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Abstract 

A prevalent problem in statistical signal processing, applied statistics, and time series 
analysis arises from the attempt to identify the hidden state of Markov process based 
on a set of available noisy observations. In the context of sequential data, filtering refers 
to the probability distribution of the underlying Markovian system given the meas-
urements made at or before the time of the estimated state. In addition to the filter-
ing, the smoothing distribution is obtained from incorporating measurements made 
after the time of the estimated state into the filtered solution. This work proposes 
a number of new filters and smoothers that, in contrast to the traditional schemes, 
systematically make use of the process noises to give rise to enhanced performances 
in addressing the state estimation problem. In doing so, our approaches for the reso-
lution are characterized by the application of the graphical models; the graph-based 
framework not only provides a unified perspective on the existing filters and smooth-
ers but leads us to design new algorithms in a consistent and comprehensible manner. 
Moreover, the graph models facilitate the implementation of the suggested algorithms 
through message passing on the graph.

Keywords:  Probabilistic graphical model, Bayesian inference, Gaussian approximation 
filter and smoother, Cubature measure, Expectation propagation (EP)

1  Introduction
In a wide range of data science applications, such as tracking [1], navigation [2], and 
audio signal processing [3], one deals with the hidden Markov model that governs the 
dynamics of the latent process xn and that establishes the relationship between the 
unobserved variable xn and the observation yn . Here n ∈ N signifies the discrete time. 
Let Yn′ := {y1, · · · , yn′ } be the historical accumulation of data and let xn|n′ := xn|Yn′ be 
the conditioned random variable, then the Bayesian resolution for the unknown instance 
of xn is given by the probability P(xn|n′) , which is called filtering when n = n′ , smoothing 
when n < n′ , and prediction when n > n′ [4]. In this paper concern is confined to the 
filtering and smoothing distributions.

In the simplest case of linear dynamics together with linear observations corrupted 
by an independent Gaussian noise, the filtering/smoothing problem can explicitly be 
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solved by the Kalman filter/smoother which describes how the mean and covariance 
of the conditional probability evolve in the course of time [5–7]. For nonlinear systems 
where the conditioned measure cannot be characterized by a Gaussian probability, how-
ever, the target distributions do not permit closed-form expressions. In this case, various 
efforts have been made to obtain approximate solutions, see e.g., [5, 8–20]. Examples of 
traditional algorithms for filtering include the extended Kalman filter [14], the ensemble 
Kalman filter [15], unscented Kalman filter [21], cubature Kalman filter [22], Gaussian 
particle filter [23], the bootstrap filter and its variants [13, 16, 24, 25], and the Gaussian 
mixture filter [17, 18, 26, 27]. As for the smoothing, one can solve the problem by direct 
application of the Kalman filtering results because smoothing problem is a Kalman fil-
tering problem in disguise (see, for instance, [4] and references therein). In recent years, 
significant attention has been directed toward the filtering/smoothing for the state esti-
mation due to the remarkable success in various applications including medical tomog-
raphy [28], geological tomography [29, 30], hydrology [31], petroleum engineering [32, 
33], as well as a host of other physical, biological, or social systems [34–37].

Let wn be the independent system noise that affects xn , then the dependency among 
the relevant variables can typically be visualized through the directed graphical model 
in Fig. 1. This diagrammatic representation of the relationships among the random vari-
ables allows for the exact or approximate inference via turning the complex computation 
into a number of reduced operations in the graph [38, 39]. Notice that the graph-based 
approach has been already introduced to address the problem of sequential data (see, 
for instance, [19, 40–42] and references therein). Here it is important to point out that 
the classical filter and smoother never pay particular attention to the system noise wn in 
estimating the hidden signal, given observations. One can verify the tendency using the 
graph model; in general any inference method can be associated with a suitable graphi-
cal model, and the class of data assimilation algorithms that can be associated with the 
graph in Fig. 1 without noises wn encompasses most of the existing filters and smoothers 
[38, 39].

