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1 Introduction
The task of human behavior recognition aims to enable computers to identify the cur-
rent action category of the subject based on data captured by cameras, radar, or other 
sensors. This research task is highly challenging, demanding, and valuable in terms of 
application. Human motion data are primarily obtained from cameras and various types 
of sensors, leading to two main data formats. One format involves raw RGB image data 
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Objectives: This study aims to enhance supervised human activity recognition based 
on spatiotemporal graph convolutional neural networks by addressing two key chal-
lenges: (1) extracting local spatial feature information from implicit joint connections 
that is unobtainable through standard graph convolutions on natural joint connections 
alone. (2) Capturing long-range temporal dependencies that extend beyond the lim-
ited temporal receptive fields of conventional temporal convolutions.

Methods: To achieve these objectives, we propose three novel modules integrated 
into the spatiotemporal graph convolutional framework: (1) a connectivity fea-
ture extraction module that employs attention to model implicit joint connections 
and extract their local spatial features. (2) A long-range frame difference feature extrac-
tion module that captures extensive temporal context by considering larger frame 
intervals. (3) A coordinate transformation module that enhances spatial representation 
by fusing Cartesian and spherical coordinate systems.

Findings: Evaluation across multiple datasets demonstrates that the proposed 
method achieves significant improvements over baseline networks, with the highest 
accuracy gains of 2.76% on the NTU-RGB+D 60 dataset (Cross-subject), 4.1% on NTU-
RGB+D 120 (Cross-subject), and 4.3% on Kinetics (Top-1), outperforming current 
state-of-the-art algorithms. This paper delves into the realm of behavior recognition 
technology, a cornerstone of autonomous systems, and presents a novel approach 
that enhances the accuracy and precision of human activity recognition.
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[1], which is primarily acquired through traditional image sensors, i.e., cameras. The 
other format involves human skeletal point data, composed of two-dimensional or three-
dimensional coordinates of key joints in the human body. This skeletal point data can be 
obtained through specific sensors or by processing depth-enhanced raw RGB image data 
using pose estimation algorithms. These give rise to two distinct recognition methods: 
those utilizing RGB data and those utilizing skeletal point data [2]. Each of these meth-
ods comes with its own advantages and limitations. Recognition methods based on RGB 
images retain complete semantic information from the original images, yielding high 
recognition accuracy; however, they consume substantial computational resources and 
involve complex algorithms. On the other hand, methods employing skeletal point data 
are advantageous due to their convenience in processing, low computational resource 
requirements, and reduced algorithm complexity. Nevertheless, a drawback is the poten-
tial loss of some semantic information during the acquisition of skeletal point data, lead-
ing to slightly lower recognition accuracy compared to RGB-based methods. This paper 
primarily explores the utilization of skeletal point data, which holds promising applica-
tion prospects in various fields.

First and foremost, the application in production and daily life environments stands 
out. With the rapid development in the field of artificial intelligence, intelligent robots 
have become prevalent in people’s lives. The trend of using machines to replace human 
labor is becoming more pronounced. Traditional machines often require human inter-
vention, with operators manipulating them from control stations. Incorporating human 
behavior recognition technology into intelligent robots enables a decoupling between 
the robots and operators. Robots can comprehend task instructions through gestures 
and movements of the operators, thereby reducing the burden on human workers. For 
tasks that necessitate human collaboration, the application of human behavior recog-
nition technology makes human–machine interaction more convenient and enhances 
work efficiency. Secondly, the application in intelligent surveillance is noteworthy. Video 
surveillance is a common tool in both industrial and daily life contexts, ranging from 
homes and streets to hospitals and factories. However, the processing of the video foot-
age generated by these surveillance systems can be challenging. Manual observation is 
time-consuming and inefficient. Human behavior recognition technology offers an effec-
tive solution. By integrating this technology, abnormal human behaviors in surveillance 
videos can be rapidly identified. In domestic environments, intelligent surveillance can 
quickly detect intruders and raise alarms promptly. For households with elderly indi-
viduals, it can swiftly detect anomalies in their conditions, such as falls or unconscious-
ness, and notify family members or authorities, thereby reducing potential harm to both 
individuals and property. In criminal investigations, it aids law enforcement in swiftly 
locating suspects. In industrial settings, it can detect improper operations and issue 
timely warnings to prevent accidents. Human behavior recognition technology also 
finds application in the entertainment sector, including virtual reality technologies and 
VR games. Additionally, due to the rapid growth of short video platforms such as TikTok 
and Kwai, enormous amounts of video data are uploaded daily, posing significant chal-
lenges in content moderation. Human behavior recognition technology can efficiently 
alleviate the workload of content reviewers by rapidly identifying whether the actions 
in uploaded videos violate guidelines. Currently, many applications of human behavior 
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recognition technology are still in their infancy. Nevertheless, with the maturation of 
technology and advancements in hardware, the scope of application for this technology 
is expected to expand extensively.

Human behavior recognition technology finds wide application across various 
domains. Human skeletal point data have garnered attention due to its low computa-
tional cost and minimal susceptibility to environmental interference. The process of uti-
lizing skeletal point data for behavior recognition encompasses three main steps. The 
first step is action acquisition, generally facilitated by image sensors and depth sensors. 
Subsequently, skeletal point data generation follows. This entails employing pose estima-
tion algorithms to extract key human joint positions from the acquired images. These 
joint positions are then sequenced over time, resulting in organized skeletal point data. 
The final step involves behavior recognition. This entails employing behavior recognition 
algorithms to extract features from the skeletal point data. These extracted features are 
then input to a classifier to determine the final action category.

There are generally four types of human behavior recognition algorithms: tradi-
tional methods, recurrent neural networks, convolutional neural networks, and graph 
convolutional neural networks. Traditional methods primarily utilize manual feature 
engineering for behavior recognition. These methods include approaches like those by 
Laptev [3], who use interest point detection to map 3D videos into 1D space, effectively 
identifying moving objects. Dalal et  al. [4] proposed the use of histogram of oriented 
gradients (HOG) to detect human outlines, leveraging gradient information to compute 
appearance features. Histogram of Flow (HoF) descriptors exploit optical flow informa-
tion to compute temporal transformations and inter-frame correlations. Oreifej et al. [5] 
introduced a novel action recognition descriptor called the HON4D descriptor, which 
combined depth image sequences, spatial positions, and temporal information to map 
features into a four-dimensional space. Vemulapalli et al. [6] used various skeletal point 
description techniques to represent actions, mapping action curves into the Lie algebra 
vector space.

