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Abstract 

When uncorrelated signals are incident on a uniform linear array, the array covariance 
matrix is of the Toeplitz form. An adaptive beamforming method is proposed based 
on the signal-plus-interference (SI) subspace via the Toeplitz rectification of the sam‑
ple matrix. The rectified matrix is shown to be more accurate in a norm sense 
than the modified matrix according to the centro-Hermitian property. Since the former 
also is centro-Hermitian we can efficiently obtain its eigen-decomposition from a real 
matrix and then the weight vector in the estimated SI subspace. The proposed 
method, showing robustness to pointing errors, is not only computationally effi‑
cient but also very quickly converges to the optimum performance as demonstrated 
in the simulation.

Keywords:  Adaptive beamforming, Centro-Hermitian, Signal-plus-interference 
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1  Introduction
Adaptive beamforming, controlling the sensor array outputs with the weight vector, is 
performed such that the reception of the desired signal is enhanced while the interfer-
ences are suppressed. In the minimum variance distortionless response (MVDR) beam-
former [1], the array output power is minimized subject to the look direction constraint 
for the desired signal. It would be desirable that the adaptive beamformer can work well 
even with a small number of samples, showing a fast convergence speed. To improve 
the performance of convergence one can use some known properties such as the cen-
tro-Hermitian [2–4] (for the terminology, see the explanations above Sect. 2), Toeplitz 
covariances [5], the eigenstructure [6, 7], and unit circle roots [8, 9].

When narrowband signals that are uncorrelated with each other impinge on a uniform 
linear array (ULA), the array covariance matrix has a form of Toeplitz. Using the rectified 
matrix that has the same entries along each diagonal through the rectification of the sample 
matrix according to the Toeplitz property, one can improve the performance of adaptive 
beamforming [5]. The Toeplitz rectification has also been exploited in the field of direction 
finding [10–13]. It is well known that the optimum weight vector that maximizes the output 
signal-to-interference-plus-noise ratio (SINR) belongs to the signal-plus-interference (SI) 
subspace. Subspace based beamformers [6, 7, 14], in which the weight vectors are adjusted 
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to lie in the respective estimated SI subspaces, can provide fast convergence in comparison 
with the sample matrix inversion (SMI).

In case the information on the direction of the desired signal is inaccurate the MVDR 
beamformer can suffer from significant performance deterioration. The estimation of the 
interference plus noise covariance matrix (INCM) has attracted much interest for robust 
beamforming e.g., [15–20]. Employing an estimated INCM, an adaptive beamformer can 
be not only robust against steering vector errors but also converge very quickly. However, 
its computational complexity is very high because, for example, matrix integrals (or sum-
mations) over some angular sectors are performed [15–18] and/or the powers of interfer-
ences as well as their directions should be estimated [16–19].

This paper proposes a computationally efficient beamforming method based on the SI 
subspace under the Toeplitz covariance. The rectified matrix is shown to be more accurate 
in terms of the l1 norm than the one modified according to the centro-Hermitian prop-
erty [3]. Furthermore, it is shown that a square matrix is Toeplitz and centro-Hermitian if 
and only if it is Toeplitz and Hermitian, which allows us to transform the rectified matrix 
to a real matrix. In the proposed method, the SI space based weight vector is efficiently 
obtained from the eigen-decomposition of the transformed real matrix. Besides, it is robust 
to pointing errors through the direction estimation for the desired signal. Simulation results 
validate the effectiveness of the proposed method, showing that it outperforms the existing 
beamformers with no use of INCM and has virtually the same performance as an INCM-
based beamformer.

Superscripts *, T, and H denote complex conjugate, transpose, and complex conjugate 
transpose, respectively. We use E(·) for expectation and Re(·) and Im(·) for real and imagi-
nary parts of complex numbers. Vectors and matrices are in bold type, and I and J  denote, 
respectively, an identity matrix of appropriate size and an exchange matrix with ones on the 
antidiagonal and zeros elsewhere. For a matrix V  , we say “conjugate symmetric” [3, 21] if 
JV = V ∗ and “centro-Hermitian” [21, 22] if JV ∗J = V .

