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Abstract 

Auscultation is the most effective method for diagnosing cardiovascular 
and respiratory diseases. However, stethoscopes typically capture mixed signals 
of heart and lung sounds, which can affect the auscultation effect of doctors. Therefore, 
the efficient separation of mixed heart and lung sound signals plays a crucial role 
in improving the diagnosis of cardiovascular and respiratory diseases. In this paper, 
we propose a blind source separation method for heart and lung sounds based 
on deep autoencoder (DAE), nonnegative matrix factorization (NMF) and variational 
mode decomposition (VMD). Firstly, DAE is employed to extract highly informative 
features from the heart and lung sound signals. Subsequently, NMF clustering 
is applied to group the heart and lung sounds based on their distinct periodicities, 
achieving the separation of the mixed heart and lung sounds. Finally, variational 
mode decomposition is used for denoising the separated signals. Experimental results 
demonstrate that the proposed method effectively separates heart and lung sound 
signals and exhibits significant advantages in terms of standardized evaluation metrics 
when compared to contrast methods.

Keywords: Heart and lung sound separation, Deep autoencoder, Variational mode 
decomposition, Nonnegative matrix factorization, Deep learning

1 Introduction
Under normal circumstances, the frequency of heart sound signals falls within the range 
of 20 to 150Hz [1], while lung sound signals fall within the range of 50 to 2500Hz [2]. 
There exists a frequency overlap region between heart and lung sound signals, leading 
to mutual interference between them. When medical professionals use stethoscopes for 
auscultation, noise from the friction of the stethoscope with clothing, ambient environ-
mental noise and the operation of the instrument all get collected along with heart and 
lung sounds into electronic stethoscopes. This significantly diminishes the effectiveness 
of auscultation and diagnosis. In recent years, research on classification algorithms for 
lung sounds has increased [3–6]. However, the primary challenge faced in current lung 
sound recognition research is that traditional classification methods struggle to extract 
crucial information from lung sound features, resulting in suboptimal recognition per-
formance. Additionally, lung sound classification methods have a high dependence on 
data, and publicly available lung sound datasets on the internet often contain heart 
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sound interference. Pure lung sound data is scarce and challenging to obtain, making 
recognition networks prone to overfitting and less capable of achieving precise and effi-
cient classification and recognition. To better implement lung sound classification algo-
rithms and diagnose medical conditions, it is essential to perform preprocessing through 
heart and lung sound separation.

To date, researchers worldwide have developed various heart and lung sound sepa-
ration algorithms. These include methods based on wavelet transformations [7, 8], but 
they suffer from poor adaptability and ineffective suppression of interference factors. 
Independent component analysis (ICA) and its extensions have also been explored [9, 
10], requiring at least two sensors and therefore not suitable for single-channel devices. 
In recent years, nonnegative matrix factorization (NMF) has been used to separate dif-
ferent sound sources [11–13], with its ability to handle overlapping frequency bands rec-
ognized. Deep learning has also been employed in source separation, where these deep 
learning models directly decompose mixed sources into target sources, and their effec-
tiveness surpasses that of NMF [14–16]. Since it is challenging to acquire pure heart and 
lung sounds as training data due to the limitations of stethoscope data collection, this 
paper proposes an unsupervised learning approach using deep autoencoders (DAE) and 
variational mode decomposition (VMD) to separate mixed heart and lung sound signals. 
The algorithm first utilizes a DAE model to extract highly informative representations of 
the mixed sounds. By applying the periodic clustering algorithm to the potential repre-
sentation, the mixed cardiopulmonary sounds are separated. VMD boasts a clear math-
ematical theoretical framework and unique advantages in noise robustness and avoiding 
mode mixing, compared to other classical methods [17]. Therefore, VMD is employed to 
denoise the separated heart and lung sound signals. In contrast to other deep learning-
based methods, the advantage of this paper’s approach is that it does not require labeled 
training data. Leveraging periodic structures, it provides better separation performance 
compared to traditional methods. The main contributions of this study are summarized 
below.

