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Abstract 

Estimating time delays in event-based time-series is a crucial task in signal process-
ing as it affects the data quality and is a prerequisite for many subsequent analyses. In 
particular, data acquired from wearable devices often suffer from a low timestamp pre-
cision or clock drift. Current state-of-the-art methods such as Pearson Cross-Correlation 
are sensitive to typical data quality issues, e.g. misdetected events, and Dynamic Time 
Warping is computationally expensive. To overcome these limitations, we propose 
Nearest Advocate, a novel event-based time delay estimation method for multi-sensor 
time-series data synchronisation. We evaluate its performance using three independ-
ent datasets acquired from wearable sensor systems, demonstrating its superior 
precision, particularly for short, noisy time-series with missing events. Additionally, we 
introduce a sparse variant that balances precision and runtime. Finally, we demonstrate 
how Nearest Advocate can be used to solve the problem of linear as well as non-
linear clock drifts. Thus, Nearest Advocate offers a promising opportunity for time 
delay estimation and post-hoc synchronization for challenging datasets across various 
applications.

Keywords:  Event-based time-series, Time delay estimation, Synchronization, Clock 
drift, Cross-correlation, Kernel cross-correlation, Dynamic time warping, Wearable 
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1  Introduction
Time delay estimation is the process of quantifying the relative time shift between two 
time-series that observe the same quantities [1, 2]. This technique is critical in various 
domains, including signal processing, control systems, and multimedia analysis. 
This paper focus on the time delay estimation of event-based time-series data. Unlike 
continuous signals with a constant sample rate, event-based time-series consist of 
a sequence of timestamps that indicate the re-occurrence of similar events in time. 
Common examples of such data are heartbeat, stride, or fault events.

In general, datasets created by multi-sensor data collections contain time offsets 
if no automated time synchronization device is applied in advance. Therefore, 
manually induced synchronization points at data collection, i.e. events easy to detect, 
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enable a manual time offset removal in the data post-processing by identifying the 
synchronization events in all sensor systems and shifting the different time-series on one 
mutual timeline. However, this method is often not feasible, leads to a more complex 
experiment setup, and also additional work in post-processing [3–6].

Clock drifts are timeline deviations from an ideal timeline that cause varying additional 
time delays and are usually measured in parts per million (ppm) or seconds per second, 
e.g. clocks with crystal oscillators have an accuracy of 10–100 ppm [3, 7]. They occur 
in custom sensor hardware as well as in high-end devices. Whereas inter-device clock 
drifts between different devices can be relatively large, inter-device clock drifts between 
devices of the same type can also occur, but are more likely to be negligible. Constant 
clock drifts are caused by oscillator irregularities that are triggered by crystal production 
errors or aging. Moreover, temperature fluctuations, concussions, or power supply 
alterations interfere regular oscillating clocks and raise erratic clock drifts [4, 7].

The standard procedure for synchronizing event-based time-series is to interpolate 
the temporal differences of all subsequent events to a constant sampling rate and a 
subsequent time delay estimation. Common methods for time delay estimation on a 
signal include Pearson Cross-Correlation (PCC), Kernel Cross-Correlation (KCC), and 
Dynamic Time Warping (DTW), each with its own strengths and weaknesses [8, 9].

By shifting one signal across various time offsets and computing the correlation at 
each shift, PCC considers the time delay that yields the highest cross-correlation as 
the most likely estimate [10–12]. This can be computationally expensive ( O(n · T ) ), 
but a performance gain to O(n · log(n)) can be achieved by applying the Fast Fourier 
Transform (FFT) [13, 14]. However, the application of PCC has several drawbacks: The 
precision of the determined time offset decreases if the inherent frequency of the signal 
variability is lower than that of the occurring events [12]. In addition, PCC also shows 
low robustness in case of too short time-series as well as missing events or imprecise 
timestamps, which often requires an expensive correction [12, 15].

Kernel Cross-Correlation (KCC) is a time delay estimation method that builds on the 
concept of PCC while incorporating a kernel function to enhance accuracy. The KCC 
algorithm for event-based time-series data converts the events into equidistant arrays 
with binary event-hot encoding and convolves this discrete representation with the 
kernel function before computing their Cross-Correlation. Finally, it shifts one input 
across multiple candidate time delays to find the delay that maximizes the Cross-
Correlation similar to PCC [16, 17]. The type of kernel function is chosen based on the 
specific characteristics of the event-based time-series being analyzed, such as noise level 
or frequency content. In the case of event-based time-series, a triangular kernel can be 
used, which reduces noise and improves time delay estimation precision [16].

Dynamic Time Warping (DTW) is a method for aligning two similar time-series 
signals based on a distance-like similarity measure. This measure is calculated by 
finding the minimal sum of distances in a cross-distance matrix containing the 
differences between all elements of the test and reference sequences. The advantage of 
DTW lies in its ability to allow a nonlinear mapping between signals, accounting for 
local time domain distortions. However, this flexibility comes at the cost of significant 
computational demands of O(n ·m) [18]. DTW is particularly suited for systems or 
objectives that experience severe clock drifts or irregular connection issues [19].
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We identified a gap in methods and research on how to estimate time delays in 
event-based multi-sensor time-series data, such as two identical measurements 
shifted relatively in time (see example in Fig. 1). Additionally, we state that the trans-
formation of inter-event interpolation can result in information loss, which makes 
existing methods less accurate. Despite the growing importance of accurately esti-
mating time delays due to the rise of wearable devices and the combination of data 
from multiple sensors, the body of research dedicated to this subject remains dispro-
portionately scant.