2 � Data model
A desired signal and η interferences impinge on a ULA with M sensors from 
θ = (θ0, θ1, . . . , θη) where θ0 and θk are the arrival angles of the desired signal and the kth 
interference. The total number of directional signals is η0 = η + 1 . The steering vector for a 
direction θ is designated as a(θ) . The received signal vector can be written as

where s(t) = [s0(t), s1(t), . . . , sη(t)]T is the complex envelope vector, n(t) is the noise 
vector, and A(θ) is the steering vector matrix, that is, A(θ) = [a(θ0), a(θ1), . . . , a(θη)] . 
The incident signals are uncorrelated with each other so that the covariance matrix of 
s(t) is given as a diagonal matrix. Noise is a complex Gaussian random process with zero 
mean and variance σ 2 and is uncorrelated from sensor to sensor.

For simplicity a0 is used instead of a(θ0) . The sensor outputs are weighted and combined 
to yield

(1)x(t) = A(θ)s(t)+ n(t)

(2)y(t) = wHx(t).
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The optimum weight vector maximizing the output SINR is given by wo = µR−1
x a0 

where Rx = E[x(t)xH (t)] is the array covariance matrix of the received vector. Since the 
incoming signals are uncorrelated Rx becomes a Toeplitz matrix. In the MVDR array, 
the constant µ is written as µ = 1/aH

0
R−1
x a0 according to the look direction constraint 

of wHa0 = 1.
The covariance matrix can be eigen-decomposed as

where �m , m = 1, . . . , M , are the eignvalues, which are arranged in decreasing order, 
and em are the corresponding eigenvectors. The first η0 eigenvalues are larger than σ 2 . 
The eigen-decomposition of Rx is rewritten as

where the diagonal elements of the η0 × η0 diagonal matrix Λs consist of the eigenval-
ues larger than σ 2 , the M × η0 matrix Es is composed of the corresponding eigenvec-
tors, and Λn = σ 2I . The columns of Es constitute the SI subspace. The steering vector a0 
belongs to it and is orthogonal to En . Thus the optimum vector is expressed as

In reality, the array covariance matrix is unknown and should be estimated. With N  
data snapshots given, it can be estimated as

The eigenspace based (ESB) beamformer [6] utilizes the eigen-decomposition of R̂x 
according to (5).

3 � Computationally efficient beamforming
The normal sample matrix is rectified to reflect the Toeplitz property so that the rec-
tified matrix Rx has the same entries along each diagonal. The operation of Toeplitz 
rectification is denoted by T (·) . Accordingly, Rx = T (R̂x) . We represent the (p,q)-ele-
ments of Rx , R̂x and Rx , respectively, by rpq , r̂pq , and rpq . The elements of Rx are given 
as

where k = 1, · · · , M . Clearly Rx is Herimitian. Thus rqp = r∗pq . The elements in (8) con-
stitute the kth diagonal (of the upper triangular part) of Rx.

(3)Rx =
M∑

m=1

�meme
H
m

(4)Rx = EsΛsE
H
s + EnΛnE

H
n

(5)wo = µEsΛ
−1
x EH

s a0.

(6)R̂x = 1

N

N

n=1

x(n)xH (n).

(7)r1k = 1

M + 1− k

M+1−k∑

i=1

r̂i(k−1+i)

(8)r1k = r2(k+1) = · · · = r(M+1−k)M
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The Toeplitz averaging of (7) leads to less errors in Rx , in the sense that

where || · || denotes the l1 norm that is defined as the sum of the absolute values of the 
entries. Let rk , r̂k , and rk represent the kth diagonals of Rx , R̂x , and Rx respectively. 
Recall Rx is a Toeplitz matrix so that rk has the same entries. It is easy to see using (7) 
and (8) that

where L = M + 1− k . Using (10), we have

Equation  (11) results in (9). The conjugate symmetric beamformer (CSB) in [3] 
exploits the centro-Hermitian matrix

It is not difficult to see that though an entry r̂pq of the Hermitian matrix R̂x , where 
q ≥ p , moves by the operation of J R̂

∗
xJ  it is located on the same (q − p+ 1)st diagonal 

as before. Thus T (R̂x) = T (J R̂
∗
xJ ) = T (R̃x) , which brings

The proof of (13) is derived by replacing r̂k in (11) with r̃k , the kth diagonal of R̃x . It 
indicates that Rx is more accurate than R̃x in terms of the l1 norm.