1. Blind source separation heart and lung sound model based on deep autoencoders, 
nonnegative matrix decomposition and variational mode decomposition was estab-
lished. Use the autoencoder to extract the potential height expression of the heart 
and lung sound signals, and then send the obtained potential height expression into a 
sparse nonnegative matrix to perform clustering according to the different periods of 
the heart sound signal and lung sound signal to achieve heart and lung sound separa-
tion. Finally, the obtained heart and lung sound signals are denoised and enhanced 
using variational mode decomposition to obtain clean heart and lung sound signals.

2. The blind source separation heart and lung sound model based on deep autoencod-
ers, nonnegative matrix decomposition and variational mode decomposition uses 
signal distortion rate (SDR), perceptual evaluation of speech quality (PESQ) and 
short-term objective intelligibility (STOI). These three standard evaluation indicators 
to evaluate the effectiveness of the model were observed.

3. Conduct comparative experiments with other heart and lung sound separation algo-
rithms. The experimental results verify the effectiveness of using the proposed algo-
rithm for heart and lung sound separation. The spectrograms and spectrograms after 
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experiments using real heart and lung sound data prove that using this algorithm to 
separate heart and lung sounds is very effective and the separated signals have only 
small background noise interference.

2  Method
2.1  Model frame

The model framework adopted in this study is shown in Fig.  1. Firstly, the feature 
representation is obtained by training DAE model, and the periodic coding matrix 
is generated by discrete Fourier transform of the feature representation. Then, the 
clustering results are obtained by sparse NMF clustering, and then the separated heart 
sounds and lung sounds are encoded. Finally, the preliminary separated heart sounds 
and lung sounds are denoised by VMD to obtain pure heart sounds and pure lung 
sounds.

2.2  Heart–lung sound separation model

2.2.1  Deep autoencoder (DAE)

DAE includes encoder and decoder, and the framework of DAE model is shown in 
Fig. 2. The encoder compresses the input data into a low dimension to provide a feature 
representation of a smaller dimension, and the decoder decodes this low-dimensional 
representation into an output as similar as possible to the original input. Both encoder 
and decoder are composed of full-scroll layers. In the training process, the purpose of 
DAE is to minimize the reconstruction error between input and output.

The internal structure of the encoder and decoder of DAE is shown in Fig. 3, which is 
a convolution and deconvolution process from left to right. The input signal is sent to 
the encoder composed of convolution layer and activation function to get the feature 
representation, and then, the reconstructed signal is obtained after passing through the 
encoder composed of deconvolution and activation function.

Fig. 1 DAE–NMF–VMD algorithm block diagram

Fig. 2 DAE model architecture
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The encoder in the DAE algorithm is composed of convolutional units that perform 
convolution functions, and the computation process is as shown in Eq. (1).

In Eq.  (1), C stands for convolution process, fj
(k) represents the j-th feature map 

in the k-th layer, and I denotes the total number of channels. Each coding layer has j 
convolution kernels, and the convolution kernel size is L*1.Wji represents the i-th 
channel of Wj. Each neuron fj

k+1 in the feature map of the (k + 1)-th layer is calculated 
as the weighted sum of elements obtained by performing convolution operations with 
the receptive fields of all previous feature maps f(k), using the weights from Wj, and bj

(k) 
represents the bias. The corresponding convolution operation is illustrated in Fig. 4. The 
local area of input data is weighted and summed by sliding convolution kernel to extract 
the feature representation of this area.