This paper introduces the Nearest Advocate (NAd) algorithm, a novel approach 
designed for event-based multi-sensor time-series data synchronization. Building 
on an initial idea from [20], the NAd algorithm has been significantly improved and 
expanded, and it has been rigorously validated. It is compared against current state-
of-the-art methods to demonstrate its effectiveness for varying magnitudes of typical 
data quality issues in three event-based time-series. To the best of our knowledge, 
this work represents the first comparison of time delay estimation methods for 
event-based time-series data. Additionally, the NAd algorithm is evaluated for the 
challenge of non-linear clock drift correction, introduces advancements in event-
specific weightings, and provides a proof-of-concept for measuring the synchronicity 
of different observation quantities. These contributions address critical gaps found in 
the existing literature and constitute advancements in the field of time-series analysis.

Section 2 formulates the problem of time delay estimation and clock drift for event-
based time-series. Then, Sect.  3 proposes the Nearest Advocate algorithm and its 
properties. Section 4 presents the three elaborated datasets on which the algorithms 
were evaluated in Sect.  5. Section  6 presents an empirical evaluation of the Nearest 
Advocate algorithm for clock drift correction, introduces advancements in event-spe-
cific weightings, and provides a proof-of-concept for measuring the synchronicity of 
different observation quantities. These three problems still pose a challenge for state-
of-the-art algorithms. The findings are discussed in Sect. 7 and concluded in Sect. 8.

2 � Problem formulation
We differentiate three interconnected problems of time synchronization: time offset 
estimation (i.e. time delay), linear clock drift (i.e. skew) correction, and non-linear 
clock drift correction, each being a subset of the subsequent. This terminology is 

Fig. 1  Two identical ECGs with a relative time delay of φ (gray) with their characteristic beats, i.e., R-peaks 
depicted in orange
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consistent with existing definitions of Meier and Holz [4], Tirado-Andrés and Araujo 
[7], and Mills [21].

While the basic implementation of the NAd algorithm aims to solve the time offset 
issue in Sects. 5, 6.1 will demonstrate how it can also be utilized for a clock drift 
correction. Additionally, Sect. 6.2 will show how to incorporate the events’ confidences 
in NAd using event-specific weighting and Sect. 6.3 illustrates a proof-of-concept of how 
to process distinct observations.

2.1 � Time offset estimation

Consider an event-based time-series Tn = {ti : ti ∈ R ∧ ti − ti−1 > 0 ∀i = 1, 2, . . . , n} , 
representing strictly increasing sets, and Sm = {sj : sj ∈ R ∧ sj − sj−1 > 0 ∀j

= 1, 2, . . . ,m} , the measurement of Tn , with a time delay φs between the event-based 
time-series. The relationship between the two series is given by:

Assuming the distribution of errors ε is centered around zero, i.e. E[ε] = 0 , the time 
delay φs can be estimated for m = n and i = j using the Mean Absolute Error (MAE):

In cases where events in S are undetected or unmatched, this estimation becomes 
invalid. Assuming m ≤ n and a known injective and strictly monotonically increasing 
mapping function between events f : j �→ i , the time delay φ can be estimated by:

However, the mapping function f is not known in practical scenarios, complicating the 
time delay estimation problem. To address this, we propose the NAd algorithm, which 
operates independently of the mapping function f.

2.2 � Linear clock drift

There is a linear clock drift between two event-based time-series, if there is a function 
f : S → R such that sj  → (1+ α)sj + φ + εj ∀j = 1, 2, . . . ,m with α ∈ (−1,∞) . There 
is no clock drift if α = 0 , but only a constant time offset φ.

2.3 � Non‑linear clock drift

There is a non-linar clock drift between two event-based time-series, if there is a non-
linear monotonically increasing function f : S → R , i.e. ∀f (sj) ≥ f (si) ⇒ sj > si.

In many practical scenarios, the non-linear portion of clock drift is negligible, 
especially for short measurements at nearly constant temperatures [7]. Therefore, 
the need for the correction of non-linear clock drifts has to be assessed. E.g., our 
measurements spanning up to eight hours revealed that the non-linearity’s magnitude 
was about a second, while the linear part reached up to a minute.

(1)∀j ≤ m : ∃i ≤ n : sj = ti + φs + εj

(2)φ̂s = arg min
φ∈R

n

i=1

|si − ti − φ|

(3)φ̂s = arg min
φ∈R

m
∑

j=1

|sj − tf (j) − φ|
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3 � Nearest advocate algorithm
3.1 � Algorithm

The Nearest Advocate (NAd) algorithm, based on a zipper principle adapted from a 
stream-stream join algorithm [22], estimates the time delay between two event-based 
time-series data. The core concept involves calculating the distance between each event 
in one time-series and the nearest event (i.e., advocate) in another time-series for a given 
time offset φ . The average of these distances indicates the synchrony between the two 
time-series.

The method estimates the time delay between two event-based time-series by calcu-
lating the synchrony measure for multiple potential time offsets in a one-dimensional 
search space, T = {φ : φ ∈ R} . The evaluation of a specific time delay is the inner part of 
the algorithm, while looping through the search space T  is the outer part. After skipping 
leading reference events (see Pseudocode 1, phase 1), the inner part is based on the zip-
per principle to match each test event with the nearest advocate event (see pseudocode 1, 
phase 3). Leading and trailing test events must be considered separately (see pseudocode 
1, phases 2 and 4, respectively). A simplified depiction of the inner part is shown in Algo-
rithm 1, with the full code available at https://​github.​com/​iot-​salzb​urg/​neare​st-​advoc​ate.