The goal of this work is to investigate the utilities of the previously ignored system 
noises in improving the state estimation skill of some well-known methods. Specifically, 
we build a new family of algorithms for which the driving noises play a more prominent 
and active role compared to the traditional schemes. The key idea for the development 
is to design a graphical model where, unlike the conventional graph, the process noises 

Fig. 1  A diagrammatic representation of the hidden Markov model, for which the underlying process xn 
forms a Markov chain and emits a discrete time series of observation yn . The dashed arrows are used to 
emphasize that, in the graph model associated with the classical algorithms, the independent system noises 
wn influencing xn are not shown
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are explicitly visible and further integrated to the system variables so that they cannot be 
simply marginalized out but constitute an essential and integral part of the whole algo-
rithm constructed according to the new graph. For instance, from the graph in Fig. 1, the 
graph model depicted in Fig. 2 can be obtained through augmenting the driving noise wn 
to the system variable xn−1 . The resultant graph is in an equivalent form with the original 
graph without noises, and thus one can obtain the counterpart of a classic algorithm by 
using the variable Xn := (xn−1,wn)

T in place of xn . Here the upper T denotes transpose.
The move to the other graphical model appears to bring no advantage due to the invar-

iance of the basic scenario, but on the contrary, we will show that the inference schemes 
derived from the new graph yield more accurate and stable estimations of the unob-
served underlying system state. For this, we address two principal ways of data assimila-
tion, and the context can be classified into two parts accordingly. Section  2 discusses 
the batch assimilation which involves processing the entire training set in one go, while 
Sect.  3 studies the data assimilation techniques in the sequential fashion. Differently 
from the batch setting where one has the opportunity to re-use the data points many 
times and to obtain an answer irrelevant to the order of data, the sequential Bayesian 
updating uses each data point on arrival and then discards it before receiving the next 
point. Section  4 contains the summary of our contributions and discussion on future 
works.

2 � Batch data assimilation
Section 2.1 introduces the variational inference scheme known as the expectation prop-
agation or EP for short (one who has knowledge of EP can skip this section). Building a 
new smoother in Sect. 2.2, we provide the theoretical arguments on why the proposed 
method is likely to outperform in Sect.  2.3, and present numerical simulation results 
supporting our demonstration in Sect. 2.4.

2.1 � Inference using EP

Suppose that the Markov chain Xn and the associated data yn are governed by the transi-
tion density and the observation distribution: 

 Then the conditional distribution P(Xn|YN ) can be approximated using the EP scheme 
as follows.

(1a)Xn|Xn−1 ∼ P(·|Xn−1),

(1b)yn|Xn ∼ P(·|Xn).

Fig. 2  The graphical model in Fig. 1 is transformed into the new graph, where the observation yn is 
determined by xn−1 and wn , instead of xn
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Together with the notations Xp:q := {Xp,Xp+1, · · · ,Xq} and X0:1 := X1 , one 

has the factorization P(X1:N |YN ) ∝
∏N

n=1 ϕn(Xn−1:n) where the factor function 
ϕn(Xn−1:n) := P(Xn|Xn−1)P(yn|Xn) is partially evaluated at the realization of yn . The 
EP method then seeks an approximation of the (conditioned) joint distribution, which 
is in the form

where ϕ̂n is a Gaussian approximation of ϕn . The algorithm further assumes a Gaussian 
factorization of the element ϕ̂n = βn−1(Xn−1)αn(Xn) so that q(X1:N ) ∝

∏
n=1:N qn(Xn) 

is fully factorized and qn = αnβn.
Suppose that all of the factors in (2) are given by some Gaussian functions. Then EP 

recursively updates the factor ϕ̂n to a new Gaussian function ϕ̂′
n (hereafter the prime 

will be used to denote the revised one). In order to do this, one first removes the rel-
evant factor from approximate distribution (2) and then multiplies the exact factor ϕn 
to obtain q̂ := ϕn

∏
j �=n ϕ̂j . One next evaluates the new posterior q′ by minimizing the 

KL divergence of q̂ against q′ , given by 
∫
q̂ ln

(
q̂/q′

)
 . The result is that q′ comprises the 

product of factors in which each factor is given by the corresponding marginal of q̂ . 
To obtain the refined factor ϕ̂′

n(= β ′
n−1α

′
n) , one simply divides q′ by 

∏
n =j ϕ̂n.

Let p′n(Xn−1:n) := αn−1ϕnβn then the procedure involves an approximate marginali-
zation denoted by

where \ denotes the set difference. Here m is either m = n− 1 or m = n . The “collapse 
∫

”-operator performs projection to a Gaussian and marginalization over the states Xn or 
Xn−1 . From q′m = α′

mβ
′
m , the knowledge of (3) allows one to update β ′

n−1 and α′
n.

The difficulty encountered here is that, when p′n is a non-Gaussian function, compu-
tation (3) is usually intractable. A particular way of resolving this issue leads to one 
instance of the EP algorithm. Here we introduce two state-of-the-art techniques for 
the Gaussian approximation of q′m . One method is via the use of Gaussian cubature 
[41, 43]. Let Qn(Xn−1:n) := αn−1βn−1αnβn be the proposal distribution and let 
µQn = j �jδX j

n−1:n
 be a cubature rule for this Gaussian function. By virtue of the re-

weighting 
∫
gp′n dXn−1:n =

∫
g
p′n
Qn

Qn dXn−1:n , the discrete measure

is an approximation of the distribution p′n . For the approximation of q′m , we use the 
appropriate marginalization of the joint Gaussian distribution function whose mean 
and covariance are given by the ones from (4). We call this scheme EP–GC (expecta-
tion propagation–Gaussian cubature). The other method is to collapse the non-Gaussian 
two-slice posterior belief p′n to a Gaussian form by Laplace approximation [40, 42, 44]. 