The decoder is composed of deconvolution units, and the calculation process is shown 
in formula (2).
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Fig. 3 Decoder structure and encoder structure

Fig. 4 Convolution operation
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Here, KAll = KE + KD represents the total number of layers in the DAE, where KE and KD 
are the numbers of layers in the encoder and decoder, respectively. D is deconvolution 
process. Each decoding layer has j convolution kernels, and the convolution kernel size is 
L*1.Wji represents the i-th channel of Wj. In the k + 1-th layer’s feature map, each neuron 
fj

(k+1) is the weighted sum of the element-wise deconvolution of Wj with the receptive 
field from all previous feature maps f(k), with bj

(k) denoting the bias. The corresponding 
deconvolution operation is shown in Fig.  5. In the deconvolution process, all feature 
maps f(k) of the k-th layer are zero-filled, and then the deconvolution process is carried 
out to reconstruct the data with the same size as the original signal.

Initially, the mixed heart and lung sound signal is transformed into the frequency and 
phase components using short-time Fourier transform (STFT). Then, the spectral fea-
tures are converted into logarithmic power spectra (LPS). X = [x1,…,xn,…,xN] represents 
the input, where N is the number of frames in X. DAE then encodes the mixed heart 
and lung sound LPS through encoder, transforming X into a matrix representing feature 
representations F (KE) = [f

KE
1 , · · · , f

KE
n , · · · , f

KE
N ] . The decoder reconstructs the matrix 

of feature representations back into the original spectral features. The parameters of the 
DAE are trained using the back-propagation algorithm to minimize mean squared error 
(MSE). Due to the input and output being the same, the DAE is trained in an unsuper-
vised manner.

2.2.2  NMF periodic clustering method

Because the heart sound signal and lung sound signal have different periods, the heart–
lung sound is separated and mixed by using the different periods of the heart sound sig-
nal and lung sound signal. By training DAE model, we get the potential features, and 
the set of potential feature representation and time series is matrix F. We transpose the 
original L to obtain Smix = F T. Based on Smix, the entire set of neurons is divided into 
two groups: one corresponds to heart sounds, and the other corresponds to lung sounds. 
To analyze the periodicity of each submatrix sj

mix, we apply discrete Fourier transform 
(DFT) to sj

mix[18], forming a periodic encoding matrix P = [p1,…,pj,…,pM].

sparse NMF clustering is employed to cluster the vectors in P into two groups. Equa-
tion  (4) illustrates the NMF clustering process, which is achieved by minimizing the 
error function. Based on the encoding matrix HP (the transpose of P T) with the highest 
scores, the clustering assignment of Smix can be determined.
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Fig. 5 deconvolution operation
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where WP represents the cluster centroid, HP is the transpose of matrix p, and HP = [h1,…
,hj,…,hM] stands the cluster members. λ represents the sparsity penalty factor, this study 
selects an λ value of 1. ∥·∥1 represents the L1 norm, and ∥·∥2represents the Frobenius 
distance. On the basis of the highest score in HP, the cluster allocation of Smix can be 
determined. The separation of heart sounds and lung sounds is realized by stopping the 
submatrix that does not belong to the target, and the separation results are S c and S r. 
After obtaining the coding matrix of each source, we decode it to get the separated heart 
sounds and lung sounds.

By training DAE model, we get the potential feature F, and then, the coding matrix is 
transformed into a coding matrix P with obvious periodicity by discrete Fourier trans-
form (DFT). A sparse nonnegative matrix factorization (NMF) clustering method is 
employed to separate the encoding matrix P into representative encoding matrices cor-
responding to heart and lung sound signals. Then, the source encoding matrix is recon-
structed using the encoder. Finally, the obtained heart sound LPS (log power spectrum) 
sequence and lung sound LPS sequence are transformed into heart and lung sound sig-
nals using the inverse short-time Fourier transform (ISTFT).

2.2.3  Variational mode decomposition (VMD)

The VMD method decomposes the signal x into a series of intrinsic mode functions 
(IMFs) with limited bandwidth, adaptively updating the optimal center frequencies 
and bandwidths for each IMF. The constrained variational problem generated based on 
u1,u2,…,uk and the predetermined scaling parameter K is shown in Eq. (5):

where {uk} = {u1,…,uk} and {wk} = {w1,…,wk} represent the decomposed IMF components 
and the center frequencies of each component, respectively. ∂(t) represents the partial 
derivative of the function with respect to time t, δ(t) is the unit impulse function, and * 
denotes convolution operation.