Algorithm 1  Nearest Advocate, inner part

https://github.com/iot-salzburg/nearest-advocate
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In the first phase, leading reference events are skipped by incrementing the reference 
array indices until the first test element lies between two reference events, expressed by 
the inequalities ar[ir] ≤ as[is] < ar[ir + 1] . In this phase the cumulative distance dcum is 
not incremented.

The second phase processes leading test events. This is relevant when the test time-
series start precedes the reference time-series. Each test event is matched with the first 
reference element as long as the respective invariant holds.

In the third phase, the loop invariant ar[ir] ≤ as[is] < ar[ir + 1] is exploited and 
maintained. In each iteration, the average distance between each event in the test array 
and its nearest counterpart in the reference array is calculated and cumulated.

The final phase processes trailing test events, a similar case to the second phase but 
for trailing events instead of leading ones. Finally, the mean of all matched distances 
is returned, given by the fraction of cumulative distance and the cardinality of the test 
array.

This inner algorithm has a linear runtime complexity. For the overall time delay 
estimation, the inner part is evaluated for multiple time offsets φ ∈ T  which are by 
default equally spaced within a given interval. Therefore, the runtime complexity is 
|T | · (|ar | + |as|).

The granularity, i.e. the interval between these evaluated time offsets T  affects the 
quality of the characteristic curve. This curve oscillates approximately with the maximal 
event frequency of the reference and test time-series. To achieve a characteristic curve 
that is not aliased and suitable for accurately detecting its minimum—which serves as 
the time offset estimator—it is advisable to use a frequency at least ten times higher than 
the expected Nyquist frequency [23].

3.2 � Characteristic synchronisation curve

In Fig. 2, the characteristic curve of the NAd method is shown in blue. The x-axis depicts 
the evaluated time delay φ ∈ R , where the detected offset is marked as a vertical red line 
in the proximity of the true time delay π . The y-axis shows the NAd synchrony measure 
with the black horizontal line representing the mean over all time shifts. It can be seen 
that the curve oscillates noticeably in proximity to the estimated time shift.

The global minimum of the characteristic curve constitutes the estimator of the test 
array’s time delay The mean distance metric increases during test array shifting and 
reaches a maximum when the majority of test events are approximately halfway between 
the reference events. A secondary (or minor) minimum occurs when the shift is one 
mean inter-event interval (or a multiple of it), but it’s less significant due to the inherent 
pattern’s variability. Increased variability of event intervals, like heart rate variability or 
varying running speeds, improves the time delay estimation’s accuracy by dampening 
local minima.

3.3 � Nearest advocate as a metric space

The NAd algorithm is proposed as a novel approach to address the challenge of time 
delay estimation in event-based time-series. This section investigates under which 
constraints the NAd’s mean distance measure constitutes a metric.
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3.3.1 � Definition of a metric space

Formally, a metric space is an ordered pair (M, D) where M is a set and D is a function 
D : M ×M → R satisfying the following axioms for all elements x, y, z ∈ M : 

1.	 Positive definiteness The distance from a point to any other point is non-negative 
D(x, y) ≥ 0 and the distance is only zero if and only if the two elements are equal: 
D(x, y) = 0 ⇐⇒ x = y.

2.	 Symmetry The distance from x to y is always the same as the distance from y to x: 
D(x, y) = D(y, x).

3.	 Triangle Inequality The distance between two elements is always less than or 
equal to the sum of the distances of a third element from each of these points: 
D(x, z) ≤ D(x, y)+ D(y, z)

3.3.2 � Application to nearest advocate

Here we want to show if (or under which constraints) (M,DNAd) is a metric space, 
where M = {T ⊂ R : T = {ti : ti ∈ R ∧ ti − ti−1 > 0 ∀i ≤ n}} ⊂ P(R) and 
X ,Y ,Z ∈ M are sets with strict increasing order with their elements in R . The function 
DNAd : M ×M → R is the inner part of the NAd algorithm as illustrated in the 
pseudocode 1 depended of it’s single parameter dmax > 0.

3.3.3 � Symmetric nearest advocate

Similarly to the Kullback–Leibler Divergence [24], the NAd requires also a symmetric 
version which is simply constructed by averaging the function with both orders of their 
arguments.

To shorten the notation we call DNAd-symmetric = D and for some cases, we want to 
emphasize the single parameter dmax with a subscript Ddmax

.

DNAd-symmetric(X ,Y) :=
1

2
(DNAd(X ,Y)+ DNAd(Y ,X ))

Fig. 2  Characteristic curve of NAd, global minimum indicates the time offset
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3.3.4 � Theorem

The Symmetric NAd Ddmax
 over M�tmin

= {T ⊂ R : T = {ti : ti ∈ R ∧ ti − ti−1

≥ �tmin ∀i = 1, 2, . . . , n}} is a metric space for all �tmin > 0 if the inequality 
dmax ≤ �tmin holds.

Specifically, the following properties can be shown: 

1.	 (M,DNAd)  is not positive definite: We show that the non-symmetric NAd distance 
function is in general not positive definite.

2.	 (M, D) is positive-definite: We show that the Symmetric NAd distance function is 
positive-definite.

3.	 (M,DNAd) is not symmetric: We show that the symmetry property does not hold in 
general.

4.	 (M,  D) is symmetric: We show that the Symmetric NAd distance function is 
symmetric.