(2)q(X1:N ) ∝

N∏

n=1

ϕ̂n(Xn−1:n)

(3)q′m(Xm) = collapse

∫
p′n(Xn−1:n) dXn−1:n\Xm

(4)µp′n
=

∑

j

�
′
jδX j

n−1:n
where �

′
j ∝

p′n(X
j
n−1:n)

Qn(X
j
n−1:n)

�j
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This can be achieved by the truncation of the Taylor expansion of p′n at the second-order 
term [38]. We call the resulting scheme EP-Laplace.

Importantly, the update procedure can be cast in terms of local message passing on 
the graphical model. To be more precise, one can regard αn and βn−1 as the messages 
between the factor function and the variable in the graph illustrated in Fig. 3. Though 
there is no required order, the usual EP implementation iteratively performs the mes-
sage update via the forward and backward pass. During the forward pass, the α is 
updated, while the β remains fixed. During the backward pass, the β is updated, while 
the α remains fixed. The resulting algorithm reads as follows; 

1.	 One initializes αn(Xn) and βn(Xn) by suitable Gaussian functions ( βN ≡ 1);,
2.	 Until possible convergence, one continues to perform multiple forward–backward 

passes;,

•	 Forward pass: update αn as α′
n ∝ q′n/βn in the ascending order of n ∈ [1,N ],

•	 Backward pass: update βn−1 as β ′
n−1 ∝ q′n−1/αn−1 in the descending order of 

n ∈ [2,N ].

No convergence guarantees can be given for EP. It is however known that, in case of 
being convergent, the solution minimizes the Bethe free energy that takes into account 
two-point correlations between neighboring variables in the chain [38, 39, 45]. Eventu-
ally, the distribution function P(Xn|YN ) is approximated by qn = αnβn , that is the prod-
uct of two incoming messages into the circle node associated with the variable Xn.

2.2 � Proposed algorithm

Let the forward map for the hidden process and the likelihood function be given by 

 and let the law of x1 := x1|0 be known. Here we intend to make use of EP in calculating 
the smoothing distribution P(xn|N ) for n ranging from 1 to N.

Notice that, in order to solve the estimation problem arised from Eq. (5), one typi-
cally applies EP to the graph in Fig. 3, for which Xn is given by xn . It deserves to men-
tion that this particular graph model can be viewed as the one converted from the 
graph in Fig. 1 without driving noises. Motivated by the relationship between Figs. 1 
and 2, we develop a new version of EP from converting the graph in Fig. 2 into the one 

(5a)xn = φn(xn−1,wn), wn ∼ N (0,Qn)

(5b)P(yn|xn) = Lyn(xn),

Fig. 3  The factor graph for state space model (1) is shown. The circle node is occupied with the variable, 
whereas the square node is occupied with the factor function
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in Fig. 3, for which Xn is given by Xn = (xn−1,wn)
T  . More precisely, using the notation 

xn = φn(Xn) instead of Eq. (5a), state space model (5) is reformulated into 

 and our proposed algorithm uses the transition kernel and likelihood governing state 
space model (6) in applying the EP method described in the preceding section.

One difference between the two methods is that, while the naive EP directly approxi-
mates P(xn|YN ) , our suggested scheme yields an approximation of P(xn,wn+1|YN ) . 
Hence, in order to obtain the smoothing distribution of the system variable, additional 
marginalization needs to be performed. Because the task involves the integration against 
the noises conditioned on data, we refer to the new method as conditioned-noise EP or 
CNEP for short.

2.3 � Discussion on the prospective performances

Based on the analytic approximation to the distribution function of interest by assum-
ing that it factorizes into a particular way, the EP method carries out a variational infer-
ence through the iterated local optimization of a Kullback–Leibler (KL) divergence [19, 
40]. For the problem of data assimilation, the original EP scheme seeks the approximate 
factorization of the probability distribution of the variables xn , given observations. By 
contrast, our CNEP explicitly takes into account the noise wn and regards it as the part of 
the system variable so that the new method corresponds to seeking the approximate fac-
torization of the joint distribution function expressed in terms of the augmented variable 
Xn = (xn−1,wn)

T , conditioned on data. The critical effect by CNEP is that the reference 
measure in the KL divergence is replaced by the one containing the more information on 
the whole system state, and that the space of the candidate functions for the optimiza-
tion using the KL divergence has been extended from the one for EP. It is therefore our 
belief that the CNEP enables a closer approach to the true distribution function, leading 
to the accuracy enhancement.