The introduction of the enhanced Lagrangian ζ, as given below, allows for the trans-
formation of the constrained variational problem into an unconstrained variational 
problem:

In Eq.  (6), λ and α are, respectively, the Lagrange multipliers and second-order pen-
alty factors. The solution to the original minimization problem is now found as a saddle 
point of the enhanced Lagrangian during a series of alternating-direction optimiza-
tions of the multipliers, known as the method of alternating direction for multipliers. 
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The derivatives of the IMF components uk and center frequencies wk are then derived as 
shown in Eqs. (7) and (8):

In the above equations, ω represents frequency, and ûn+1
k (ω),ŝ(ω) and unk(t) represent 

the Fourier transforms of s(t), u(t) and λ(t).
By using the algorithm described above, for a convergence tolerance e > 0, the decom-

position stops when Eq. (9) is satisfied, and the final modal components and their center 
frequencies wk are obtained.

The VMD algorithm is used to decompose the heart sound and lung sound signals 
separated by DAE into a series of IMFs with finite bandwidth. The choice of the prede-
termined number of decomposition modes K and the penalty factor α directly affects the 
accuracy of the VMD decomposition results. Therefore, selecting suitable values for K 
and α is crucial for obtaining pure heart and lung sounds.

(1) Selection of K.

 In the VMD algorithm, the value of K represents the number of IMF components into 
which the signal is decomposed. If the optimal value of K is obtained, it means that the 
center frequency distribution between adjacent IMF components is reasonable, and 
there will be no similar or mixed results in the decomposition. In this study, the value 
of K is determined using empirical mode decomposition (EMD) [19]. Based on experi-
ments, this study selects a value of K as 7.

(2) Selection of α.

 α is another important parameter to be set during the VMD decomposition process, 
and it determines the bandwidth of the IMF. A larger α value results in smaller band-
widths for each IMF component obtained by VMD. The value of α should neither be too 
large nor too small. Additionally, it is found that within a relative range, this parameter 
has a minimal impact on the results. For heart and lung sound signals, this study selects 
an α value of 1500.

Using the above algorithm, the heart and lung sound signals are decomposed into 
seven IMF components by the VMD algorithm, and the high-frequency IMF compo-
nents are summed to obtain denoised heart or lung sound signals.
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The separation algorithm is as follows:

Algorithm 1:Cardiopulmonary sound separation

3  Experiment and discussion
In this section, the experiment and performance evaluation of the proposed heart and 
lung sound separation method are discussed. The evaluation metrics used include sig-
nal-to-distortion ratio (SDR), perceptual evaluation of speech quality (PESQ) and short-
time objective intelligibility (STOI) to validate the effectiveness of the proposed method.

3.1  Experimental parameters

The proposed method takes the spectrogram of the mixed signal as input and outputs 
separated heart and lung sound signals (Table  1). The DAE model’s structure is as 
follows:
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The DAE model uses a stride of 1 for both the convolutional and deconvolutional 
units. Activation function is ReLU. The optimizer utilized is Adam. Unsupervised 
NMF method is employed as the baseline, with the L2 norm serving as the loss 
function.

3.2  Experimental data

The experimental data in this study were obtained from real heart and lung sounds. 
The dataset used in this research is sourced from publicly available datasets [20, 21]. 
Heart and lung sounds were collected under conditions with relatively low noise and 
can be considered as clean heart and lung sound signals. These clean heart and lung 
sounds were linearly mixed to create the mixed heart–lung sound signals. Assum-
ing xc represents the heart sound signal and xr represents the lung sound signal, the 
mixed signal takes the form: signal = xc + axr, where a is a coefficient. Based on the 
signal-to-noise ratio formula (Eq. 10), we have:

In the equation, r represents the logarithm of the ratio between the energy of the out-
put mixed signal’s heart sound and lung sound. If the energy of the output heart sound 
and lung sound is equal, then r equals 0. The coefficient a can be determined by using 
the equation provided. Finally, the signal is normalized.