5.	 Contradiction of the Triangle Inequality for (M,DNAd) : We show that the NAd 
distance function DNAd does not satisfy the triangle inequality in general.

6.	 Proof of the Triangle Inequality for (M�tmin ,DNAd) : We prove that under a certain 
constraint, the NAd distance function DNAd satisfies the triangle inequality.

Thus, we conclude that (M�tmin ,Ddmax
) constitutes a metric space. The proofs for all 

statements are provided in the “Appendix A”. Additionally, simulations are provided in 
the same appendix and under https://​github.​com/​iot-​salzb​urg/​neare​st-​advoc​ate/​blob/​
main/​exper​iments/​metric_​proof_​simul​ation.​ipynb for an empirical demonstration of 
the theorem.

3.4 � Implementation details

The NAd implementation sets the maximum distance dmax to a quarter of the median 
inter-event interval of the reference array ( median(diff(ar) ). The search space ranges 
from -300  s to 300  s, with increments of 0.1  s each. Various NAd versions (‘NAd-
dense‘, ‘NAd-sparse10‘, and ‘NAd-sparse100‘) with different sparse_factor parameters 
were implemented to balance precision and computational efficiency. The method was 
implemented in Python 3.10 and the just-in-time (JIT) compiler Numba 0.55 [25] to 
optimize performance.

Both Cross-Correlation methods utilized the scipy package (version 1.7.3), while the 
Dynamic Time Warping (DTW) method employed the dtw-python package (version 
1.3.0) [19].

4 � Evaluation
The previously described methods (PCC, KCC, DTW, and NAd) are compared using 
three distinct datasets to evaluate their efficacy in diverse applications characterized by 
variable inter-event intervals and long-term event patterns. Each dataset comprises pairs 
of events, denoted by their timestamps: 

1.	 Heartbeat (HB) Dataset: The Heartbeat (HB) Dataset consists of two series of 
R-peaks from the characteristic QRS-complex in electrocardiogram (ECG) signals, 

https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/metric_proof_simulation.ipynb
https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/metric_proof_simulation.ipynb
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collected from 17 participants during sleep as part of the Virtual Sleep Lab project 
[26]. The reference series was captured using the laboratory-standard BrainVision 
BrainAmp ExG polysomnograph (Brain Products GmbH, Germany), and the com-
parative series was recorded with the Movesense HR+ (Suunto, Finland) sensor. Fig-
ure 1 illustrates two ECG signals with a relative time delay and their corresponding 
R-peaks as event timestamps. Each session lasted approximately eight hours with an 
average inter-event interval (inter-beat interval (IBI)) of 1.04 s.

2.	 Breath Rate (BR) Dataset: This dataset comprises breathing data recorded during 
running using a custom smart textile chest sensor [27]. A custom flow reversal 
detection algorithm detected expiration and inspiration events, marking the 
beginning of the exhalation and inhalation phases, respectively. Additionally, 
reference flow reversal events were obtained from a spirometry system. Participants 
were instructed to maintain two different average breathing rates (39 ± 3 bpm and 
27 ± 2.4 bpm). The average inter-event interval was 1.07 s.

3.	 Step Rate (SR) Dataset: Chest-worn inertial measurement units (IMUs) captured 
acceleration data during the same running experiment as (BR), with a custom 
algorithm identifying step events [27]. Reference step events were determined 
using a validated algorithm on data from tibia-mounted IMUs. Participants ran on 
a treadmill at two different speeds, resulting in average step rates of 154.2 ± 10.8 
spm and 158.4 ± 10.2 spm. The average inter-event interval was 0.467  s. Both the 
BR and SR datasets included 19 pairs of measurements, each with a duration of 
approximately 42 min.

As no ground truth time delay can be obtained for the given data pairs, the methods are 
evaluated using simulated, semi-simulated, and real data pairs for a rigorous comparison. 

1.	 Simulated reference event-based time-series data were generated using normally 
distributed inter-event intervals to assess the effect of time-series lengths on 
accuracy and runtime. Additionally, the errors of detected events in the test signals 
can be assumed to be sampled from a stationary normal distribution. Therefore, the 
test array was cloned from the reference array, with constant Gaussian noise added 
to each event timestamp.

2.	 The impact of noise, missing events, and clock drift on time delay estimation 
accuracy was explored for both reference and test arrays of all three datasets HB, BR, 
and SR. Assuming a stationary normal distribution of the event detection in the test 
signal, a standard deviation of approximately 0.1s was found to be typical across the 
datasets by evaluating against the respective reference signal. Therefore, the default 
Gaussian noise was set to 0.1s, default clock drift to zero, and the test array length to 
1000, before removing a fraction of events.

3.	 Real heartbeat data (HB) were used to compare methods, after manual investigations 
of their time delays. To increase the result’s robustness, the symmetric NAd was 
assessed. The impact of length on estimation precision was examined by selecting 
different test array lengths.
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NAd is evaluated with three different sparseness factors, PCC with DFT (discrete FT) 
and FFT (fast FT), KCC with two triangular kernel widths, and DTW with an asymmet-
ric step pattern. The median mean absolute error (MAE) and runtime for each method 
and setting were calculated over 25 runs and methods exceeding 3 s were omitted for 
subsequently increased lengths.

5 � Results
5.1 � Method comparison on simulated data

Figure 3 compares the methods on simulated data, demonstrating the impact of time-
series length on precision and computation time.

NAd sparsity affects precision and computation time, offering an adjustable tradeoff. 
PCC-FFT performs faster than PCC-DFT with the same precision. KCC methods show 
comparable precision to NAd and computational time to PCC-FFT. DTW exhibits 
unstable results for time-series with less than 1000 events and longer time-series have 
rapidly increasing runtime complexity.