Furthermore, unlike the conventional EP where the driving noises are simply inte-
grated out at early stage before conditioning on data, our CNEP produces solutions 
through averaging with respect to the conditioned noises; the procedure effectively 
weakens the potential information loss caused by the marginalization, giving rise to 
a similar effect with the fully Bayesian approach in machine learning where all of the 
involved variables are modeled and estimated according to Bayes’ rule to yield a condi-
tional-averaged result that is robust to the particular set of data [38, 39]. We thus antici-
pate the improvement of the batch assimilation performance by CNEP, compared to the 
use of EP, in the aspect of stability.

2.4 � Numerical experiment

Let us consider the Poisson tracking model [41, 46]. The dynamic equation governs 
neural activity unfolding over time, and the spike counts within short time-bins are 
observed. The state space model is given by 

(6a)Xn =
(
φn(Xn−1),wn

)T
,

(6b)P(yn|Xn) = Lyn ◦ φn(Xn),
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 where erf(·) represents the error function. Here the transition kernel can be obtained 
from the forward map φn(x,w) = �(x)+ w . Note that the data yn ∈ {0, 1, 2, · · · } assume 
a non-negative integer according to a Poisson distribution, and that the likelihood is 
given by

Because Eq.  (8) is a non-Gaussian function, rather than many other algorithms, it is 
plausible to apply the EP method to calculate the smoothing distribution [41, 46]. Equa-
tion (7) thus serves as a good example in comparing the performances of EP and CNEP

For the parameter values α = 0.9 , β = 0.2 , Qn = 0.1 , x1 ∼ N (0.1, 0.1) , and N = 60 , we 
implement the EP-GC and the corresponding CNEP method, which we call CNEP-GC. 
To do this, we use the standard Gaussian cubature formula of degree 3 and 5 that can be 
found in [47], whose support size is 2k and 2k2 + 2 in case of k dimension. For the same 
problem data, we also implement EP-Laplace and the corresponding CNEP method, 
which we call CNEP-Laplace. We perform a total of 40 independent simulations, and we 
use the root-mean-square error (RMSE) to compare the various reconstructions of the 
evolving system state. Note the RMSE between A = {Ai}

L
i=1 and B = {Bi}

L
i=1 is defined 

by

where Ai and Bi are vectors.
We first calculate RMSE between the true trajectories and the mean of the smooth-

ing solutions for each time n and depict the resulting RMSE distances as the function 
of time in the top panels of Fig.  4. This result shows that CNEP yields more accurate 
estimates than EP. While one can see notable improvement in the case of EP–GC and 
CNEP–GC, the difference between the accuracies of EP-Laplace and CNEP-Laplace is 
not so much. It also shows that the use of higher-order cubature is advantageous in case 
of classical EP–GC, but the benefit in case of CNEP–GC is not significant.

We next calculate the averaged RMSEs over the entire time interval, denoted by 
aRMSE, for independent simulations. The mean and variance of aRMSE are presented 
in the bottom panels of Fig. 4. The reduced mean further ensures the accuracy improve-
ment of CNEP against EP. We use the variance to address the stability issue; the variance 
reduction due to CNEP implies that the state estimation results are more robust com-
pared to the ones by EP.

Because the simulation shows that the outperformance of CNEP-Laplace over EP-
Laplace is not significant in both aspects of accuracy and stability, our noise-conditioned 
framework appears not so advantageous for the EP-Laplace. By contrast, it is indeed use-
ful to apply CNEP–GC, rather than EP–GC, for the performance improvement. Con-
sidering the increased computational complexity in the implementation of CNEP–GC 
using Gaussian cubature degree 5, we conclude that CNEP–GC using Gaussian cubature 

(7a)xn|xn−1 ∼ N (�(xn−1),Q), �(x) = αx + β erf(x)

(7b)yn|xn ∼ Poisson(exp(xn)).

(8)Lyn=k(x) ∝ exp
(
kx − ex

)
.

RMSE(A,B) =

√
1
L

∑L
i=1 |Ai − Bi|2
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degree 3 is the optimal choice among the smoothing algorithms under consideration in 
the example of state space model (7).