Recurrent neural networks (RNNs) are widely utilized for behavior recognition due 
to their distinctive advantage in handling time-series data. Among these methods, long 
short-term memory (LSTM) networks are the most extensively employed. Du et  al. 
[7] proposed an end-to-end hierarchical RNN algorithm, wherein the human skeletal 
representation is divided into five segments. LSTM is applied to process each of these 
segments separately, extracting temporal information from each part. The extracted 
information is then progressively fused across these segments, resulting in comprehen-
sive spatial feature information. A classifier is employed to generate a probability matrix. 
Song et  al. [8] introduced STA-LSTM, which incorporates spatiotemporal attention 
mechanisms into the LSTM main network. The main network utilizes LSTM to extract 
features, and spatiotemporal attention weights are calculated before and after the main 
network to incorporate temporal and spatial aspects. Zhang et al. [9] introduced atten-
tion gate structures within each RNN neuron, enabling each neuron to generate distinct 
attention effects for various inputs. Qiu et al. [10] introduced the concept of spatiotem-
poral saliency and integrated it into LSTM to enhance the significance of spatiotemporal 
features. Additionally, a dual-stream fusion approach is adopted to improve recognition 
accuracy.
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Behavior recognition methods based on convolutional neural networks (CNNs) 
employ convolutional operations to extract spatiotemporal feature information. For 
instance, in TS-LSTM [11], the authors employ convolutional layers to extract intra-seg-
ment spatial feature information. Subsequently, either CNN or RNN is utilized to cap-
ture temporal features. The temporal Conv [12] method employs temporal convolutional 
neural networks to extract temporal features, serving as an alternative to long short-
term memory networks. In the HCN method [13], a hierarchical convolutional network 
is proposed to learn co-occurrence features. This approach aims to aggregate contextual 
information across different hierarchical levels. Through this layered convolutional net-
work, the method seeks to harness context information at various levels effectively.

Graph convolutional networks (GCNs) are highly suitable for handling non-Euclidean 
distance data, making them particularly well-suited for processing skeletal point data. 
Spatiotemporal graph convolutional network (ST-GCN) [14] was among the first to 
extend graph convolutions to skeletal point data. It performs feature extraction on sin-
gle-frame skeletal point data using a graph convolutional network. By utilizing human 
joint connections as the graph structure, it effectively extracts spatial feature informa-
tion. Subsequently, a one-dimensional convolution operation processes the spatial fea-
ture information extracted from each frame in the video sequence to obtain temporal 
features. A classifier is then employed to calculate class probabilities. Building upon ST-
GCN, several improved methods have been introduced. In AS-GCN [15], the authors 
enhance the consideration of dependencies among joints that are not physically adjacent 
in the human body. They introduce action connections and structure connections to 
capture dependencies between any nodes. In 2 s-AGCN [16], adaptive graph convolu-
tion operations and a dual-stream structure are employed to enhance recognition accu-
racy. Shift-GCN [17] reduces computational complexity by replacing convolutions with 
channel shifting operations. It introduces adaptive spatial shifting and temporal shifting 
operations to enhance spatiotemporal features. The MS-G3D algorithm [18] introduces 
a concept of multi-scale decoupling. Recognizing that dependencies between nodes in 
the structural graph of graph convolutions are overly coupled and lack temporal struc-
ture, MS-G3D introduces the G3D operator. This operator aims to decouple joint spa-
tial dependencies and introduce time dependencies. The methods mentioned above are 
all supervised approaches. However, supervised methods have limited applicability and 
can only be used in scenarios where sufficient labeled data is available. For scenarios 
with insufficient labeled data, supervised methods may not perform well. As a result, 
researchers have turned their attention to studying unsupervised methods for human 
behavior recognition using skeletal point data. The authors of LongT GAN [19] designed 
a skeletal point sequence restoration architecture to learn fixed-dimensional repre-
sentations. They employed additional adversarial training strategies as guidance. MSL 
researchers [20] found that learning feature representations solely from a single recon-
struction task could lead to overfitting and inadequate feature representations for behav-
ior recognition. They proposed a combined approach involving multiple tasks, including 
behavior prediction, jigsaw puzzles, and contrastive learning, to learn diverse skeletal 
point features. Motion feature information can be modeled through behavior prediction, 
jigsaw puzzles are used for learning temporal features, and contrastive learning regu-
lates the features extracted from different tasks. AS-CAL [21] introduced a contrastive 
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action learning paradigm to enhance action patterns in skeletal point sequences. They 
proposed a momentum LSTM as an encoder and a novel action representation called 
Contrastive Action Encoding (CAE). PC-Net [22] utilized a Gated Recurrent Unit 
(GRU) as an encoder and decoder. By fixing states and weights, the decoder’s influence 
was weakened, forcing the encoder to learn features that better represent action catego-
ries. SeBiReNet [23] introduced a tethered denoising autoencoder for learning 3D pose 
representations. It can separate pose-related and view-related features from skeletal data 
entirely in an unsupervised manner. The authors also proposed a sequential bidirec-
tional recursive network to model skeletal data. CrosSCLR [24] first introduced a highly 
consistent skeletal point contrastive representation, which can capture contrastive learn-
ing samples with high similarity. To address the limitation of information extracted from 
a single view representation, they proposed cross-view feature exchange to enhance the 
accuracy of feature extraction.

This paper presents a supervised human behavior recognition method based on spa-
tiotemporal graph convolutional neural networks, referred to as the coordinate trans-
formation and connectivity feature-based human behavior recognition method. When 
processing sequences of human skeletal point data, this method effectively extracts joint 
connectivity feature information, enhancing spatial feature representation, while also 
proficiently capturing temporal variations. Compared to the baseline method, it demon-
strates superior recognition accuracy.