5.2 � Method comparison on semi‑simulated data

Figure  4 illustrates the effects of varying Gaussian noise, missing event fractions, and 
linear clock-drift intensities (i.e. skews) on the precision. Each point shows the median 
MAE of 25 runs. The top plot shows that the MAE increases with the noise magnitude, 
as noise represents imprecisely detected timestamps. PCC and DTW methods, along 
with NAd-dense, are robust against noise. The center plot shows that a lower retention 
fraction leads to lower precision, with NAd and KCC performing well at high missing 

Fig. 3  Impact of time-series length on precision and runtime of time delay estimation methods on simulated 
data
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event fractions. The bottom plot indicates that higher clock drift results in a larger MAE. 
PCC and particularly DTW show high robustness against clock drifts.

5.3 � Method comparison on real data

Figure 5 displays each method’s performance on real HB dataset measurement pairs. A 
subsequence of variable length is selected from the test array to demonstrate the influ-
ence of different lengths of real data pairs on the precision. The upper plot shows median 
precision as a function of length, while the bottom plot indicates the interquartile inter-
val for the most precise method variant.

It can be seen, that NAd followed by KCC yield precise time delay estimations, even 
for short sub-sequences. In contrast, PCC estimation is mostly random until a length of 
about 1000 due to the subsequence length constraint, as indicated by its linear increase. 
DTW estimates have high variance, and the method’s runtime exceeds 3 s for time-series 
with more than 2000 events.

Fig. 4  Impact of Gaussian noise, missing events, and clock drift on the precision of methods on 
semi-simulated data based on HB, BR, and SR
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6 � Applications of nearest advocate
As the NAd algorithm prooved its ability for data of low quality and has algorithmical 
flexibility, this section investigates the application of NAd for various advanced time 
delay estimation problems.

6.1 � Linear and non‑linear clock drift correction

Besides the application for eliminating constant time offsets, NAd can be applied to 
detect and solve the clock drift issue between sensor devices. This process exploits 
the investigated property of NAd to be very precise for short time-series and robust 
against some degree of clock drift (see Figs. 4 and 5), by applying it on a high number 
of short (overlapping) windows of the whole time-series. Afterwards, a regression is 
used to estimate the progress of the clock drift.

For the linear clock drift correction, the robust Theil-Sen estimator [28] is used 
to detect (1) the optimal time delay ( φ̂(t) ) per window, (2) the relative factor of the 
sample rate ( Fs ) deviation ( �Fs ) compared to the reference clock for clock drift 
removal and (3) the MAE and interquartile width as indicators of the accuracy of 
the resulting regression. After the regression, the test array’s timestamp are adapted 
based on the estimated φ̂0 and �Fs.

Fig. 5  Impact of the length of real heartbeat dataset pairs on precision
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The non-linear clock drift requires the estimation of the clock drift course, which 
is assumed to be continuous. Therefore, a multi-layer perceptron (MLP) with a single 
input, single output neuron, one hidden layer, and a ReLU activation function [29] 
succeeds in estimating this unknown continuous clock drift function [30]. After 
each function estimation, the timestamps of the test array are interpolated using the 
trained function estimator of the MLP.

Figure  6 presents two iterations of a linear and a non-linear clock drift correction, 
respectively. Each plot depicts a scatterplot of estimated time delays for the individual 
windows along a respective regression. The interquartile range indicates the accuracy 
of the correction. Figure 6a depicts a strong linear clock drift: The estimated time offset 
of each window (blue dot) is aligned approximately on a line, that is calculated by the 
robust linear regression.

As we can see in Fig.  6b the non-linear clock-drift wanders (nearly continuously) 
between −0.5s and 1.0s within the temporal span of about eight hours. This non-linear 
portion of the clock drift cannot be further corrected by a linear regression. However, 
in Fig. 6c we can see that the non-linear approach incorporating a MLP for the func-
tion approximation can capture the trend and therefore decreases the residuals substan-
tially. After three iterations of non-linear clock drift corrections, as shown in Fig. 6d, the 
90% interquantile range was reduced to less than 0.13s, indicating a precise time delay 

Fig. 6  Iterative linear and subsequent non-linear corrections of the clock drift using a robust linear regression 
and MLP regression



Page 14 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:46 

synchronization. The median residual is 11ms, which is less than half of the median error 
of 33.4ms reported by Meier and Holz [4] using BMAR.

In experiments, it was shown that one or two linear corrections suffice. Heuristically, 
starting with a smaller window width in the first iteration is recommended, because 
narrow windows are more robust against a high magnitude of linear clock drift (skews). 
A high initial sample rate deviation could lead to incoherence in wide windows.

A weight decay helped successfully to regularize the estimated function. We 
experienced high slopes in the beginning and end of the function’s definition space, 
as strong neuron activations in this part are hardly regularized. To mitigate this 
effect, two dummy points were added 20 % outside the range of the times both before 
and after the measurement with the value of zero. This led to more conservative 
function estimations at the borders and also allowed extrapolations to some extent. 
The full implementation is available under https://​github.​com/​iot-​salzb​urg/​neare​st-​
advoc​ate/​blob/​main/​exper​iments/​appli​cation_​nonli​near_​corre​ction.​ipynb.