3 � Recursive Bayesian estimation
Section 3.1 describes the representative recursive data assimilation schemes called the 
(nonlinear) Kalman filter and smoother. Section 3.2 discusses a number of graph models 
and the associated filtering/smoothing algorithms. Section 3.3 provides new techniques 
for the sequential filter and smoother. Specifying how to implement the concerned algo-
rithms in Sect. 3.4, their performances will be compared in Sect. 3.5.

3.1 � Sequential filter and smoother

In what follows, our presentation is in the context of the state space model given by 

 where wn and ηn are independently distributed centered Gaussians. Given the law of 
x1 := x1|0 , the goal is to estimate the distribution of the conditioned variable xn|n′ . Here 
n ranges from 1 to N, and the case of either n′ = n or n′ = N  will be considered depend-
ing on the problem of filtering and smoothing, respectively.

(9a)xn = φn(xn−1,wn), wn ∼ N (0,Qn)

(9b)yn = gn(xn)+ ηn, ηn ∼ N (0,Rn)

Fig. 4  A realization of the hidden signal xn over time is generated from (7a) and compared with the 
smoothing approximations using observations from (7b). Top panel shows the RMSE distance between these 
two trajectories, and the bottom panel shows the mean and variance of averaged RMSE (aRMSE)
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3.1.1 � Forward filter

The typical approach adopted in most filters for a sequential estimation of the underly-
ing system state is to recursively alternate the time update and the measurement update 
of the probability distribution [4, 8, 9]. Here and after, the notation ր/ց will be used to 
increase/decrease the first index of the conditioned variable by one, and the notation ⇒ to 
increase the second index by one. For instance, xn|m ր xn+1|m and xn|m ⇒ xn|m+1 . Then 
the pseudo-code for the filter is as follows.

To achieve a Gaussian approximation of the target distribution, the forward time update 
is implemented in a way that one obtains a Gaussian approximation of (xn−1|n−1, xn|n−1) 
and performs a suitable marginalization. As for the measurement update, one approximates 
the joint distribution of (xn|n−1, yn) by Gaussian and applies Bayes’ rule (A1) described in 
Appendix A in order to perform the conditioning xn|n−1|yn := xn|n.

3.1.2 � Backward smoother

While the sequential filter is in progress, the approximate distributions of xn|n are recur-
sively obtained from n = 1 to n = N  in the increasing order. Once the process for filtering is 
over, the nonlinear Kalman smoother given in Appendix B can be applied to yield Gaussian 
approximations of xn|N in the order of decreasing index, from n = N  to n = 1 . The pseudo-
code reads as follows.

Note the implementation requires the knowledge of the joint Gaussian distribution of 
(xn|n, xn+1|n) , which was obtained and stored during the previous filtering procedure.

3.2 � One‑step ahead filter and smoother

Notice that the forward filter and backward smoother introduced in the preceding section 
are directly relevant to the graph in Fig. 1 without the noises wn . More precisely, the for-
ward–backward algorithm is the general graph-based method for the statistical inference 
via the message passing and reduces to the standard filter and smoother when it complies 
with the designated graph [38, 39].

In view of the same form of two directed graph models in Fig. 1 without noises and in 
Fig. 2, one is naturally interested in the forward–backward algorithm with respect to the 
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graph in Fig. 2. Let us first describe the corresponding methods. In order to do that, state 
space model (9) governing (xn, yn) is posed as the one in terms of the variables (Xn, yn) : 

 Denoting Xn|n′ := Xn|Yn′ , one makes use of state space model (10) to perform the itera-
tion as follows.

From suitable marginalizations of the outcomes P(Xn+1|n) , the filtering distributions 
P(xn|n) are obtained for 1 ≤ n ≤ N  . Likewise, the smoothing distributions P(xn|N ) can 
be calculated according to the following backward iteration.

We next remark that the forward filter making use of reformulation (10) has been 
proposed in the author’s prior work [48]. In the present paper the algorithm will be 
called the one-step ahead filter because, unlike the standard filter conducting the step 
xn|n−1 ⇒ xn|n , its variant using Eq.  (10) produces the filtering law of xn|n from the 
one-step ahead smoothing law of xn−1|n (similarly, the smoother using Eq. (10) will be 
called the one-step ahead smoother). There is a body of work that has demonstrated 
the advantage of this alternative path toward the filtering distribution in addressing 
the estimation problem arised in geophysical sciences [49–52]. Inspired by the prac-
tical relevance of the smoothing-based filter, we would like to improve the current 
version of our one-step look-ahead algorithms. This can be achieved by repeating 
essentially the same procedure with the one we did when Fig. 1 is converted to Fig. 2, 
and here we can take advantage of the graph-model framework.

