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1  Introduction
In this work, we consider the design of navigation spreading codes for future low-Earth 
orbit (LEO) satellite constellations. LEO constellations are typically comprised of hun-
dreds, or even thousands, of low-cost satellites [1]. Commercial examples include Irid-
ium [2], OneWeb [3], and the constellations proposed by Samsung [4], SpaceX [5], and 
Xona [6]. Several of those constellations are primarily designed to deliver global internet 
coverage, but can also be leveraged for navigation [7]. In addition, the European space 
agency (ESA) recently announced the LEO PNT program, which will test capabilities for 
navigation and timing using LEO satellites [8]. See the review [9] for a survey of recent 
developments in LEO PNT.

All code-division multiple access (CDMA) systems, including satellite navigation 
systems, rely on spreading codes [10]. In CDMA, each satellite modulates its signal 
with a unique and known spreading code, which is typically a binary sequence. The 
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receiver then correlates the received signal with replicas of each satellite’s spread-
ing code to identify the source of the transmitted signal. Therefore, it is necessary 
for the spreading codes to have low pairwise cross-correlation to minimize inter-
channel interference. Additionally, it is important for the codes to have low autocor-
relation sidelobes to minimize the effects of multi-path and self-interference, and to 
ensure that the time of signal reception can be correctly determined.

LEO systems suffer less path loss than navigation systems in medium-Earth orbit 
(MEO) such as GPS, improving signal strength 1000-fold, or by 30dbB [1]. There-
fore, short code lengths (on the order of a hundred) may be preferable since short 
code lengths correspond to fast signal acquisition, and the relatively high signal-
to-noise ratio (SNR) means that long spreading codes are not needed for low inter-
channel interference [11].

In this work, we propose a two-stage block coordinate descent (BCD) method for 
finding good spreading codes satisfying the autocorrelation sidelobe zero (ACZ) 
property [12, 13]. The ACZ property requires that the shift-one autocorrelation of 
each code is minimal. Imposing the ACZ constraint is useful for ensuring that the 
tracking performance is consistently good across all the satellites in the constella-
tion. [12, 13]. The first stage of our BCD method finds a feasible code family that 
satisfies the ACZ property, and the second stage minimizes the sum of squared auto- 
and cross-correlation sidelobes, without breaking the ACZ property.

Our method is based on the recently proposed mixed-integer convex program 
(MICP) approach to spreading code optimization [14–16], which has shown promis-
ing results for optimizing spreading codes for MEO applications. In that approach, 
the spreading code optimization problem is formulated as a mixed-integer con-
vex program (MICP). In each iteration of BCD, we solve the optimization problem 
exactly over a subset of the binary variables, with the others held fixed. The partial 
minimization problem is also an MICP and may be solved using an MICP solver 
such as Gurobi [17]. In this work, we handle the ACZ constraint by using the fact 
that it may be enforced using linear inequality constraints [16].

Unlike the prior works [15, 16], we focus on the LEO setting, where the number 
of codes is relatively large. In this regime, the choice of the subset of binary vari-
ables to optimize over in each iteration of BCD is an important consideration. We 
propose a variable subset selection strategy that can achieve a small per-iteration 
runtime cost by tuning the number of codes from which the binary variables are 
selected in a given iteration. For a fixed variable subset size, choosing the variables 
from a small number of codes can make the subproblems more difficult to solve and 
can lead large per-iteration runtime cost. On the other hand, choosing the variables 
from a large number of codes can make the subproblems easier to solve, but can still 
lead to a large per-iteration runtime cost due to the computational overhead from 
setting up the MICP subproblems.

The rest of the paper is organized as follows. We review related work in Sect. 1.1. 
In Sect. 2, we describe the spreading code optimization problem and the MICP for-
mulation of the problem. In Sect. 3, we describe the proposed BCD. Section 4 pre-
sents numerical results, and Sect. 5 concludes.
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1.1 � Related work

The problem of designing spreading codes with good correlation properties has a long 
history. Current satellite navigation systems, such as GPS, use pseudo-random noise 
(PRN) codes such as Gold codes [18], which can be generated using linear-feedback 
shift registers, and the Weil codes [19, 20], which are based on Legendre sequences. 
While those codes satisfy provable bounds on their auto- and cross-correlation, they 
are only available for specific lengths and number of codes, and cannot be easily mod-
ified. For example, truncating or extending those codes by even a single bit can com-
promise their correlation properties [12].