6.2 � Event‑weighted nearest advocate

In many event detection algorithms, some kind of confidence or precision can be 
assigned to each detected event. In contrast to algorithms based on the Pearson 
correlation (PCC and KCC), this additional information can be incorporated into 
NAd. A weighted NAd aims to weigh events that were confidently detected higher 
while weakening the influence of temporal areas with poor data quality or uncertain 
event detection. Therefore, any match of test and reference event can be weighted by 
multiplying their respective distance as proposed in the original algorithm (1) with a 
predefined weighting factor related to the test event. A pseudocode for the weighted 
NAd is provided in “Appendix 8”.

6.3 � Synchronicity of different observations quantities

There is a decent interdependency between breath and stride during running, the 
so-called locomotor-respiratory (LRC) coupling [31]. The LRC-ratio describes the 
number of strides per breath cycle, e.g. common human LRC-ratios are 2:1, 2.5:1, 3:1, 
or 4:1 [32, 33]. The BR and SR datasets were acquired simultaneously during the same 
experiment. Within this experiment, the participants were instructed to accomplish 
four runs and breathe with LRC ratios of 2:1 and 3:1, i.e., four and six steps per 
breath cycle, respectively [27]. The authors raised the question of whether it would 
be possible to use this LRC to estimate the time delay based on breathing and stride 
events and, therefore on observations of different quantities.

Figure  7 shows the time delay estimation between a breathing and a step event-
based time-series. The NAd algorithm was applied with a dmax of a quarter of the 
minimal median inter-event difference of the arrays. The basic time delay estimation 
was performed for multiple highly overlapping windows with a window length of 
250 s and a sliding rate of 5 s. Each optimal time delay is illustrated in the upper scat-
ter plot in Fig. 7 as blue point, with an additional robust linear regression showing a 
linear trend over time.

https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/application_nonlinear_correction.ipynb
https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/application_nonlinear_correction.ipynb
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In the heatmap of Fig.  7 the windows’ characteristic curves within the search 
space of ±60s were stacked horizontally for each window. The brown colors in the 
heatmap matrix indicate lower mean distances of the NAd runs, thus higher syn-
chronicity. Within the heatmap, the four runs can be recognized by four batches of 
more intense brown between windows 460 and 1104 and around the time offset of 
10 to 25 s.

Finally, the respective time delays were aggregated over all windows and summarized 
in the bottom right plot in Fig.  7. The mean aggregation utilizes the full information 
of all time delay estimations, instead of using only one optimum for the regression. 
The resulting mean time delay shows a clear minimum at 17.4s, constituting a robust 
estimation of the test measurement’s relative shift in time. However, this estimation 
might suffer from a time delay that originates from a relative phase shift between their 
frequencies.

Using the described process, 22 out of 24 pairs of corresponding BR and SR time-
series could be synchronized successfully, emphasizing a successful proof-of-concept of 
the NAd method for time offset estimation on different observations. The full imple-
mentation is available under https://​github.​com/​iot-​salzb​urg/​neare​st-​advoc​ate/​blob/​
main/​exper​iments/​appli​cation_​diffe​rent_​obser​vatio​ns.​ipynb.

Fig. 7  Windowed time delay estimation between breathing and step events: linear regression, heatmap for 
estimated time offset and window, and mean time offset across offsets

https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/application_different_observations.ipynb
https://github.com/iot-salzburg/nearest-advocate/blob/main/experiments/application_different_observations.ipynb
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7 � Discussion
7.1 � Method comparison

The NAd method demonstrates precision and stability in time delay estimation for 
event-based time-series, excelling when few events are present. With only 1% retained 
events (10 out of 1000), the method estimates time delays with a median MAE of under 
0.5s. Our results are consistent with Vio and Wamsteker [12] that PCC yields unstable 
results for short time-series.

NAd’s drawback is its higher runtime compared to FFT-based cross-correlation 
methods. However, adjusting the sparseness parameter trades runtime for precision, 
achieving higher precision and similar runtimes compared to PCC and KCC for long 
time-series.

Given a number of n respectively m events and a search space T = {φ : φ ∈ R} , NAd’s 
runtime complexity is O((n+m) · |T |) . Based on interpolated arrays of tmax events, 
PCC and KCC using FFT are O(tmax · log (tmax)) [13]. NAd’s runtime complexity 
becomes lower than the runtimes of PCC and KCC for long measurements because the 
search space is independent of the measurement length. DTW has O(n ·m) complexity 
[18], making it suitable only for short time-series where it has a significant higher MAE.

7.2 � Performance test

Table  1 summarizes the performance results of three implementations of the NAd 
method. To obtain statistically significant results, each implementation was measured 
seven times. The algorithm was executed 1000 times for both the Numba [25] 
and Cython [34] implementations, while it was only executed once for the Python 
implementation for runtime reasons.

The pure Python implementation required an execution time more than 200 times longer 
than the optimized versions, due to the intensive use of increment operations which are not 
efficiently handled by dynamically typed programming languages like Python. On the other 
hand, the JIT-compiled version of Numba required only marginally more time compared to 
the pre-compiled C-code generated by the Cython compiler.

7.3 � Applications

In Sect. 6.1, the ability of the NAd method to correct both the linear and also non-linear 
clock drifts of real pairs of measurements is demonstrated. This is particularly important 
for real-world applications where clock drift comes in combination with other data quality 
issues, including imprecisely detected event timestamps and missed events. The median 
residual of NAd is 11 ms for a non-linear clock-drift, which is less than half of the median 
error of 33.4 ms reported by Meier and Holz [4] using BMAR.

Table 1  Performance comparison of NAd implementations

Implementation Mean with std.