The following theorem is presented, which enables us to find the weight vector of 
the proposed method via simple computation.

Theorem  An M xM matrix V is Toeplitz and centro-Hermitian if and only if it is Toe-
plitz and Hermitian.

Proof  A (p,q)-entry of V is vpq . By definition, V is centro-Hermitian if 
vpq = v∗(M+1−p)(M+1−q) . As V is Toeplitz and Hermitian,

which proves “if” part. If V is Toeplitz and centro-Hermitian,

which proves “only if ” part.

(9)||Rx − Rx|| ≤ ||R̂x − Rx||

(10)||rk − rk || = |
L∑

i=1

(r̂i(k−1+i) − ri(k−1+i))|

(11)

||r̂k − rk || =
L∑

i=1

|r̂i(k−1+i) − ri(k−1+i)|

≥ |
L∑

i=1

(r̂i(k−1+i) − ri(k−1+i))| = ||rk − rk ||.

(12)R̃x = R̂x + J R̂
∗
xJ

2
.

(13)||Rx − Rx|| ≤ ||R̃x − Rx||.

(14)vpq = v(M+1−q)(M+1−p) = v∗(M+1−p)(M+1−q),

(15)vpq = v(M+1−q)(M+1−p) = v∗qp,
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The Toeplitz Hermitian Rx becomes a Toeplitz centro-Hermitian matrix. Hence it can 
be transformed to a real matrix in such a way that

where the unitary matrix Q is given by [3, 21, 22]

The matrix Q is conjugate symmetric, i.e., J Q = Q∗ . The real matrix R′
x is eigen-

decomposed as

where �′m and e′m are an eigenpair, the �′
s is a diagonal matrix consisting of the η0 largest 

eigenvalues, E′
s is the corresponding eigenvector matrix, and the remaining eigenvalues 

and eigenvectors compose �′
n and E′

n respectively. Since Q is unitary the eigenvalues and 
eigenvectors of Rx corresponding to �′

s and E′
s are given by

As the eigen-decomposition of  Rx can be obtained from the eigen-decomposition of 
R
′
x , the computational load becomes much less than directly eigen-decomposing  Rx.
The column space of Es is an estimated SI space. In the proposed method, the weight 

vector is calculated as

so that it lies in the estimated SI space. The constant µ can be given according to the 
look direction constraint of wH

p a0 = 1 . Since a(θ) is conjugate symmetric the vector 
QHa(θ)(≡

√
2α(θ)) becomes a real vector: for even M,

where a1(θ) and a2(θ) are the vectors composed of, respectively, the first M/2 and last 
M/2 entries of a(θ) . Equation (21) with the look direction constraint is rewritten as

(16)R
′
x = QHRxQ

(17)Q =






1√
2

�
I −jJ
J jJ

�
, for even M

1√
2




I 0 −jJ

0
√
2 0

J 0 jI



 , for odd M

.

(18)R
′
x =

M∑

m=1

�
′
me

′
me

′H
m = E

′
s�

′
sE

′H
s + E

′
n�

′
sE

′H
n

(19)�s = �
′
s

(20)Es = QE
′
s.

(21)wp = µQE
′
s�

′−1
s E

′H
s QHa0

(22)α(θ) =
[
Re(a1(θ))
Im(a2(θ))

]

(23)wp = Qb0√
2bT0 α(θ0)

.
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where b0 is a real vector given as b0 = E
′
s�

′−1
s E

′H
s α(θ0) . Note that the weight vector wp is 

conjugate symmetric.
The direction of the desired signal may not correctly be known a priori. The proposed 

method can be robust to direction errors by introducing a direction estimation. Using 
the eigen-decomposition of R′

x , we can efficiently estimate the arrival angle based on 
the multiple signal classification (MUSIC) [23]. Let �d be an angular sector for the 
desired signal. When an angle θ00 is given as the initial direction the sector �d is set 
as �d = [θ00 − δθ , θ00 + δθ ] with δθ a constant. According to the MUSIC principle, the 
estimate is obtained as