Specifically one can read from the graph in Fig.  2 that, in carrying out the time 
update of the one-step ahead filter to quantify the uncertainty propagated by the sta-
tistical model, the prediction xn−1|n ր xn|n is pushed forward according to the law of 
wn|yn . This driving noise conditioned on future observation possesses a nonzero value 
as the mean, giving rise to an effective form of importance sampling so that the fil-
tered solution tends to be nudged to the true system trajectory [48]. Now the transi-
tion from Figs. 1 to 2 creates a momentum for us to proceed to a new graphical model 

(10a)Xn =
(
φn(Xn−1),wn

)T
,

(10b)yn = gn ◦ φn(Xn)+ ηn.
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presented in Fig. 5, and the philosophy lying behind this attempt is to strengthen the 
nudging effect; unlike the one-step ahead filter, the time update in the new graph 
drives the evolving estimate together with not only the conditioned noises wn|yn but 
wn−1|yn as well. Our concern is whether the noises conditioned on further future 
observations can give rise to a more accurate estimation of the hidden state. We 
address the issue after building this insight into the practical algorithm in the next 
section.

3.3 � Proposed algorithm: Two‑step ahead filter and smoother

Here we formulate the forward filter and backward smoother associated with the graph 
in Fig.  5. Let Xn := (Xn−1,wn)

T = (xn−2,wn−1,wn)
T and let Eq.  (10a) be denoted by 

Xn := �n(Xn) then state space models (9), (10) can be posed as the one governing the joint 
variable (Xn, yn) : 

Using the notation Xn|n′ := Xn|Yn′ , the filtering of xn|n can be obtained via the following 
two-layer procedure. On the one hand, the recursive estimation Xn|n−1 ⇒ Xn|n ր Xn+1|n 
is performed. Meanwhile, on the other hand, the time update Xn+1|n ր Xn+2|n is carried 
out for filtering. This additional step is necessary because the law of xn|n′ comes from the 
marginalization of Xn+2|n′ . Putting it together, the pseudo-code reads as follows.

The fixed-interval smoothing distributions P(xn|N ) can be obtained from the following 
iteration and from the marginalization of Xn+2|N.

(11a)Xn =
(
�n(Xn−1),wn

)T
,

(11b)yn = gn ◦ φn ◦�n(Xn)+ ηn.

Fig. 5  The probabilistic graphical model that gives rise to the two-step ahead conditioned-noise filter and 
smoother. Here the notation wm+1

m = (wm ,wm+1) is used
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The proposed algorithms are called the two-step ahead filter and smoother. In Fig. 6, 
the conditioned variables xn|n′ resulting from our one-step and two-step ahead filters are 
illustrated to emphasize the algorithmic difference. As in [53], the two-step ahead fil-
ter produces the law of xn|n through the smoothing distributions of xn−2|n and xn−1|n . 
However, the presence of conditioned system noises distinguishes our method from 
the prior works and the framework can account for the prospective out-performance 
of the derived algorithms in a more comprehensible fashion. Though the approach can 
straightforwardly be generalized to higher-order procedures, we do not proceed further 
due to increasing complexity.

3.4 � Implementation using cubature measure

Notice that the equations in state space models (9) and (10), (11) can be cast into the 
common form of Y = �(X) for an appropriate function �(·) and a Gaussian random 
variable X . For instance, one can regard X = (Xn−1,wn) and Y = Xn in case of Eq. (10a), 
and X = (Xn, ηn) and Y = yn in case of Eq. (10b). Therefore, for the implementation of 
the algorithms discussed so far, it is sufficient to define how to obtain a Gaussian approx-
imation of Z = (X,Y).

The method adopted here is to pass a set of weighted points known as cubature points 
through the function and fit a Gaussian to the resulting transformed points. To be pre-
cise, let µX =

∑
i
�iδXi be the cubature with respect to X , that refers to a discrete measure 

in possession of the same moments with the distribution of X up to a certain degree. Let 
Zi = (Xi,�(Xi)) then the mean and covariance of µZ =

∑
i
�iδZi are given by

The probability of Z is approximated by the normal distribution N (M,�) . The method is 
easy to implement, giving rise to computational advantage, and further ensures a good 
degree of accuracy in filtering and smoothing applications [22, 47, 54, 55].

M =
∑

i

�iZ
i,

� =
∑

i

�i

(
Z
i −M

)(
Z
i −M

)T
.