Python 213ms± 1.25ms

Numba 907µs± 3.98µs

Cython 905µs± 776 ns
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Typically, existing synchronization algorithms prioritize minimizing error over reduc-
ing power consumption. The power efficiency, has not been extensively assessed in prior 
research, especially in the context of online synchronization algorithms. Our method 
offers a distinct advantage for wearable devices. These devices regularly collect events that 
are either extracted from time-series signals or detected directly on the embedded device, 
which further reduces power-intensive data traffic. Consequently, our approach does 
not incur extra power usage during operation and may even offer a promising possibility 
to minimize data transfer. Moreover, it is well suited for use with devices not specifically 
designed to function within the same wireless network.

Additionally, the algorithmic flexibility of NAd allows to weight events separately and 
thereby, allowing the incorporation of the event detection algorithm’s confidence into the 
process of time delay estimation. Furthermore, even events of different but dependent 
observations can be processed, thus emphasizing the robustness of this method against 
poor data quality.

7.4 � Limitations

Experiments in this study focus on event-based time-series data which requires 
transforming event time-series into continuous signals for methods like PCC. Future 
research could compare methods on continuous signals, whereby NAd is applied on events 
detected in those signals to make the experiment setup more challenging and broaden its 
area of application.

Further investigation of time-series properties affecting NAd precision and stability 
is needed. Time-domain features like entropy or autocorrelation and the power density 
distribution might explain NAd’s oscillation width and magnitude around the estimated 
time offset and its estimate’s confidence interval.

The study’s datasets consist of nearly periodic events with similar sampling frequencies. 
Examining NAd’s robustness for non-periodic events and time delay estimation on different 
types of measurements could further broaden its applicability.

8 � Conclusion
We proposed NAd, a novel algorithm for synchronizing sensor data across various 
devices, eliminating the necessity for communication or direct user engagement during 
runtime while minimizing data traffic. The NAd method offers improved precision in 
time delay estimation compared to existing methods, particularly for short time-series 
and those with imprecise or missing events. The sparse variant provides computational 
efficiency at a slight precision tradeoff. NAd may not be optimal for applications 
prioritizing runtime but excels in precision for data with quality issues.

Overall, NAd provides a robust and precise solution for time delay estimation in event-
based time-series data. The algorithm’s efficiency and robustness against outliers make 
it suitable for time delay estimation in noisy event-based data with challenging event 
detection, where it can also incorporate the event detection’s confidence. It also allows 
the correction of even non-linear clock drifts and the time delay estimation based on 
events of different but dependent observations.
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Appendix A: Proof of (M′,D) being a metric space
In this appendix, the statements from Sect. 3.3 are proven.

A.1 (M,DNAd) is not positive definite

Consider sets X = {1, 2, 3} and Y = {1, 3} . For any dmax > 0 , from the regular case, i.e. 
step two, of the Pseudocode 1, we have (it can be analogously shown for the other steps):

Each element in Y is matched with its nearest advocate in X  . Therefore, we find that 
DNAd(X ,Y) = 0 while X  = Y , contradicting the positive-definiteness of (M,DNAd).

A.2 (M, D) is positive‑definite

Showing D(X ,Y) ≥ 0 indirectly
Suppose ∃X ,Y ∈ M : D(X ,Y) < 0

We show the matching Case 3 as it is the most complex one and the other can be shown 
analogously. The invariant we have in this case is xi ≤ yj < xi+1:

As we know distcum is initialized with 0, there must exist at least one loop iteration for 
which holds:

Case yj − xi < 0 ∧ xi+1 − yj < 0 contradicts the loop invariant of the matching Case 3. 
Case dmax < 0 contradicts the definition.

Therefore, D(X ,Y) ≥ 0 holds ∀X ,Y ∈ M, ∀dmax ∈ R.
Showing X = Y ⇒ D(X ,Y) = 0

Therefore, in each loop iteration distance = min(yj − xi, xi+1 − yj , dmax) = 0

Showing D(X ,Y) = 0 ⇒ X = Y indirectly
Suppose X  = Y

As we have the invariant xi ≤ yj < xi+1 , it follows:

DNAd(X ,Y) =
1

2
(min(|1− 1|, dmax)+min(|3− 3|, dmax)) = 0

w.l.o.g ⇒ DNAd(X ,Y) < 0

distcum < 0 (as the pseudocode 1)

xi ∈ X , yj ∈ Y : distance = min(yj − xi, xi+1 − yj , dmax) < 0

X = Y ⇒ ∀yj ∈ Y : ∃xi ∈ X : xi = yj

⇒ distcum = 0 ⇒ DNAd(X ,Y) = 0 ⇒ D(X ,Y) = 0

w.l.o.G ⇒ ∃yj ∈ Y : ∀xi ∈ X : xi �= yj

⇒ distance = min(yj − xi, xi+1 − yj , dmax) > 0

⇒ DNAd(X ,Y) = 0 ⇒ D(X ,Y) = 0



Page 19 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:46 	

Therefore, D is symmetric for all X ,Y ∈ M

A.3 (M,DNAd) is not symmetric

Let X = {1, 2, 3} , Y = {1, 3} , then for any dmax > 0 :

DNAd(X ,Y)  = DNAd(Y ,X ) contradicts the symmetry property.

A.4 (M, D) is symmetric

∀X ,Y ∈ M, ∀dmax > 0 :

Therefore, the symmetric Nearest Advocate distance D is symmetric over M.