To address those limitations, there has been growing interest in designing the 
spreading codes by directly optimizing the auto- and cross-correlation. Population-
based methods, such as genetic algorithms [21, 22], natural evolution strategies [23], 
and the cross-entropy method [24], have been applied, and the European Union’s Gal-
ileo constellation uses spreading codes designed by a genetic algorithm [12, 25]. How-
ever, those methods do not consider the structure in the objective, and often require 
extensive tuning in order to work well. In addition, they have focused on codes for 
medium-Earth orbit (MEO) constellations such as GPS [16, 23] and Galileo constel-
lations [12, 25]. In those settings, the code length is orders of magnitude larger than 
the number of the codes; this is necessary for good system performance due to the 
relatively lower SNR in the MEO setting.

Coordinate descent and BCD methods have been proposed to optimize sets of 
binary sequences for multiple-input multiple-output (MIMO) radar systems [15, 26–
29]. Like the spreading codes for navigation systems, the binary sequences used in 
those applications are required to have low auto- and cross-correlation. However, the 
aforementioned works only optimize over either a single binary variable at a time, or 
a small number (e.g., four), using an exhaustive search. In contrast, by using branch-
and-bound to perform the BCD updates [15, 16, 30], we can efficiently optimize over 
large blocks of binary variables, e.g., 25, during each BCD iteration. This approach is 
particularly effective for designing LEO satellite spreading codes due to the relatively 
small code lengths and large family sizes.

Finally, penalty methods [31] and semidefinite relaxations [32] have been proposed 
to design sets of complex-valued, continuous-phase sequences with constant mag-
nitude. However, we focus on binary sequences, since they are often preferred in 
practice due to ease of implementation. Moreover, the discretization of continuous 
sequences has been found to give poor performance [26, 27].

Other methods construct new sequences and sequence sets by combining pre-
existing binary sequences with desirable correlation properties, such as Gold codes or 
optimized sequence sets [33, 34].

2 � Spreading code optimization
2.1 � Preliminaries

A spreading code family is a set of m binary code sequences, each of length n. We 
refer to the code family as X = (x0, . . . , xm−1) , where xi ∈ {±1}n is the ith code in the 
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family. The code family may be represented as a binary matrix X ∈ {±1}n×m , where xi 
is the ith column of X.

Cross-correlation. The cross-correlation between two binary codes w, v ∈ {±1}n is a 
vector (w ⋆ v) ∈ R

n , where

That is, (w ⋆ v)k is the inner product between w and a k-circularly shifted version of v. 
The cross-correlation may also defined for negative-valued shifts, noting that

Autocorrelation. We refer to the cross-correlation of a binary sequence w ∈ {±1}n with 
itself as the autocorrelation of w. Note that the shift-zero autocorrelation is given by 
(w ⋆ w)0 = �w�22 = n , regardless of the value of w. By symmetry, (w ⋆ w)k = (w ⋆ w)−k , 
for all k = 0, . . . , n− 1.

Autocorrelation sidelobe zero (ACZ). A binary sequence w ∈ {±1}n satisfies the ACZ 
property if its shift-one autocorrelation (w ⋆ w)1 is minimal. For even-valued n, this cor-
responds to the requirement that (w ⋆ w)1 = 0 . For odd-valued n, the autocorrelation 
cannot be zero, and so we instead require that |(w ⋆ w)1| = 1 . If the measured correlation 
at shifts zero and one are too similar, the receiver may erroneously lose the signal lock. 
The ACZ property ensures that the difference between the shift-zero peak and shift-one 
autocorrelation is large for all of the codes in the family. This can improve the consist-
ency in ranging performance across the code family, especially when the code lengths are 
short. Indeed, it has been shown that maximizing the difference between the shift-zero 
peak and the shift-one autocorrelation minimizes the Cramer–Rao lower bound for the 
ranging estimation problem [35, 36]. The ACZ property has also been applied in prac-
tice; the Galileo constellation uses even-length spreading codes which were designed to 
satisfy the ACZ property. [12, 13]. In this work, we formulate the ACZ property as a set 
of linear inequality or equality constraints. Therefore, the ACZ property may be readily 
incorporated into the MICP formulation of the spreading code optimization problem, as 
we discuss in the following subsection.