Fig. 6  Two different paths to the filtered solution are shown: (i) the one-step ahead 
filter ( xn−2|n−1 → xn−1|n−1 ⇒ xn−1|n → xn|n ) and (ii) the two-step ahead filter 
( xn−2|n−1 ⇒ xn−2|n → xn−1|n → xn|n)
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In the present paper, we call the filter and smoother that are introduced in Sect. 3.1 
and that use the cubature measure, the cubature Kalman filter (CKF) and the cubature 
Kalman smoother (CKS). Similarly, we call the filters that are introduced in Sects. 3.2 and 
3.3 and that use the cubature measure, the conditioned-noise cubature Kalman filter of 
the first order (CNCKF) and the conditioned-noise cubature Kalman filter of the second 
order (CN2CKF). The corresponding smoothers are named by CNCKS and CN2CKS.

3.5 � Numerical simulation

Here we numerically perform a comparison analysis of the algorithms defined in the 
preceding section. Specifically, we are interested in the accuracy and stability of the 
cubature-based Gaussian approximation filters (CKF,  CNCKF,  CN2CKF) and smooth-
ers (CKS,  CNCKS,  CN2CKS). Our test-bed is two benchmark examples in the context 
of sequential filtering and smoothing.

3.5.1 � Target tracking

Consider a model air-traffic monitoring scenario, where an aircraft executes a maneu-
vering turn in a horizontal plane at an unknown turn rate �n at time n [22, 48, 55]. The 
dynamical system is given by

where xn = (xn, ẋn,yn, ẏn,�n)
T ; (xn,yn) and (ẋn, ẏn) are the position and velocity at 

time n, respectively. The system noise wn is distributed according to a centered Gaussian 
with covariance

The measurement equation is given by

and the noise covariance is Rn = diag(102, 10−5) . The inter-observation time is �t = 1 
(hereafter the units of physical quantities are omitted for brevity).

(12)
xn+1 =





1 sin(�n�t)
�n

0 cos(�n�t)−1
�n

0

0 cos(�n�t) 0 − sin(�n�t) 0

0 1−cos(�n�t)
�n

1 sin(�n�t)
�n

0

0 sin(�n�t) 0 cos(�n�t) 0
0 0 0 0 1




xn

+ wn+1

Qn =





�t3

3
�t2

2 0 0 0
�t2

2 �t 0 0 0

0 0 �t3

3
�t2

2 0

0 0 �t2

2 �t 0

0 0 0 0 1.75× 10−3�t




.

(13)yn =

(√
x2n + y2n

tan−1 (yn/xn)

)
+ ηn
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The simulation results are based on 200 independent Monte Carlo runs. In each case, 
the initial state of the true signal is a draw from the normal distribution 
x1 ∼ N

(
(103, 3 · 102, 103, 0,− 3π

180 )
T , diag([102, 10, 102, 10, 10−4])

)
 , and the sequential 

observations over the time interval 1 ≤ n ≤ 200 are randomly generated.
We obtain a single trajectory of xn over time by solving (12) and calculate the filtered/

smoothed estimations using the observational data from (13). Figure 7 shows the RMSEs in 
each time step, with respect to position, velocity and turn rate. We see that (i) the perfor-
mance of CNCKF/CNCKS is less sensitive to the cubature order compared to the case of 
CKF/CKS, and that (ii) the algorithms obtained by applying the conditioned-noise frame-
work uniformly outperform the naive methods. Figure  8 depicts the mean and variance 
of aRMSE. From the reduced means in case of our algorithms, compared to the classical 
schemes, we argue that there are improvements in accuracy. Similarly, the reduced vari-
ances imply that the new algorithms are more stable than the classical schemes. Because 
the performances of CNCKS and CN2CKS are similar to each other, taking into account 
the computational burden, CNCKS is preferred to the other suggested algorithms.

3.5.2 � Ballistic target

Let us consider the problem of tracking a ballistic target under the influence of drag and 
gravity acting on the target [54, 56, 57]. Let xn = (x1n, x

2
n, x

3
n)

T be the state vector, where x1n 
and x2n are altitude and velocity, respectively, and x3n is a constant ballistic coefficient. The 
equation of motion is given by

here δ = 0.5 is the integration time, γ = 1.49× 10−4 and g = 9.81 serve as the drag and 
gravity constants.

The measurement equation is given by

where M is the horizontal distance, and H determines the radar location. The sys-
tem is characterized by the parameters H = 103 , M = 104 and Rn = 302 . The true 
initial state is x∗1 = (61 · 103, 3048, 4.49 · 10−4)T , and the initial state density is 
N
(
(62 · 103, 3400, 10−5)T , diag([106, 104, 10−4])

)
.