A.5 Contradiction of the Triangle Inequality for (M,DNAd)

Let X = {1, 2} , Y = {2.1, 2.9} , Z = {3, 4} , then for any dmax ≥ 2 :

DNAd(X ,Z) > DNAd(X ,Y)+ DNAd(Y ,Z) ∀dmax ≥ 2 contradicts the triangle 
inequality.

Analogously, we can show that for this case DNAd(Z ,X ) > DNAd(Z ,Y)+ DNAd(Y ,X ) 
also does not hold and therefore the triangle equation is violated for the symmetric D.

However, we see that we could constrain D(dmax) such that this equation could still 
hold for a given M.

A.6 Proof of the Triangle Inequality for (M′,DNAd)

The triangle inequality is demonstrable when M is restricted to M′ = M�tmin , defined 
as {T ⊂ R : T = {ti : ti ∈ R ∧ ti − ti−1 > �tmin ∀i = 1, 2, ..., n}} ⊂ P(R) , a set with 
strictly ascending order and a minimum distance of �tmin > 0 between elements.

We will show that

DNAd(X ,Y) =
1

2
(min(|1− 1|, dmax)+min(|3− 3|, dmax)) = 0

DNAd(Y ,X ) =
1

3
(min(|1− 1|, dmax)+min(2− 1, 3− 2, dmax)

+min(|3− 3|, dmax)) =
1

3
min(1, dmax) > 0

D(X ,Y) :=
1

2
(DNAd(X ,Y)+ DNAd(Y ,X ))

=
1

2
(DNAd(Y ,X )+ DNAd(X ,Y))

= D(Y ,X )

2 · DNAd(X ,Z) = 2+ 1 = 3.0

2 · DNAd(X ,Y) = 0.1+ 0.9 = 1.0

2 · DNAd(Y ,Z) = 0.1+ 1.1 = 1.2

∀�tmin : ∃d′max : (DNAd(dmax),M�tmin) is a metric space

∀dmax ≤ d′max = �tmin/2



Page 20 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:46 

Lemma 1   In order to prove the triangle inequality, we first need to show that for any 
pair of added elements:

Proof of Lemma 1   This is the case if every yn+1 is only matched with xn+1 . As this 
should hold for newly added elements regardless of their order in the respective 
sets, we notate these elements by xj and yi . W.l.o.g., we prove Lemma 1 by showing 
xj − yi ≤ yi+1 − xj ∀yi ≤ xj < yi+1 by constraining the differences of two 
measurements over their true event timestamps:

We use again the distance function d(xi, yi) := min(xi − yi, dmax) ≥ 0 (which is not 
symmetric).

This term can be limited by either constraining dmax or the difference between |xj − tl | 
rsp. |yi − tl | with an upper threshold ε + |φ| where ε is the maximal error in measuring 
the true timestamp and φ the time delay. Then two limits follow:

Therefore, Lemma 1 holds ∀dmax ≤ �tmin/2 . The second limit is of theoretical interest 
as it shows that the triangle inequality holds for any �tmin if an arbitrarily high data 
quality and with already corrected time delay φ can be achieved.

Proof of the Triangle Inequality using Lemma 1

∀�tmin : ∃d′max :

DNAd(Xn+1,Yn+1) =
1

n+ 1

(

n · DNAd(Xn,Yn)+ |yn+1 − xn+1|
)

(yi+1 − xj)− (xj − yi) = (yi+1 − tl+1 +�tmin + tl − xj)

−(xj − tl + tl − yi)

(yi+1 − xj)− (xj − yi)

= d(yi+1, tl+1)+�tmin + d(tl , xj)− d(xj , tl)− d(tl , yi)

≥ �tmin − d(xj , tl)− d(tl , yi)

(yi+1 − xj)− (xj − yi) ≥ �tmin − 2dmax ≥ 0

∀dmax ≤ �tmin/2

(yi+1 − xj)− (xj − yi) ≥ �tmin − 2(ε + |φ|) ≥ 0

∀2(ε + |φ|) ≤ �tmin/2

DNAd(Xn+1,Yn+1)+ DNAd(Yn+1,Zn+1)

=
1

n+ 1
(n · DNAd(Xn,Yn)+ n · DNAd(Yn,Zn)

+ |yn+1 − xn+1| + |zn+1 − yn+1|)

≥
1

n+ 1
(n · DNAd(Xn,Zn)+ |zn+1 − xn+1|)

= DNAd(Xn+1,Zn+1)



Page 21 of 24Schranz et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:46 	

From now on, it is trivial to show that this also holds for the symmetric Nearest 
Advocate.

A.7 Conclusion of the shown statements

The properties of positive-definiteness, symmetry, and triangle inequality have been 
established, confirming that (Ddmax

,M�tmin) is a metric. �

A.8 Empirical Simulation

As the metric space (Ddmax
,M�tmin) depends on its parameters dmax and �tmin , it is of 

practical interest to empirically show their influence of them on the fraction of violated 
triangle inequalities. In Fig. 8 the number of violated triangle inequalities for 105 runs 
of each different parameter configuration is shown as a heatmap. The arrays have equal 
lengths for between two to 40 randomly sampled elements and randomly sampled ε and 
φ . The diagonal represents the constraint dmax = �tmin/2 , thus all entries in and above 
the diagonal must be zero.

Appendix B: Event‑weighted nearest advocate
This pseudocode depicts the changes in teal necessary to weight individual events of 
the test array with a given weight.

Fig. 8  Impact of the parameters dmax and �tmin on the number of violated triangle inequalities from 105 runs 
each
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Algorithm 2  Weighted Nearest Advocate, inner part
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