3.3  Evaluation indicators

For the heart and lung sound separation method studied in this paper, we obtain sepa-
rated heart and lung sounds. We use pure heart and lung sounds as references to calcu-
late the separation performance, and we employ three standardized evaluation metrics: 
signal-to-distortion ratio (SDR), perceptual evaluation of speech quality (PESQ) and 
short-time objective intelligibility (STOI) to assess the separation performance. The for-
mulas for calculating SDR, PESQ and STOI are as follows.

(10)10 lg
pc

pr
= 10 lg

(xc)
2

(axr)2
= r

Table 1 DAE model structure

Convolution layer Filter Convolution 
kernel

Encoder First layer 64 1 × 4

Second layer 32 1 × 3

Third layer 16 1 × 3

Fourth layer 8 1 × 2

Decoder First layer 8 1 × 2

Second layer 16 1 × 3

Third layer 32 1 × 3

Fourth layer 64 1 × 4

Fifth layer 1 1 × 1
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 (1)  Formula for calculating SDR:

SDR was put forward by Vincent and others in 2006, and it is an evaluation index of 
blind source separation task [22]. In source separation tasks, there are three types of 
noise: interference due to missed separation (einterf), artifacts due to the reconstruction 
process (eartif) and residual noise (enoise). Here, ŝ(t) represents the estimated result, and 
starget(t) represents the target. SDR is calculated as shown in formula (12), where �·�2 rep-
resents the signal energy value.

(2) PESQ calculation formula:

PESQ evaluation was proposed by Rix et  al. for evaluating the quality of sound signals, 
which has been defined by the ITU-T recommendation P.862 [23]. As shown in formula 
(13), where dSYM and dASYM represent symmetric and asymmetric disturbances, respec-
tively, providing a good balance between prediction accuracy and generalization capability.

The values of PESQ range from − 0.5 to 4.5. In cases of severe distortion, the PESQ 
value may be below 1.0.

 (3)  STOI calculation formula:

The STOI was proposed by Cees et al. for predicting the intelligibility of noisy speech 
[24]. As shown in formula (14), where j = 1,2,…,J represents the index of one-third octave 
bands, N is typically set to 30, and dj,n is the correlation coefficient of the short-time 
spectral vectors between the test speech and clean speech.

For these three metrics, higher scores indicate better source separation results.

3.4  Experiment

A randomly selected heart sound (as the signal) and lung sound (as the noise) were 
mixed at a signal-to-noise ratio of 0 dB to create a mixed heart–lung sound signal. After 
encoding and decoding with DAE, the Waveform and Spectrogram of the reconstructed 
signal are shown in Figs. 6 and 7, respectively. Comparing the original signal with the 
reconstructed signal, it can be observed that the spectrogram and cepstrogram of the 
signal reconstructed by the DAE model closely match the original signal, demonstrating 
the effectiveness of the DAE model training.

(11)ŝ(t) = starget(t)+ einterf + enoise + eartif
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The Waveform and Spectrogram of the separated heart sound and lung sound signals 
obtained through the DAE–NMF model are shown in Figs. 8.

Comparing the mixed signal (a1) with the separated heart sound signal (b1) and lung 
sound signal (c1) in Fig. 8, it is evident that the heart and lung sounds have been effec-
tively separated, demonstrating the effectiveness of the DAE algorithm in separating the 
signals. Observing the Waveform in Fig. 7a1 and Spectrogram in Fig. 7a2 of the mixed 
signal, it can be seen that the heart and lung sounds overlap significantly in the low-
frequency region. After separation using the DAE algorithm, the heart sound signal 
primarily concentrates in the low-frequency part, while the lung sound signal mainly 
concentrates in the high-frequency part. Examining the Spectrogram in Figs. 8b2, c2, it 
is noticeable that there is some minor interference of high-frequency lung sounds in the 
separated heart sound signal and vice versa in the separated lung sound signal.