Graph convolutional neural networks have yielded impressive recognition outcomes 
in behavior recognition based on skeletal data. The graph structure, a fundamental 
component of graph convolutional neural networks, encapsulates relationships among 
nodes within non-Euclidean data. Concealed within this graph structure are connec-
tivity features between nodes that can furnish supplementary spatial features denoting 
inter-joint relationships. However, numerous methods employing graph convolutional 
neural networks overlook these spatial features. This paper introduces a connectiv-
ity feature extraction module to acquire implicit connections between human joints, 
extracting hidden spatial features from both structural and implicit joint connections. 
To enhance temporal feature representation, a long-range frame difference feature 
extraction module is proposed, employing extensive frame differences to achieve a larger 
temporal receptive field. Additionally, a coordinate transformation module is devised to 
convert human skeletal points from Cartesian coordinates to spherical coordinates while 
simultaneously retaining the features of both coordinate systems, thus acquiring more 
comprehensive features. Finally, through multi-stream fusion, the outputs are com-
bined, leveraging advantages from different perspectives to further elevate recognition 
accuracy. Experimental results underscore the efficacy of the three proposed modules 
in enhancing feature representation. The ultimate method exhibits significant improve-
ment over baseline networks and even achieves promising outcomes compared to cur-
rent leading-edge algorithms across multiple datasets.

2  Problem description
The development of human behavior recognition technology based on skeletal point 
data has reached an advanced stage, with a substantial portion of credit attributed to 
the application of spatiotemporal graph convolutional neural networks. These networks 
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have showcased remarkable potential within the realm of behavior recognition, and in 
recent years, numerous methods have embraced the concepts of spatiotemporal graph 
convolutions.

The interconnections among human joints constitute a pivotal component of skeletal 
point-based human behavior recognition methodologies. Many approaches regard these 
interconnections as the graph structure of graph convolutional neural networks. In the 
case of ST-GCN [14], the network’s graph structure solely incorporates structural con-
nections among human body components, failing to consider potential relationships 
between non-physically connected joints. Building upon the foundation of ST-GCN, 
AS-GCN [15] introduced action-specific connections and structural connections, tailor-
ing distinct action connections for different actions and integrating these two types of 
connections into a novel graph structure. Meanwhile, 2  s-agcn [16] leverages adaptive 
graph convolution modules to capture implicit connections within the human body. The 
MS-G3D [18] method employs a decoupled multi-scale aggregation approach to gen-
erate multi-scale graph structures. These methods primarily treat the interconnections 
between human joints as the graph structure of graph convolutional networks, neglect-
ing the spatial features inherently embedded within these interconnections. The extrac-
tion of these features warrants further investigation.

Temporal features also hold significance in human behavior recognition. Many tech-
niques employ one-dimensional convolutions to capture temporal dimension features. 
Due to the constraints of convolutional operations, one-dimensional convolutions can 
only access features between adjacent frames. Frame difference representation serves 
as an effective means to capture temporal features. In SGN [25], authors utilize frame 
differences between adjacent frames as dynamic representation features. In Shift-GCN 
[17], authors employed frame differences between neighboring frames as inputs for a 
stream within their network, thereby extracting temporal features. These methods over-
look long-term dependencies along the temporal dimension, and extracting long-term 
temporal dependencies also serves as an avenue for feature enhancement. Human skel-
etal point data comprises a set of joint coordinate data represented in a three-dimen-
sional Cartesian coordinate system. Concerning the representation of human joints, 
the relationships among three-dimensional coordinates are sparse, and the connections 
between joints lack density. Utilizing skeletal point data solely based on three-dimen-
sional Cartesian coordinates results in overly simplistic feature information for human 
behavior recognition.

This paper will expound upon the aforementioned three issues and elucidate the pro-
posed solutions for these challenges. Through experimental validation, the efficacy of 
the solutions introduced in this paper is demonstrated.

3  Method
3.1  Overall network architecture

The overall framework of the proposed human behavior recognition algorithm based on 
coordinate transformation and connectivity features is depicted in Fig.  1. Initially, the 
input skeletal point sequence data are processed through two channels to extract tem-
poral and spatial feature information. The long-distance frame difference feature extrac-
tion module in Fig.  1 is responsible for capturing temporal features. The roles of the 
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coordinate transformation module and the connectivity feature extraction module are 
to acquire spatial features. The features extracted from both channels are then combined 
using summation to obtain subsequent output features. These output features are fed 
into the subsequent network, where ST-GCN is employed in this study. Finally, the out-
put features are input to a classifier, which produces the predicted class.

3.2  Connectivity feature extraction module

Human joint connections can be categorized into two types: natural connections and 
implicit connections. Natural connections are formed based on the appearance of the 
human body, as illustrated in Fig. 2a. The red connections in Fig. 2b represent implicit 
connections between the leg and knee joints during running. This paper employs an 
attention module to capture implicit connections among human joints, with the specific 
calculation process outlined in Eq. (1).

Fig. 1 Network architecture diagram

Fig. 2 Natural and implicit connections of human joints: a natural connection; and b implicit connection
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where X represents the input skeletal point data, W denotes the learnable weight matrix, 
dim stands for the channel dimension, and A represents the output implicit connectivity 
matrix.

In the current state, methods based on graph convolutional neural networks consider 
human body connectivity features as a graph structure, often overlooking the wealth of 
information contained within these connections. The joints’ connections encompass 
significant local spatial feature information that can enhance the global spatial features 
extracted by graph convolutional neural networks. This paper introduces the connectiv-
ity feature extraction module to extract local spatial features embedded within human 
joint connections. The network architecture of this module is depicted in Fig. 3.

The attention module in the diagram is utilized to obtain the implicit connectivity 
matrix of human joints. Once the implicit connections of the human joints are acquired, 
the connectivity feature extraction module employs two linear layers and an activation 
function to separately extract the local spatial feature information from the natural and 
implicit connections of the joints. The obtained features are then added to the original 
input, enhancing the spatial features of the input. This enhanced input is subsequently 
utilized as the input for the following network. The specific calculation formula is 
depicted as follows:

where X̃ is the output feature, X is the input feature, σ is the ReLU activation function, 
Anorm is the natural connectivity matrix of human joints, Ahid is the implicit connectiv-
ity matrix from the attention module, and W3 , W4 , and W5 are learnable weight matrices.