where

Then, the weight vector is calculated as (23) with α(θ̂0) in place of α(θ0).
The computational cost for the estimation of θ0 is O(Npη0M) in terms of real multi-

plication where Np is the number of search points in the sector �d . The CSB needs the 
inversion of R̃x . The matrix R̃x is centro-Hermitian and so it can also be transformed 
to a real matrix as in (16). The computational load for the weight vector wp , aside from 
the cost for direction estimation, is similar to that of CSB. The estimation of INCM 
can be employed for robustness and fast convergence. In [20], an estimate for INCM is 
extracted from the sample matrix without the estimation of interference powers. How-
ever, the directions of all incident signals should be estimated for the extraction of INCM 
(EINCM). The proposed method that needs the direction estimation for the desired sig-
nal only has far less computational complexity than the EINCM method.

In practice, η0 would not be known in advance. It can be estimated with the minimum 
description length (MDL) [24]. As N tends to infinity the sample matrix R̂x approaches 
the array covariance matrix Rx and Rx does so. The MUSIC estimator can correctly finds 
θ0 if θ00 lies in the inside of �d . Then the weight vector wp becomes identical to the opti-
mum wo and the proposed method achieves the maximum SINR.

4 � Simulation
A ULA is employed that consists of ten sensors with an interelement spacing of half 
wavelength, on which four uncorrelated signals impinge from θ0 = 0o , θ1 = −30o , 
θ2 = 15o , and θ3 = 40o relative to array broadside. The input interference-to-noise ratios 
(INRs) are equal.

First, in Fig. 1 where N = 20 , we investigate errors, in terms of the l1 norm, in the 
estimated covariance matrices, the normal R̂x , the centro-Hermitian (CH) R̃x , and the 
Toeplitz rectified (TR) Rx . The errors are normalized with respect to Rx and are aver-
aged through 1000 independent simulation runs. The input INR is 5 dB larger than 
the input signal-to-noise ratio (SNR). On the whole, they decrease as SNR increases. 
The error in Rx is the smallest, which confirms (9) and (13). The matrix actually used 
by the proposed method is Es�

−1
s E

H
s  . In Fig. 2, the normalized errors with respect to 

(24)θ̂0 = arg max
θ∈�d

g(θ)

(25)g(θ) = α
T (θ)E

′
sE

′T
s α(θ).
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EsΛ
−1
s EH

s  in the corresponding matrices by the SI components of R̂x , R̃x , and Rx are 
shown. As in Fig. 1, they decrease with an increase in SNR. The error in the matrix 
Es�

−1
s E

H
s  is less than the others, from which the proposed method is expected to 

have superior performance relative to ESB [6] and CSB [3]. Now, let us investigate the 
SINR performance.

The output SINR of the proposed method is compared with those of existing ones 
including the ESB, the CSB, the structured maximum likelihood (SML) [4], the unit 
circle roots constraint (UCRC) [9], and the EINCM [20]. Unless the number of snap-
shots is very small the number of the incident signals can be accurately detected 
by the MDL. The η0 is assumed to be known in the proposed, ESB, and EINCM. 
In SML, the accurate noise variance σ 2 is used. In addition to the root constraint, 

Fig. 1  Normalized errors with respect to Rx in R̂x , R̃x , and Rx

Fig. 2  Normalized errors with respect to EsΛ−1
s E

H
s  in the corresponding matrices of R̂x , R̃x , and Rx
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UCRC employs a null movement to preserve the mainbeam [9]. In the proposed 
method, δθ = 5o is used to set the angular sector �d . The pointing error is defined 
as θe = θ00 − θ0 . In Figs. 3, 4, 5, 6, there are no pointing errors, i.e., θe = 0 . Unless the 
number of snapshots is infinite, the SINRs are averaged via 200 independent runs.

Figure 3 illustrates the SINRs as functions of the input SNR when N = 30 . The input 
INR is 5 dB stronger than SNR. Though SML has higher SINR than CSB, it is slightly 
inferior to ESB. Among the existing methods except EINCM, the UCRC shows the best 
performance. But its SINR is much smaller than that of the proposed method, which is 
close to the optimum despite a relatively small number of snapshots, especially when 
SNR is not large. The SINR of EINCM when SNR is very small is slightly lower than that 
of the proposed method. Except this, its SINR is virtually identical with the optimum 
irrespective of SNR.