2.2 � Spreading code optimization problem

An ideal sequence set X = (x0, . . . , xm−1) has (xi ⋆ xj)k close to zero for all pairs of 
sequences xi and xj and at all shifts k = 0, . . . , n− 1 . In this work, we minimize the sum 
of squared auto- and cross-correlation magnitudes, subject to constraint that the auto-
correlation sidelobe zero (ACZ) property is satisfied.

The spreading code optimization problem may be written as 

(1)(w ⋆ v)k =

n−1

s=0

wsv(s+k)modn
, k = 0, . . . , n− 1.

(w ⋆ v)−k = (w ⋆ v)k−n, k = 0, . . . , n− 1.

(2a)minimize

m−1
∑

i=0

m−1
∑

j=i

n−1
∑

k=0

(

xi ⋆ xj
)2

k

(2b)subject to
∣

∣

∣
(xi ⋆ xi)1

∣

∣

∣
≤ g , i = 0, . . . ,m− 1,
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 Here, g is a parameter that takes value 0 if n is even, and 1 if n is odd. In some contexts, 
the sum of squares objective is referred to as the integrated sidelobe level (ISL) [26, 37]. 
For ease of notation, we do not exclude the zero-shift autocorrelation terms from the 
objective. Since those terms are constant-valued, they do not affect the solution of the 
optimization problem.

Note that the objective function (2a) is a nonconvex quartic function of the vari-
ables, since each term 

(

xi ⋆ xj
)

k
 is a nonconvex quadratic function of the binary vari-

ables. Similarly, the ACZ constraint (2b) is a nonconvex constraint. The nonconvex 
objective and constraints, combined with the nonconvex binary constraints, make the 
problem (2a)–(2c) a challenging combinatorial optimization problem. In Sect. 2.3, we 
discuss how the problem may be reformulated as a MICP and how the resulting con-
vex structure may be exploited [15, 16].

2.3 � MICP formulation

The cross-correlation function (1) involves a sum of products of binary variables. 
By representing each product using a new auxiliary variable, the cross-correlation 
becomes a sum of auxiliary variables, and the objective function (2a) may be written 
as a convex quadratic function of the auxiliary variables.

Binary variable product. This approach is made possible by the following fact, 
which may be verified using a truth table [38]. Suppose that a, b ∈ {±1} and c ∈ R . 
Then, c = ab if and only if

We refer to the above constraints as linking constraints, since they couple the binary var-
iables a and b to the auxiliary variable c that represents their product.

Spreading code optimization as a MICP. Using the aforementioned representation 
of binary variable products, we may represent the spreading code optimization prob-
lem (2) as a MICP. Let {zi,js,l} be a set of auxiliary variables such that zi,js,l represents 
the product xisx

j
l , for each i, j = 0, . . . ,m− 1 and s, l = 0, . . . , n− 1 . Then, the cross-

correlation between codes xi and xj may be written as a sum of the auxiliary variables, 
given by

Here, each auxiliary variable zi,js,k satisfies a set of linking constraints that couple it to 
the binary variables xis and xjk . The spreading code optimization problem (2a)–(2c) may 
therefore be written as 

(2c)xi ∈ {±1}n, i = 0, . . . ,m− 1.

c ≤ b− a+ 1,

c ≤ a− b+ 1,

c ≥ −a− b− 1,

c ≥ a+ b− 1.

(xi ⋆ xj)k =

n−1
∑

s=0

xisx
j
(s+k)modn

=

n−1
∑

s=0

z
i,j
s,(s+k)modn

, k = 0, . . . , n− 1.
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 Here, the linear equality constraints (3b) enforces the ACZ property and the linking 
constraints (3d)–(3g) couple the binary variables to the auxiliary variables. Since the 
optimization problem (3) involves minimizing a convex quadratic function subject to 
binary, linear inequality, and linear equality constraints, it is a MICP [14]. More spe-
cifically, it is a mixed-integer quadratic program, since it becomes a quadratic program 
when the binary constraints (3c) are relaxed.

Number of auxiliary variables. A total of 
(nm

2

)

 additional auxiliary variables, along with 
4
(nm

2

)

 linking constraints, are required to transform (2) into the MICP (3). Therefore, the 
problem size, in terms of the number of additional auxiliary variables and constraints, 
grows quadratically with nm. This may be prohibitive for relevant values of nm, which 
may be in the tens of thousands. In Sect. 2.4, we show how the problem may be sim-
plified when we are only interested in optimizing over only a subset of B of the binary 
variables, with the others held fixed. In that case, the number of auxiliary variables and 
constraints grows on the order of O(B2) , rather than O(n2m2).