3.3  Long‑distance frame difference feature extraction module

The temporal context information is also crucial for the recognition of human body 
behaviors based on skeletal point data. Many previous approaches utilized one-dimen-
sional temporal convolution operations in the time domain to extract contextual feature 
information. The size of the temporal receptive field depends on the size of the convo-
lution kernel. However, constrained by computational resources, convolution kernels 
are generally small, which leads to the inability of traditional temporal convolutions to 

(1)Ahid = softmax
(W1X) · (W2X)

T

√
dim

(2)X̃ = X + σ(W5(σ (W3Anorm)+ 0.5 ∗ σ(W4Ahid)))

Fig. 3 Network architecture diagram of the connectivity feature extraction module
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capture long-range temporal dependencies. This paper proposes the use of long-range 
frame difference features to obtain distant temporal dependencies, as shown in Fig. 4. By 
considering larger time intervals between frames, this module can capture more exten-
sive temporal context information, enabling a better understanding of the evolution of 
actions over time.

The specific calculation formula for extracting long-distance frame difference features, 
proposed by this method’s long-distance frame difference extraction module, for captur-
ing long-range temporal dependencies is given as Eq. (3):

where Dt is the extracted long-range temporal feature at time t, Xt is the skeleton data at 
time t, xt−d is the skeleton data at time (t − d) , d is a hyperparameter representing the 
inter-frame distance, W5 and W6 are learnable weight matrices, and σ is the ReLU activa-
tion function.

3.4  Coordinate transformation module

Currently, human body behavior recognition methods based on skeletal point data 
use the three-dimensional Cartesian coordinates of human joints as inputs to the 
network, as shown in Fig. 5a. When describing the coordinates of human joints in 
a three-dimensional Cartesian coordinate system, the human joints are represented 
in the form of (xt , yt , zt) . The three-dimensional Cartesian coordinates focus on the 
spatial position information of human joints, effectively capturing the pose states 
of different body parts during human motion. However, using three-dimensional 
Cartesian coordinate representation for human joint data in behavior recognition 
has two disadvantages. Firstly, the coordinates represented in the three-dimensional 
Cartesian system are linear transformations, and changes in all three dimensions 
can be obtained through translation. However, human motion is more like rota-
tional movement around joints, which cannot be adequately represented in the 
three-dimensional Cartesian coordinate system. Secondly, the representation of 
three-dimensional Cartesian data along the axes is not interrelated. Human motion 
is a holistic action, not separate movements along each axis. Therefore, using three-
dimensional Cartesian coordinate representation of human joint data as input to 

(3)Dt = σ(W5σ(W6(xt−d − Xt)))

Fig. 4 Extraction of long-distance frame differences in human skeleton points
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the network will undoubtedly lose the interconnected information between differ-
ent coordinate axes. Representing human joint points using spherical coordinates, as 
opposed to using Cartesian coordinates, focuses more on the relationship between 
each joint and the body’s center of gravity, as shown in Fig. 5b. Each joint point of 
the human body can be represented using the distance and rotational angle relative 
to the body’s center of gravity. This representation effectively captures the nonlinear 
morphological changes during human motion.

The proposed method in this paper utilizes a coordinate transformation mod-
ule to convert the representation from three-dimensional Cartesian coordinates to 
spherical coordinates. This transformation is aimed at capturing the nonlinear fea-
tures carried by human motion. The basis for the coordinate transformation is given 
by Eqs.  (4) to (6). Additionally, to retain the advantages of the three-dimensional 
Cartesian coordinate representation, this paper suggests using both types of coor-
dinate representations for human skeletal point data as inputs to the network. This 
approach enables the extraction of both linear and nonlinear features present in 
human motion.

In Eq.  (4), x̂ = xt,k − xt represents the difference in x-coordinate between the center 
of mass of the human body at time t, denoted as (xt , yt , zt) , and the three-dimensional 
Cartesian coordinates of joint k at time t, denoted as (xt,k , yt,k , zt,k) . Furthermore, 
Rt,k , θt,k ,�t,k signifies the spherical coordinate representation of joint k of the human 
body at time t.

(4)Rt,k =
√

x̂2 + ŷ2 + ẑ2

(5)θt,k =arccos(
zt,k − zt

Rt,k
)

(6)�t,k =arctan(
yt,k − yt

xt,k − xt
)

Fig. 5 Overall framework
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3.5  Multi‑stream fusion module

The dual-stream network architecture is a classic structure in the field of behavior rec-
ognition. It was initially used for behavior recognition based on RGB videos, where it 
combines RGB and optical flow information. The RGB stream is used to capture pose 
information, while the optical flow stream captures motion information. By utilizing two 
streams with different representations, this architecture obtains distinct meaningful fea-
tures. This approach effectively enhances the accuracy of the algorithm. In the context 
of the 2 s-AGCN framework, the dual-stream architecture was first applied to human 
body behavior recognition tasks based on skeletal data, achieving promising results. In a 
similar vein, this study draws inspiration from its network architecture and incorporates 
the multi-coordinate representation data proposed in this work as separate streams for 
network input. For each input stream, a separate training process is conducted, and the 
output probability matrices from each stream are averaged to obtain a new probabil-
ity matrix, which serves as the final recognition result. This strategy leverages multiple 
streams to capture different aspects of the input data, contributing to improved recogni-
tion outcomes.

