learning, ser. ICML’10 (Omnipress, Madison, 2010), pp.
807–814

	30.	 K. Hornik, Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991)

https://doi.org/10.1145/3596268
https://doi.org/10.1145/3596268
https://towardsdatascience.com/four-ways-to-quantify-synchrony-between-time-series-data-b99136c4a9c9
https://towardsdatascience.com/four-ways-to-quantify-synchrony-between-time-series-data-b99136c4a9c9
https://www.researchgate.net/publication/369009724
https://api.semanticscholar.org/CorpusID:2397291
http://epubs.siam.org/doi/book/10.1137/1.9780898717884
http://epubs.siam.org/doi/book/10.1137/1.9780898717884
https://dl.acm.org/doi/10.1145/1014052.1014077
https://dl.acm.org/doi/10.1145/1014052.1014077
https://zenodo.org/record/7370958
https://neuron.eng.wayne.edu/auth/ece4330/practical_sampling.pdf
https://neuron.eng.wayne.edu/auth/ece4330/practical_sampling.pdf
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1145/2833157.2833162

Page 24 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing (2024) 2024:46

	31.	 M.A. Daley, D.M. Bramble, D.R. Carrier, Impact loading and locomotor-respiratory coordination significantly influence
breathing dynamics in running humans. PLoS ONE 8(8), 1–10 (2013). https://​doi.​org/​10.​1371/​journ​al.​pone.​00707​52

	32.	 R.B. Banzett, J. Mead, M.B. Reid, G.P. Topulos, Locomotion in men has no appreciable mechanical effect on breathing.
J. Appl. Physiol. 72(5), 1922–1926 (1992)

	33.	 D.M. Bramble, D.R. Carrier, Running and breathing in mammals. Science 219(4582), 251–256 (1983)
	34.	 S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, K. Smith, Cython: the best of both worlds. Comput. Sci. Eng.

13(2), 31–39 (2011)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1371/journal.pone.0070752

	Nearest advocate: a novel event-based time delay estimation algorithm for multi-sensor time-series data synchronization
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Time offset estimation
	2.2 Linear clock drift
	2.3 Non-linear clock drift

	3 Nearest advocate algorithm
	3.1 Algorithm
	3.2 Characteristic synchronisation curve
	3.3 Nearest advocate as a metric space
	3.3.1 Definition of a metric space
	3.3.2 Application to nearest advocate
	3.3.3 Symmetric nearest advocate
	3.3.4 Theorem

	3.4 Implementation details

	4 Evaluation
	5 Results
	5.1 Method comparison on simulated data
	5.2 Method comparison on semi-simulated data
	5.3 Method comparison on real data

	6 Applications of nearest advocate
	6.1 Linear and non-linear clock drift correction
	6.2 Event-weighted nearest advocate
	6.3 Synchronicity of different observations quantities

	7 Discussion
	7.1 Method comparison
	7.2 Performance test
	7.3 Applications
	7.4 Limitations

	8 Conclusion
	Appendix A: Proof of being a metric space
	A.1 is not positive definite
	A.2 (M, D) is positive-definite
	A.3 is not symmetric
	A.4 (M, D) is symmetric
	A.5 Contradiction of the Triangle Inequality for
	A.6 Proof of the Triangle Inequality for
	A.7 Conclusion of the shown statements
	A.8 Empirical Simulation

	Appendix B: Event-weighted nearest advocate
	Acknowledgements
	References