Fig. 6 Original signal

Fig. 7 Reconstructed signal

Fig. 8 Signal after heart–lung sound separation
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In the separated Waveform of the heart–lung sound mixed signal obtained using the 
DAE-NMF algorithm, it can be observed that there is a slight presence of lung sound 
noise in the heart sound signal and vice versa. Therefore, denoising using the VMD 
algorithm was applied to the separated heart and lung sound signals. The Waveform and 
Spectrogram of the denoised heart and lung sound signals are shown in Fig. 9.

Fig. 9 VMD noise reduction processing of heart sounds and lung sounds
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Based on the number of decomposition modes, Fig. 9a1 shows that the heart sound, 
after being processed by the VMD algorithm, is decomposed into seven intrinsic mode 
functions (IMFs), and Fig.  9b1 displays the frequency corresponding to each IMF. 
Comparing the spectrogram of the heart sound in Fig. 8b and Fig. 9d1, it is observed 
that the heart sound signal after VMD denoising primarily consists of low-frequency 
components concentrated within the range of 20 to 150Hz. Similarly, comparing the 
lung sound spectrograms in Figs. 8c and 9d2, it is evident that the lung sound signals 
after VMD denoising are mainly composed of high-frequency components concentrated 
within the range of 50 to 2500  Hz, thus confirming the effectiveness of the VMD 
denoising algorithm.

3.5  Experimental comparison and evaluation

In this study, we compared four methods:

(1) NMF-K-means algorithm.
(2) DAE-K-means algorithm.
(3) DAE-NMF algorithm.
(4) DAE–NMF–VMD algorithm.

We randomly selected one heart sound signal and one lung sound signal, mixed 
them to create a mixed heart–lung sound signal with a signal-to-noise ratio (SNR) of 
0 dB. We then fed this mixed signal into different heart–lung sound separation model 
for simulated experiments. Subsequently, we evaluated and compared the separated 
clean heart and lung sounds using the performance metrics SDR, PESQ and STOI. 
The results are shown in Tables 2 and 3.

Observing and comparing the heart sound evaluation indexes of four methods of 
heart–lung sound separation, we found that under the same clustering method, the 
SDR, PESQ and STOI values of the separation method using DAE to extract features 
are higher than those of the separation method using NMF to extract features. The 
SDR, PESQ and STOI values of DAE-K-means algorithm are 0.947944, 0.403321 and 

Table 2 Comparison of Heart Sound Evaluation Metrics

Model SDR PESQ STOI

NMF-K-means algorithm 3.578298 0.541848 0.477938

DAE-K-means algorithm 4.526242 0.945169 0.586775

DAE-NMF algorithm 6.026242 1.131177 0.774058

DAE–NMF–VMD algorithm 9.561472 1.683339 0.945169

Table 3 Comparison of lung sound evaluation indicators

Model SDR PESQ STOI

NMF-K-means algorithm 3.061995 1.665166 0.516236

DAE-K-means algorithm 3.993437 1.885919 0.722660

DAE-NMF algorithm 4.667300 1.982141 0.733597

DAE–NMF–VMD algorithm 7.639952 3.886267 0.791355



Page 14 of 17Sun et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:59 

0.108837 higher than those of NMF-K-means algorithm, respectively. Under the same 
feature extraction algorithm, the separation method using NMF periodic clustering 
algorithm has higher SDR, PESQ and STOI values than the separation method 
using K-Means clustering algorithm. The SDR, PESQ and STOI values of DAE-NMF 
periodic clustering algorithm are 1.500000, 0.186008 and 0.187283 higher than those 
of DAE-K-means algorithm, respectively.

The comparison of the above algorithms proves the effectiveness of DAE-NMF 
algorithm in separating heart–lung sounds. After adding VMD algorithm to DAE-
NMF, the values of SDR, PESQ and STOI separated from heart sounds are 3.535230, 
0.552162 and 0.171111 higher than the original ones, respectively. It is proved that 
the DAE–NMF–VMD algorithm proposed in this paper can not only effectively sepa-
rate cardiopulmonary sounds, but also have good quality of separated heart sounds.