2.4 � Partial minimization

In this subsection, we describe the partial minimization of (3) over a subset of the binary 
variables. Note that since (3) is an MICP, any partial minimization problem derived from 
(3) is also an MICP. The partial minimization problem is useful for the block coordinate 
descent algorithm discussed in Sect. 3.1.

Suppose we wish to optimize only over a variable index set

(3a)minimize

m−1
∑

i=0

m−1
∑

j=i

n−1
∑

k=0

(

n−1
∑

s=0

z
i,j
s,(s+k)modn

)2

(3b)subject to − g ≤

n−1
∑

s=0

zi,is,(s+1)modn
≤ g , i = 0, . . . ,m− 1,

(3c)xi ∈ {±1}n×m, i = 0, . . . ,m− 1,

(3d)z
i,j
s,l ≤ x

j
l − xis + 1,

(3e)z
i,j
s,l ≤ xis − x

j
l + 1,

(3f )z
i,j
s,l ≥ −x

j
l − xis − 1,

(3g)
z
i,j
s,l ≥ xis + x

j
l − 1,

i, j = 0, . . . ,m− 1, s, l = 0, . . . , n− 1.

(4)S ⊆ {(i, r) | 0 ≤ i ≤ m− 1, 0 ≤ r ≤ n− 1}.
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Each index (i, r) ∈ S corresponds to the binary variable xir , which is the rth element of 
the ith code sequence. The variables not indexed by S are held fixed. That is, we wish to 
solve the MICP (3) with the additional equality constraints

for some fixed values x̃ir ∈ {±1} , for all (i, r)  ∈ S.
Since it is only necessary to include auxiliary variables to represent products between 

binary variables that appear in S, the partial minimization MICP may be simplified in this 
case.

In the partial minimization problem, the cross-correlation between any two codes xi and 
xj may be expressed as an affine function of the auxiliary and binary variables, with coef-
ficients that depend on the values of the fixed binary variables. That is, we may write the 
cross-correlation between two codes xi and xj as

where

There are three cases: both xis and xj
(s+k)modn

 are variables in the partial minimization, 
only one of them is a variable, or neither of them is a variable.

Since the cross-correlation may be represented using an affine function of the auxiliary 
and binary variables, the objective function (3a) remains convex quadratic. Here, only 

(

|S|
2

)

 
auxiliary variables are required, since we only need to represent products between binary 
variables indexed by S.

Let CS be the set of columns, or code sequences, that contain at least one binary variable 
indexed by S. That is,

The number of terms in the objective function (3a) may be reduced to the auto- and 
cross-correlation terms between codes in CS . That is, the partial minimization problem 
may be written as the MICP 

xir = x̃ir , (i, r) �∈ S,

(xi ⋆ xj)k =

n−1
∑

s=0

y
i,j
s,k , k = 0, . . . , n− 1,

(5)y
i,j
s,k :=















z
i,j
s,(s+k)modn

if (i, s) ∈ S and (j, (s + k)modn) ∈ S,

xisx̃
j
(s+k)modn

if (i, s) ∈ S and (j, (s + k)modn), (j, (s − k)modn) �∈ S,

x̃isx̃
j
(s+k)modn

otherwise.

(6)CS = {i | (i, s) ∈ S}.

(7a)
minimize

∑

i∈CS

m−1
∑

j = 0
j �= CS or j ≥ i

n−1
∑

k=0

(

n−1
∑

s=0

y
i,j
s,k

)2

(7b)subject to − g ≤

n−1
∑

s=0

zi,is,(s+1)modn
≤ g , &i = 0, . . . ,m− 1,
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 where yi,js,k are given by (5), and g is a constant that is either 0 if n is even, or 1 if n is odd.

3 � Block coordinate descent
In this section, we describe a block coordinate descent (BCD) method for finding a good 
solution to the spreading code optimization problem (3). In our approach, we iteratively 
solve the partial minimization problem (7) over a block, or subset of the binary variables, 
with the others held fixed [15, 16, 27, 30]. The partial minimization problems are solved 
exactly using an MICP solver, such as Gurobi [17] or SCIP [39]. The BCD method is 
described in Sect. 3.1, and variable subset selection strategies are discussed in Sect. 3.2.