As depicted in Fig.  6, the schematic diagram illustrates the multi-stream fusion 
approach employed in this chapter. The multi-stream fusion method involves two dis-
tinct input streams: the joint data stream, depicted as the “joint” stream in the diagram, 
and the human skeleton data stream, referred to as the “bone” stream. The joint data 
stream encompasses the three-dimensional coordinates of human joints, denoted as 
(xt,k , yt,k , zt,k) , which represent the coordinate position of joint k at time t. The human 
skeleton data stream is derived from processed joint data. For two naturally connected 
joints (x1, y1, z1) and (x2, y2, z2) at the same time instant, the corresponding bone data is 
calculated as v1,2 = (x2 − x1, y2 − y1, z2 − z1) . The complete set of naturally connected 
joints forms the human skeleton data. Since the human joint structure constitutes an 
acyclic graph, the number of edges is one less than the number of nodes. To address 
this disparity, self-loop edges are added to the center of mass node, ensuring that both 
streams have the same data shape. Building upon the joint and skeleton streams, this 
method maps both streams to spherical coordinate systems to provide additional feature 
information. This mapping culminates in the multi-stream fusion structure depicted in 

Fig. 6 Schematic diagram of multi-stream fusion structure
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the diagram. By incorporating both joint and skeleton data, and further enhancing their 
representation in spherical coordinates, this multi-stream fusion framework enhances 
the model’s ability to capture a broader range of features.

4  Experiments and analysis
4.1  Datasets and evaluation metrics

To validate the effectiveness of the proposed method, this study conducted verification 
experiments on multiple datasets: NTU-RGB+D 60 [26], NTU-RGB+D 120 [27], and 
Kinetics [28]. Each dataset is associated with its respective evaluation criteria.

First, let us consider the NTU-RGB+D 60 dataset, commonly referred to as the NTU 
60 dataset. This dataset comprises a total of 56,880 videos. Each video consists of three 
types of data: RGB video, IR video, and 3D skeletal point data. For this study, only the 
skeletal point data was utilized. Within the NTU 60 dataset, there are a total of 60 action 
classes. The actions were captured using three cameras, and the 3D skeletal point data 
was captured using Kinect depth sensors. In the NTU-RGB+D skeletal point dataset, 
each action sequence is represented by 25 skeletal points, as depicted in Fig. 7a. Addi-
tionally, only up to two action subjects were considered in each actual action frame. The 
creators of the NTU 60 dataset recommend the use of two evaluation criteria: cross-
view and cross-subject. The cross-view criterion differentiates the training and testing 
sets based on the sensor ID. Conversely, the cross-subject criterion divides the videos 
into training and testing sets based on different performing groups. Each group consists 
of 20 volunteers who performed the actions for the captured videos.

Next is the NTU-RGB+D 120 dataset, abbreviated as NTU 120 dataset. As the 
name suggests, it is an expanded version of NTU 60 dataset, where the number of 
action classes has been increased from 60 to 120, and the overall dataset size has 
roughly doubled. The sample format and human skeletal representation in NTU 120 

Fig. 7 Schematic diagram of human skeletal structure: a NTU-RGB+D human skeletal structure; b kinetics 
human skeletal structure
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remain consistent with NTU 60. The key difference lies in the fact that NTU-RGB+D 
120 dataset includes a broader range of subjects, expanding from 40 individuals to 
106 individuals. Additionally, the sensor setup involves 32 different configurations, 
requiring variations in working locations and backgrounds for data collection. The 
cross-setup evaluation criterion divides the 32 sets of data into even and odd groups, 
with even-numbered sets as training and odd-numbered sets as testing.

Finally, let us discuss the Kinetics dataset. The Kinetics dataset is a large-scale data-
set containing over 300,000 video clips with a total of 400 action classes. This dataset 
comprises only RGB videos and does not include skeletal point data. In this study, 
pose estimation methods are employed to extract skeletal coordinate information 
from the RGB videos. Each individual in the extracted action sequences is represented 
by 18 skeletal points. When multiple individuals appear in a video, only the skeletal 
data of two individuals are retained. The skeletal representation of an action sequence 
in the Kinetics dataset is illustrated in Fig. 7b. Unlike the NTU-RGB+D dataset, the 
Kinetics dataset is not captured using specialized cameras and controlled conditions. 
Instead, the videos are captured in real-world environments, resulting in significant 
variations between samples and an uneven distribution of videos. Due to these chal-
lenges, training models on the Kinetics dataset can be difficult. Furthermore, the 
Kinetics dataset lacks professionally captured skeletal point data and relies on pose 
estimation tools, introducing considerable inaccuracies. As a result, achieving high 
recognition accuracy for behavior recognition on the Kinetics dataset remains chal-
lenging for current algorithms.

The information of the three datasets are summarized as follows. 

1. NTU-RGB+D 60:

• Total number of videos: 56,880.
• Number of action classes: 60.

2. NTU-RGB+D 120:

• Total number of videos: Approximately double the size of NTU-RGB+D 60.
• Number of action classes: 120.
• Distribution of action classes: Similar to NTU-RGB+D 60, we have provided a 

table summarizing the number of videos per action class.

3. Kinetics:

• Total number of video clips: Over 300,000.
• Number of action classes: 400.
• Distribution of action classes: We have acknowledged the uneven distribution 

of videos across action classes in the Kinetics dataset and discussed its potential 
impact on the interpretation of performance scores.

In this paper, the evaluation criteria proposed by the authors are followed for the 
NTU-RGB+D dataset, where the maximum probability action is used as the recogni-
tion result. For the Kinetics dataset, the evaluation is based on both top-1 and top-5 
accuracy metrics.
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4.2  Experimental environment and parameters

The implementation framework of the code for this paper’s model is based on PyTorch, 
and the model training and testing are conducted using an NVIDIA GeForce 2080 
device. The frame difference span for the long-distance frame difference feature extrac-
tion module in the model is set to 5 frames. The datasets used in this paper are aligned 
by duplicating or reducing frames to facilitate network training. For the NTU-RGB+D 
dataset, each action sequence consists of 300 frames, while the Kinetics dataset retains 
150 frames. Only 2 action subjects are retained for each dataset by selecting the maxi-
mum values. During training on the NTU dataset, the initial learning rate is set to 0.05, 
and it is reduced to one-tenth at the 30th and 40th epochs, for a total of 50 epochs. For 
training on the Kinetics dataset, the initial learning rate is set to 0.1, and it is reduced to 
one-tenth at the 40th and 50th epochs, for a total of 65 epochs.