We generate a single trajectory of xn over time by solving (14) and obtain the filtered/
smoothed estimations using the observational data from (15). We perform 1800 inde-
pendent simulations. The illustrations in Figs. 9, 10 allow us to demonstrate the out-per-
formance of the conditioned-noise framework over the classical methods. Figure 9 depicts 
the RMSE values as the function of time, showing that (i) CN2CKF is always better than 
CNCKF, and (ii) CN2CKS is in general better than CNCKS but occasionally does not lead 
to an improved performance. This numerical simulation reveals that, quite interestingly, the 
outperformance of our framework holds even for the system without explicit driving noise. 
This result accords with the prior work provided in [53].

(14)xn+1 =




x1n − δx2n
x2n − δe−γ x1n(x2n)

2x3n + g

x3n



.

(15)yn =

√
M2 + (x1n −H)2 + ηn
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Fig. 7  The RMSEs between the target trajectory and the filtering/smoothing estimates obtained from the 
average over 200 independent simulations; a position; b velocity; and c turn rate
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Fig. 8  The mean and variance of time-averaged RMSEs between the target trajectory and filtered/smoothed 
solutions; a position; b velocity; and c turn rate
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Fig. 9  The RMSEs between the target trajectory and the filtering/smoothing estimates obtained from the 
average over 1800 independent simulations; a position; b velocity; and c turn rate. Here EKF/EKS represents 
the extended Kalman filter/smoother
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Fig. 10  The mean and variance of time-averaged RMSEs between the target trajectory and filtered/
smoothed solutions; a position; b velocity; and c turn rate
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4 � Conclusion
This paper considers the design of batch smoother and sequential filter/smoother for 
discrete-time nonlinear systems with Gaussian noise. The new family of algorithms for 
the state estimation are proposed as follows; 

1.	 For state space model (5),
•	 we develop the conditioned-noise version of expectation propagation in 

Sect. 2.2,
2.	 For state space model (9),

•	 we develop the conditioned-noise smoother of the first order in Sect. 3.2,
•	 we develop the conditioned-noise filter and smoother of the second order in 

Sect. 3.3.

Note the development is achieved by the reformulation of the original state space 
model into the one governing the augmented variable comprising the system vari-
able and driving noise. The implementation of the proposed algorithm is basically the 
same as the existing method, and the difference is that the conditioned-noise expec-
tation propagation makes use of (6), in place of (5), and the conditioned-noise filter/
smoother makes use of (10) and (11), in place of (9). The numerical simulations per-
formed in Sects. 2.4, 3.5 confirm that, in any of the benchmark examples studied in 
the areas of batch and sequential data assimilation, the filters and smoothers devel-
oped according to the conditioned-noise framework uniformly outperform the cor-
responding classical methods in both aspects of accuracy and stability. We emphasize 
that this result from the numerical analysis is in accordance with the theoretical rea-
soning by considering the role of the conditioned noise in Sects. 2.3, 3.2.

Throughout the text, we investigate Gaussian approximation of the target probabil-
ity distribution. It is our belief that the conditioned-noise framework remains to be 
competitive even when the distribution function is parametrized in a different way. In 
future works, therefore, we plan to develop Gaussian mixture and sequential Monte 
Carlo algorithms for filtering and smoothing, which are similar in spirit to the con-
ditioned-noise Gaussian filters and smoothers proposed in this work. With a goal to 
extend the applicability of the graph-based method beyond the scope that explored 
in this paper, we also plan to pursue the direction where an improved performance 
of data assimilation is sought via introducing a new graphical model with particular 
characteristics and considering an inference scheme in the graph.

We finally discuss the pathway to the impact of this work to the academia and 
industry. Our effort to shed a new light on the driving noises can bring advantages 
to the academic community by creating new research momentum in devising a data 
assimilation technique on the basis of the graphical model. Enriching the library of 
the filters/smoothers directly applicable to solving real-world problems, our research 
result will be beneficial for industrial progress where the need for accurate and stable 
filtering/smoothing schemes is paramount.
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Appendix A: Bayes’ rule for conditional Gaussian

Let Z =

[
X
Y

]
 be distributed as a Gaussian with the mean 

[
x̄
ȳ

]
 and covariance 

[
�xx �xy

�yx �yy

]
 . Then Bayes’ rule asserts that the law of X |Y  with Y = y is Gaussian with 

the mean and covariance given by

respectively [4].

Appendix B: Nonlinear Kalman smoother
Let xn|n′ := xn|Yn′ then, based on the Gaussian assumption xn|n′ ∼ N (x̄n|n′ ,Cn|n′) , one 
can derive

where Gn = Dn+1C
−1
n+1|n and Dn+1 = cov(xn|n, xn+1|n) [4, 7]. Recurrence relation (B2) 

enables the backward time update xn+1|N ց xn|N , provided the joint Gaussian law of 
(xn|n, xn+1|n) is known.
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