3.1 � Method

BCD is a particularly compelling method for handling the MICP (3), since the MICP 
is difficult to solve directly, but its partial minimization (7) can be solved effectively in 
practice.

Basic BCD method. The basic BCD method proceeds starting from an initial code fam-
ily X0 ∈ {±1}n×m . In the kth iteration, we compute the next code family Xk+1 by per-
forming the following steps: 

1.	 Select a variable subset Sk ⊆ {(i, r) | 0 ≤ i ≤ m− 1, 0 ≤ r ≤ n− 1}.
2.	 Solve the partial minimization problem (7) over Sk , with the other binary variables 

fixed to their previous values in Xk.
3.	 Set Xk+1 to be the solution to the partial minimization problem.

BCD is a descent method, i.e., the objective value is nonincreasing, since the block 
update steps are solved to optimality. We discuss strategies for selecting the variable sub-
set Sk in Sect. 3.2. The partial minimization problem (7) may be solved using an MICP 
solver, or exhaustive enumeration.

Two-stage BCD method. If the code in a given iteration of BCD does not satisfy the 
ACZ constraint, then the partial minimization problem (7) may be infeasible. That 
is, it may not be possible to find an arrangement of the binary variables indexed by S 
that satisfies the ACZ constraint. Therefore, we consider a two-stage BCD method, in 
which the purpose of the first stage is to find a feasible code family that satisfies the ACZ 

(7c)xis ∈ {±1}, (i, s) ∈ S,

(7d)z
i,j
s,l ≤ x

j
l − xis + 1,

(7e)z
i,j
s,l ≤ xis − x

j
l + 1,

(7f )z
i,j
s,l ≥ −x

j
l − xis − 1,

(7g)
z
i,j
s,l ≥ xis + x

j
l − 1,

(i, s), (j, l) ∈ S × S,
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constraint. In the first stage, we perform BCD with a modification of the partial minimi-
zation problem (7). In the modified partial minimization problem, the ACZ constraint is 
removed, and the objective function is reduced to

That is, we only minimize the shift-one autocorrelation values.
The first stage is terminated when the ACZ constraint is satisfied. This occurs when 

J = 0 in the even-length case, and when J = m in the odd-length case. We now discuss a 
possible termination criterion for the second stage of BCD.

Second-stage stopping criterion. When the variable subset size |S| is constrained to be 
one in every iteration, the BCD algorithm converges if changing the sign of any single 
binary variable does not improve the objective value. In general, if |S| takes a fixed value 
M ≥ 1 in every iteration, then the algorithm converges if changing any 

(mn
M

)

 binary vari-
ables does not improve the objective value. In practice, we may terminate the algorithm 
after the objective value has not improved for a fixed number of iterations, or after a 
maximum number of iterations has been reached.

Initialization. The performance of the BCD algorithm depends on the value of the ini-
tial code family. In practice, it may be desirable to run the algorithm multiple times, ini-
tialized with different code families, and select the best solution. The initial code families 
may be chosen to be random, or to have desirable properties. For example, if the initial 
code family already satisfies the ACZ property, then the first stage of the two-stage BCD 
algorithm is unnecessary. Another option is to initialize with a set of codes with good 
correlation properties, such as the Gold codes [18], Weil codes [19, 20] or the output of 
another optimization method.

Solving MICPs. The MICP (3) and its partial minimization (7) are both NP-hard com-
binatorial optimization problems. In general, those problems can only be solved by enu-
merating all possible combinations of binary variables, and the number of combinations 
grows exponentially with nm. However, the enumeration may be made more efficient by 
exploiting the convex structure of the MICP.

In practice, when the variable subsets S are not too large, the partial minimiza-
tion problems (7) may be effectively solved using global optimization methods such as 
branch-and-bound [40, 41] and branch-and-cut [42, 43]. The basic idea is that in each 
iteration, a convex optimization problem derived from (7) is solved, with the binary con-
straints removed and possibly with additional variables and convex constraints added. 
The solution to the convex relaxations give lower bounds on the optimal value of the 
original problem, and those lower bounds may be used to reduce the search space. The 
commercial solver Gurobi [17] and the noncommercial solver SCIP [39] may be used to 
solve MICPs.