4.3  Ablation experiments

In this subsection, the effectiveness of the proposed method is validated through abla-
tion experiments using the NTU 60 dataset and the cross-subject evaluation criterion. 
To verify the impact of different coordinate representations, experiments are conducted 
using two coordinate representations. Table 1 presents the specific experimental results. 
In the table, “CFE” represents the connection feature extraction module, and “LRFDFE” 
represents the long-range frame difference feature extraction module. The “baseline” 
refers to the ST-GCN method, which achieves 86.30% accuracy under the cross-subject 
evaluation criterion through data preprocessing and parameter tuning.

The primary purpose of Table 1 is to conduct an ablation study, investigating the indi-
vidual and combined effects of the proposed modules: the CFE module and the LRFDFE 
module. The baseline accuracy of 86.30% corresponds to the performance of the ST-
GCN method without the integration of our proposed modules. This baseline is estab-
lished to provide a reference point for evaluating the improvements introduced by our 
contributions. In the table, the rows represent different experimental settings, where 
we selectively enable or disable the proposed modules to analyze their impact on the 
overall recognition accuracy. The first row (86.30% ) represents the baseline performance 
without any of our proposed modules. The subsequent rows introduce the CFE mod-
ule and the LRFDFE module individually and in combination, allowing us to quantify 
their respective contributions. Specifically, the accuracy of 86.67% corresponds to the 

Table 1 Ablation experiments on NTU 60 dataset using cross-subject evaluation

Coordinate representation CFE module LRFDFE module Accuracy (%)

Rectangular coordinates × × 86.30
√ × 86.67

× √
87.74

√ √
88.03

Spherical coordinates × × 86.30
√ × 87.12

× √
88.06

√ √
88.12

Rectangular + spherical coordinates
√ √

89.06
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scenario where only the CFE module is enabled, while the LRFDFE module remains dis-
abled. This value highlights the performance improvement achieved solely by incorpo-
rating the connection feature extraction module into the baseline method. Similarly, the 
accuracy of 87.74% corresponds to the scenario where only the LRFDFE module is ena-
bled, while the CFE module is disabled. This value demonstrates the performance gain 
attributed to the long-range frame difference feature extraction module alone. The final 
row, with an accuracy of 88.03% (rectangular coordinates) and 88.12% (spherical coor-
dinates), represents the scenario where both the CFE and LRFDFE modules are enabled 
simultaneously. These values reflect the cumulative effect of combining the two pro-
posed modules, showcasing their complementary contributions to improving the overall 
recognition performance.

In order to investigate the effectiveness of various modules in this approach, a compar-
ison of accuracy was conducted between the proposed method and the baseline method 
on the NTU-RGB+D 60 dataset for different actions. In the majority of actions, the pro-
posed method outperformed the baseline method. Some actions exhibited significant 
improvements, as illustrated in Fig. 8, which displays the recognition accuracy improve-
ments of the proposed method over the baseline. Notably, the “reading” action achieved 
a recognition accuracy improvement as high as 12.5% , while the “put on a shoe” action 
saw a 10% improvement compared to the baseline. Furthermore, actions such as “put on 
glasses,” “headache,” and “writing” also exhibited recognition accuracy improvements of 
8.5% , 8 % , and 7.9% , respectively.

As shown in Fig.  9, a selection of action screenshots is presented. In Fig.  9 (a) for 
the “reading” action, (b) for “headache,” and (c) for “writing,” these actions focus on 
localized hand movements and the connections between the hands and other joints. 
These connections encapsulate crucial spatial features that can be captured using the 
proposed connection feature extraction module. As expected, the actual results dem-
onstrate significant improvements for these actions compared to the baseline. On the 
other hand, actions like (d) “putting on glasses,” (e) “putting on shoes,” and (f ) “wearing 
a jacket” exhibit strong temporal dependencies. Leveraging the proposed long-distance 
frame difference feature extraction module effectively captures the long-term temporal 

Fig. 8 Improved accuracy compared to the baseline on several actions in the NTU-RGB+D 60 dataset
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dependencies, as demonstrated by the results. These findings underscore the efficacy of 
the method proposed in this study.

Furthermore, to take it a step further, this paper introduces a dual-stream fusion net-
work. Initially, the baseline method of this paper is subjected to dual-stream fusion, 
resulting in an accuracy of 88.93% , as indicated by ST-GCN in Table 2. This represents 
a notable improvement of 2.6% compared to the single-stream results, demonstrating 
a substantial enhancement. The proposed method conducts dual-stream fusion experi-
ments separately in the two coordinate systems, with the results presented in Table 2.

As shown in Table 2, the fusion results of our method in the Cartesian coordinate sys-
tem achieve an accuracy of 89.57% , and in the spherical coordinate system, the accuracy 
reaches 89.75% . Both of these results show a significant improvement compared to sin-
gle-stream networks. Our method also verifies the fusion results using both coordinate 
representations simultaneously, referred to as multi-stream fusion, which ultimately 
achieves an accuracy of 90.52%.

4.4  Comparative experiments with existing methods

Firstly, this paper conducts experiments on the NTU-RGB+D 60 dataset to compare 
the proposed human behavior recognition method based on coordinate transforma-
tion and connection features with classic methods, including traditional approaches 
from the early days and recent advanced algorithms. Table 3 presents the comparative 

Fig. 9 Partial action demonstrations on NTU 60 dataset

Table 2 Dissolution experiments of multi-stream fusion

Method Coordinate representation Accuracy (%)

ST-GCN Rectangular coordinates 88.93

Ours Rectangular coordinates 89.57

Ours Spherical coordinates 89.75

Ours Rectangular + spherical coordinates 90.52
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experimental results on the NTU 60 dataset. Under the cross-subject evaluation, the 
accuracy of our algorithm is 90.5% , which is the best among all the compared methods. 
Under the Cross-view evaluation, the recognition accuracy is 95.8% , slightly lower than 
the highest-performing DGCN method by 0.3% . This is because the DGCN method 
employs not only skeletal and skeleton-stream data but also two additional motion 
streams, which are not utilized in our approach. The significant improvements of our 
method compared to the baseline methods highlight the effectiveness of our proposed 
approach.

Table  4 presents the comparative results on the NTU 120 dataset. Due to the data-
set’s recent release, this paper conducted comparisons with only a subset of methods. 
For the proposed algorithm, the recognition accuracy under the cross-subject evaluation 
reached 85.6% , and under the cross-setup evaluation, it achieved 87.4% . These accuracies 
surpass those of the baseline method proposed in this paper, as well as other state-of-
the-art algorithms.