The same as the evaluation index of heart sound, we found that under the same clus-
tering method, the SDR, PESQ and STOI values of the separation method using DAE to 
extract features are higher than those of the separation method using NMF to extract 
features. The SDR, PESQ and STOI values of DAE-K-means algorithm are 0.931442, 
0.220753 and 0.206424 higher than those of NMF-K-means algorithm, respectively. 
Under the same feature extraction algorithm, the separation method using NMF peri-
odic clustering algorithm has higher SDR, PESQ and STOI values than the separation 
method using K-Means clustering algorithm. The SDR, PESQ and STOI values of DAE-
NMF algorithm are 0.673863, 0.096222 and 0.010937 higher than those of DAE-K-
means algorithm, respectively.

After adding VMD algorithm to DAE-NMF, the values of SDR, PESQ and STOI of 
lung sounds were 2.972652, 1.9426 and 0.05758 higher than the original ones, respec-
tively. It is proved that the DAE–NMF–VMD algorithm proposed in this paper can not 
only effectively separate cardiopulmonary sounds, but also have good quality of sepa-
rated lung sounds.

By observing and comparing the values of SDR, PESQ and STOI, it can be concluded 
that compared to other methods for heart and lung sound separation, the proposed 
DAE–NMF–VMD algorithm has achieved improvements in all three evaluation met-
rics. This demonstrates that the quality of heart and lung sound separation using the 
DAE–NMF–VMD algorithm is significantly higher than other methods and indicates 
the effectiveness of using this approach for heart and lung sound separation.

3.6  Result verification

To further validate the effectiveness of the DAE–NMF–VMD model in separating heart 
and lung sounds, real heart and lung sound mixed signals were used for the separation 
experiments. Figures 7 and 8 show the spectrograms and spectrograms of the separated 
heart and lung sound signals obtained by the DAE–NMF–VMD model from the audio 
files 113_1306244002866_A.wav and 101_1305030823364_B.wav, respectively.

Comparing the Waveform of the mixed signal with the separated heart and lung 
sounds in Fig. 10a, it can be observed that the heart and lung sound signals are effectively 
separated. In Fig.  10b, the spectrogram of the separated heart and lung sound signals 
shows that the frequencies are primarily concentrated in the range of 20 ~ 150 Hz and 
50 ~ 1000 Hz, which aligns with the frequency ranges of heart and lung sound signals. 
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Similarly, the mixed heart–lung sound separation results shown in Fig. 11 also confirm 
this, demonstrating the effectiveness of the DAE–NMF–VMD algorithm for separating 
heart–lung sound signals.

4  Conclusion
This paper presents a heart–lung sound separation method based on DAE–NMF–
VMD, which, in addition to separating mixed heart–lung sounds based on DAE, 
applies VMD for denoising and enhancement of the separated signals. Unlike tradi-
tional heart–lung sound separation methods, DAE–NMF–VMD does not require 
supervised training data and leverages the periodic characteristics of heart and lung 
sound signals for separation. The research results indicate that this method yields 
satisfactory separation outcomes compared to other methods. SDR, PESQ and STOI 

Fig. 10 113_1306244002866_A.wav heart and lung sound separation effect

Fig. 11 101_1305030823364_B.wav heart and lung sound separation effect
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test results demonstrate that the signal quality of the separated heart and lung sound 
signals using DAE–NMF–VMD is significantly improved compared to traditional 
methods. In the current study, only the separation and denoising of mixed heart–lung 
sound signals have been performed. In future research, attempts can be made to com-
bine this algorithm with other advanced sound processing techniques to improve sig-
nal separation performance. Next research could focus on developing classification 
algorithms for heart and lung sound signals to assess their health status and analyze 
medical conditions.
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