Fig. 3  SINR versus SNR in the absence of pointing error when N = 30 and INR is 5 dB larger than SNR

Fig. 4  SINR versus INR in the absence of pointing error when N = 50 and SNR = 5 dB
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When N = 50 and SNR = 5 dB, Fig. 4 displays the SINRs against INR. It is seen that 
the effect of INR on the performances of the beamformers are, on the whole, small, their 
SINRs showing small variations with respect to INR. As in Fig. 3, SML works better than 
CSB but is inferior to ESB. And UCRC is superior to ESB. The SINRs of the proposed 
and the EINCM, which outperform the others, are so close to the optimum that they 
appear to overlap.

The performances are presented as functions of N  with SNR = 5  dB and 
INR = 10 dB in Fig. 5 and with SNR = 10 dB and INR = 15 dB in Fig. 6. It is seen in 
the absence of pointing error that the SINRs approach the optimum as N  increases. 
The EINCM converges so fast that its SINR when N ≥ 10 is within 0.2 dB of the opti-
mum in both examples. Comparing Figs.  5 and 6, we observe that the convergence 
rates of the beamformers except EINCM become slower in Fig. 6 with an increased 

Fig. 5  SINR against N in the absence of pointing error with SNR = 5 dB and INR = 10 dB

Fig. 6  SINR against N in the absence of pointing error with SNR = 10 dB and INR = 15 dB
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desired signal power. The proposed beamformer when SNR = 10  dB shows slightly 
lower convergence rate than EINCM while the former when SNR = 5 dB has nearly 
the same performance as the latter. In contrast, the SINR of UCRC, which shows the 
fastest convergence among the other beamformers, is within 1 dB of the optimum for 
N ≥ 300 in Fig. 5 and for N ≥ 600 in Fig. 6.

The effect of pointing error is investigated in Figs.  7 and 8 where SNR = 5  dB and 
INR = 10 dB. In Fig. 7, when the number of snapshots is infinite so that Rx is available, 
the steady state SINRs are illustrated against θe . The initial angle θ00 belongs to �d over 
the range of θe . The proposed method accurately finds θ0 . The SINRs of the proposed and 
the EINCM are the same as the optimum regardless of θe . Though the performances of 
the others when θe = 0 are also equal to the optimum they are degraded due to pointing 

Fig. 7  SINR versus θe with SNR = 5 dB and INR = 10 dB when Rx is available

Fig. 8  SINR versus N with SNR = 5 dB and INR = 10 dB when θe = 2
o
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error. Especially, SML and CSB, which have the same performance as SMI with no capa-
bility of robustness, suffer from severe performance degradation.

Figure 8 displays SINRs as functions of N with θe = 2o . As can be seen from Fig. 7, 
the steady state SINRs of SML and CSB at θe = 2o are less than − 4 dB. The perfor-
mances of the beamformers converge the corresponding SINRs in Fig. 7. The pro-
posed beamformer, which substantially has the same performance as the EINCM, 
converges so quickly that its SINR is within 0.5 dB of the optimum for N ≥ 10 . It 
is seen from the comparison of Figs.  5 and 8 that the performance curves of the 
proposed and the EINCM in Fig.  8 are essentially identical with the respective 
ones in Fig.  5, thereby indicating negligible effects of the pointing error on the 
beamformers.

5 � Conclusion
A computationally efficient subspace beamforming method has been suggested using 
the rectified matrix Rx under the Toeplitz covariance. The simple computation results 
from the fact that Rx is centro-Hermitian, which allows us to obtain the eigen-decompo-
sition of Rx from the real matrix R′

x . The rectified matrix Rx , in terms of the l1 norm, is 
more accurate than R̃x that is used by CSB. As a result, the eigen-decomposition of the 
former has less errors than that of the latter, as shown in Fig. 2. Simulation results dem-
onstrate the effectiveness of the proposed method, which converges very quickly to the 
optimum, outperforming the existing ones that exploit known properties without the 
estimation of INCM. Moreover, it is shown to have virtually the same performance as 
the computationally expensive EINCM.
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