On the Kinetics dataset, the comparative experimental results of this paper are 
presented in Table 5. Due to the presence of significant noise in the Kinetics dataset 
and the reliance on the accuracy of pose estimation algorithms for obtaining skeleton 

Table 3 Comparative experiments conducted on the NTU-RGB+D 60 dataset

Bold is used to highlight key findings or best results that are particularly noteworthy or important within the context of the 
study. These bolded entries serve to draw the reader’s attention to crucial data points, facilitating easier interpretation and 
understanding of the tables

Method Cross‑subject (%) Cross‑view (%)

H-RNN [7] 59.1 64.0

ST-LSTM [29] 69.2 77.7

Two-Stream RNN [30] 71.3 79.5

STA-LSTM [8] 73.4 81.2

Ensemble TS-LSTM [31] 74.6 81.3

TCN [12] 74.3 83.1

GCA-LSTM [32] 76.1 84.0

Clips + CNN + MTLN [33] 79.6 84.8

VA-LSTM [34] 79.2 87.6

Ind-RNN [35] 81.8 88.0

ST-GCN (baseline) [14] 81.5 88.3

ARRN-LSTM [36] 80.7 88.8

HCN [13] 86.5 91.1

PR-GCN [37] 85.2 91.7

SR-TSL [38] 84.8 92.4

TS-SAN [39] 87.2 92.7

AR-GCN [40] 85.1 93.2

PB-GCN [41] 87.5 93.2

MANs [42] 82.7 93.2

AS-GCN [15] 86.8 94.2

2s-AGCN [16] 88.5 95.1

AGC-LSTM [43] 89.2 95.0

GCN-NAS [44] 89.4 95.7

DGNN [45] 89.9 96.1
SGN [25] 86.6 93.4

Ours 90.5 95.8
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point data, the recognition accuracy on this dataset tends to be generally low, as 
reflected in the table. The proposed method achieved a top-1 accuracy of 33.8% and a 
top-5 accuracy of 57.0%.

Based on the results of the comparative experiments presented above, it can be 
observed that the human behavior recognition method proposed in this paper, based 
on coordinate transformation and connection features, has achieved advanced per-
formance on multiple datasets. In comparison with many existing methods, the 
proposed approach demonstrates superior recognition effectiveness. This clearly 
emphasizes the validity and innovation of the work presented in this paper. The 
experimental results validate the effectiveness of the three proposed modules indi-
vidually, affirming that these modules indeed perform as anticipated.

The NTU-RGB+D 60 dataset is widely recognized as a challenging benchmark for 
skeleton-based action recognition, with a diverse set of actions and cross-subject 
evaluation protocol that tests the generalization capabilities of models. Our method 
outperforms several state-of-the-art approaches on this dataset, as reported in 
Table  3, further highlighting the significance of the achieved improvements. While 
incremental improvements may seem modest in isolation, they can have a com-
pounding effect when combined with other novel components, as demonstrated by 

Table 4 Comparative experiments conducted on the NTU-RGB+D 120 dataset

Bold is used to highlight key findings or best results that are particularly noteworthy or important within the context of the 
study. These bolded entries serve to draw the reader’s attention to crucial data points, facilitating easier interpretation and 
understanding of the tables

Method Cross‑subject (%) Cross‑view (%)

Part-Aware LSTM [26] 25.5 26.3

ST-LSTM [29] 55.7 57.9

GCA-LSTM [32] 58.3 59.2

TSRJI [46] 67.9 62.8

SGN [25] 79.2 81.5

Poincare-GCN [47] 80.5 83.2

MV-IGNET [48] 83.9 85.6

FGCN [49] 85.4 87.4

Ours 85.6 87.4

Table 5 Comparative experiments conducted on the Kinetics dataset

Bold is used to highlight key findings or best results that are particularly noteworthy or important within the context of the 
study. These bolded entries serve to draw the reader’s attention to crucial data points, facilitating easier interpretation and 
understanding of the tables

Method Cross‑subject (%) Cross‑view (%)

Feature Enc [50] 14.9 25.8

Deep LSTM [26] 16.4 35.3

Temporal Conv [12] 20.3 40.4

ST-GCN [14] 30.7 52.8

AR-GCN [40] 33.5 56.1

PR-GCN [37] 33.7 55.8

Ours 33.8 57.0
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our integrated framework. Beyond quantitative improvements, our work introduces 
novel methodological contributions, such as the attention-based modeling of implicit 
joint connections, long-range temporal feature extraction, and coordinate transfor-
mation, which advance the field of skeleton-based action recognition. The consistent 
performance improvements observed across multiple datasets (NTU-RGB+D 60, 
NTU-RGB+D 120, and Kinetics) further validate the robustness and generalizability 
of our approach.

4.5  Visualization results

As shown in Fig. 10, the recognition results of the proposed algorithm on the NTU 
dataset are illustrated. The upper portion of Fig. 10 displays several frames extracted 
from the captured videos, while the lower portion shows the corresponding skeleton 

Fig. 10 Visualization results
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point data alongside their predicted results. It is evident that the recognition out-
comes of the proposed algorithm are accurate and aligned with the ground truth.

5  Discussion
This paper presents a novel approach to human behavior recognition through the inte-
gration of innovative techniques and modules. Its key contributions include: 

(1) Integrated framework Our work introduces a comprehensive and innovative frame-
work that seamlessly integrates three distinct techniques: coordinate transforma-
tion, connection feature extraction, and long-distance frame difference analysis. 
This integrated approach represents a significant advancement in the field of human 
behavior recognition, as it enables a holistic and multi-faceted representation of 
spatial and temporal features. By combining these complementary techniques, our 
framework achieves a synergistic effect, leading to improved recognition accuracy 
and robustness.

(2) Coordinate transformation A key novelty of our approach lies in the introduction 
of a coordinate transformation module. Traditionally, human skeletal data has been 
represented using Cartesian coordinates, which may fail to capture the nonlinear 
relationships and interconnections between joints effectively. Our work pioneers 
the use of spherical coordinates in the context of human behavior recognition, ena-
bling a more accurate representation of the intricate joint relationships and body 
dynamics. By converting the Cartesian coordinates to spherical coordinates, our 
method can capture the nonlinear spatial characteristics of human movements, 
leading to enhanced feature representation and improved recognition performance.

(3) Connection feature extraction Another unique aspect of our work is the develop-
ment of a connection feature extraction module. While previous methods have pri-
marily focused on using joint connections as the graph structure for convolutional 
neural networks, our approach recognizes the inherent spatial feature information 
embedded within these connections. By explicitly extracting and leveraging these 
connection features, our method can capture the local spatial relationships between 
joints, providing valuable insights into the structural dynamics of the human 
body during motion. This novel approach complements the global spatial features 
extracted by graph convolutional networks, leading to a more comprehensive and 
accurate representation of human actions.

(4) Long-distance frame difference analysis Temporal dependencies play a crucial role 
in human behavior recognition, as actions unfold over time. While traditional 
methods have relied on short-range temporal convolutions or adjacent frame dif-
ferences, our work introduces a long-distance frame difference feature extraction 
module. This novel technique enables the capture of long-term temporal depend-
encies by analyzing frame differences across extensive time intervals. By consider-
ing these long-range temporal patterns, our method can better understand the evo-
lution of actions over time, leading to improved recognition accuracy, particularly 
for complex and prolonged movements.

(5) Multi-stream fusion To leverage the strengths of different coordinate representa-
tions, our work incorporates a novel multi-stream fusion approach. By fusing the 
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features extracted from both Cartesian and spherical coordinate systems, our 
method can capitalize on the complementary advantages of each representation. 
The multi-stream fusion technique enables our framework to capture a diverse 
range of spatial and temporal cues, leading to a more comprehensive and robust 
understanding of human actions. This innovative fusion approach represents a sig-
nificant advancement in the field, as it combines multiple perspectives to achieve 
enhanced recognition accuracy.

In summary, this paper’s contributions lie in its novel framework that seamlessly inte-
grates coordinate transformation, connection feature extraction, and long-distance 
frame difference. These innovations collectively empower the method to achieve supe-
rior accuracy in human behavior recognition tasks, showcasing its potential impact on 
the field.

While this paper presents significant advancements in human behavior recognition, it 
also has certain limitations: 

(1) Dependency on data quality The accuracy of the proposed method relies on the 
accuracy of the input data, particularly the quality of estimated joint positions. 
Noisy or imprecise joint data could affect the performance of the method.

(2) Computational complexity The introduced modules, especially the long-distance 
frame difference feature extraction, may increase the computational requirements 
of the method, potentially limiting its real-time applications on resource-con-
strained devices.

The paper opens up possibilities for further research and improvement in the field of 
human behavior recognition: 

(1) Robustness to noisy data Future work could explore techniques to make the pro-
posed method more robust to noisy input data, such as joint position estimation 
errors.

(2) Efficiency improvements Investigate methods to optimize the computational com-
plexity of the proposed framework, making it more suitable for real-time applica-
tions.

(3) Generalization Extend the method’s applicability to different domains, such as rec-
ognizing behaviors in animals or objects, by adapting and refining the proposed 
framework.

(4) Transfer learning Explore the potential of transfer learning to adapt the proposed 
method to new datasets or different sensor modalities, thus reducing the need for 
extensive data collection.

The ST-GCN method, proposed by Yan et al. [14] in 2018, has been widely recognized 
as a pioneering work in the field of skeleton-based action recognition. It introduced the 
concept of applying GCNs to skeletal data, representing the human body as a graph 
structure with joints as nodes and natural connections as edges. This approach effec-
tively captures the spatial relationships between joints and enables the extraction of dis-
criminative features for action recognition.
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Despite its introduction several years ago, ST-GCN remains a highly influential and 
widely adopted baseline method in the field. Its impact can be attributed to several 
factors: 

(1) Simplicity and interpretability ST-GCN’s architecture is relatively straightforward, 
making it easy to understand and implement. This simplicity has facilitated its 
adoption by researchers and practitioners, fostering further exploration and devel-
opment in the field.

(2) Solid performance Even with its simplicity, ST-GCN has demonstrated competitive 
performance on benchmark datasets, such as NTU-RGB+D and Kinetics. Its abil-
ity to achieve state-of-the-art results at the time of its introduction has contributed 
to its widespread recognition and adoption.

(3) Extensibility ST-GCN has served as a foundation for numerous subsequent works, 
with researchers proposing extensions and modifications to improve its perfor-
mance or adapt it to specific scenarios. This extensibility has made ST-GCN a valu-
able starting point for further research in the field.

(4) Reproducibility The authors of ST-GCN have made their code and implementation 
details publicly available, enabling researchers to reproduce their results and build 
upon their work. This transparency has facilitated fair comparisons and accelerated 
progress in the field.

While several advanced methods have been proposed since the introduction of ST-GCN, 
it continues to be widely used as a baseline for comparison and evaluation in recent 
studies. Its simplicity, solid performance, extensibility, and reproducibility have solidi-
fied its position as a foundational work in the field of skeleton-based action recognition.

6  Conclusions
This paper presents a novel approach for human behavior recognition based on the com-
bination of coordinate transformation and connection features. By extracting both local 
spatial features through the connection feature extraction module and long-term tem-
poral dependencies using the long-distance frame difference feature extraction module, 
the proposed method effectively captures intricate patterns in human movements. The 
introduction of the coordinate transformation module further enhances the representa-
tion of distinct features. The integration of multi-stream fusion contributes to achieving 
superior recognition accuracy. Through extensive experimentation and comparison with 
existing methods on multiple datasets, the proposed approach consistently outperforms 
baseline methods and demonstrates its effectiveness in various scenarios. The visuali-
zations of recognition results also provide tangible evidence of the method’s success. 
In summary, this paper offers a comprehensive solution to the complex task of human 
behavior recognition, combining innovative techniques to achieve substantial improve-
ments in accuracy.

Abbreviations
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CAE  Contrastive action encoding
GRU   Gated recurrent unit
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