While the aforementioned global methods are often slow and have exponential worst-
case runtime, they can work well when the lower bounds obtained by solving the convex 
relaxations are tight. For the partial minimization problems, the lower bounds are often 
tight enough to find the global optimum in a reasonable amount of time, when the num-
ber of auxiliary variables required is not too large.

(8)J =

m−1
∑

i=0

(

n−1
∑

s=0

yi,is,1

)2

.
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3.2 � Variable subset selection strategies

The performance of the BCD algorithm depends on the variable subset selection strat-
egy. The goal is to choose the variable subset S such that its size can be made as large 
as possible, given a computational budget. The time required to solve the partial mini-
mization problem is the sum of the time required to compile the MICP (7) into a form 
that can be handled by the solver, and the time required for the solver to find a global 
solution.

In this work, we select the indices in S randomly in each iteration, with a sampling 
scheme that limits the time required to solve the partial minimization problems in each 
BCD step.

Limiting the number of active columns. The number of active columns in the partial 
minimization problem is |CS | , where CS is given by (6). Since the partial minimization 
objective function (7a) involves a sum of with O(nm|CS |) terms, it may be desirable to 
limit the number of active columns |CS | , especially when n and m are large. As seen in 
Sect. 4.3, limiting the number of active columns can greatly reduce the time required to 
form and compile the partial minimization MICP in each BCD iteration.

Limiting the number of variables in each column. Reducing the number of variables in 
each active column can reduce the time needed for the MICP solver to find a solution 
to the partial minimization problem. As seen in Sect. 4.3, for a fixed subset size |S|, the 
time taken by the MICP solver is largest when all of the indices are concentrated in a 
single column, and increasing the number of active columns generally reduces the time 
taken by the solver. This may be explained by the fact that the partial minimization prob-
lem is more difficult to solve when there are more variables in each active column. Due 
to symmetry, an MICP solver based on branch-and-bound may need to explore a larger 
number of branches when there are more variables in each active column [15].

4 � Results and discussion
In the following, we use the Gurobi optimizer to solve the partial minimization MICPs 
involved [17]. Our implementation has been made publicly available.1 Section  4.1 
describes the two problem settings considered in our experiments. Comparisons of vari-
able subset selection strategies and variable subset sizes are given in Sects. 4.2 and 4.3.

4.1 � Problem settings

We considered two problem settings in our experiments, each corresponding to a dif-
ferent code length n and family size m. In each case, we evaluate code families using the 
mean-of-squares metric, which is the sum of squares objective (2a), normalized by the 
number of terms in the summation.

Set of 66 length-127 codes. The first problem setting involves finding a family of m = 66 
binary sequences each of length n = 127 , and is modeled after the Iridium constellation, 
which is a LEO constellation that uses 66 active satellites [2].

Set of 130 length-257 codes. The second problem setting is modeled for potential 
future LEO PNT constellations. Xona Space Systems’ upcoming LEO constellation is 

1  https://​github.​com/​Stanf​ord-​NavLab/​binary_​seq_​opt.

https://github.com/Stanford-NavLab/binary_seq_opt
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planned to include 260 satellites [6]. Since satellites on opposite sides of the earth (i.e., 
antipodal satellites) will never simultaneously be in direct line-of-sight, antipodal sat-
ellites can broadcast with the same code without causing inter-signal interference. 
Antipodal satellite code sharing would allow for fewer codes in the complete family, 
thereby reducing computation load when the receiver applies correlation processing 
to search for and acquire PNT signals. This channel sharing is analogous to the one 
conducted by GLONASS, the Russian satellite navigation constellation, which uses 
frequency division multiple access  (FDMA) for its G1 signal and assigns antipodal 
satellites to the same frequency channel [10]. Therefore, it is sufficient to consider a 
families of m = 130 sequences. In our experiments, we considered lengths of n = 257.

Mean-of-squares metric. In our experiments, we used the mean-of-squares met-
ric to evaluate code families. The mean-of-squares metric is defined as the sum of 
squared correlation values given by (2a), normalized by the number of terms in the 
summation. That is, the mean-of-squares of a code family x ∈ {±1}n×m is given by

BCD subset sizes. For each problem setting, we considered BCD methods with three dif-
ferent variable subset sizes |S|s: 25, 4, and 1. When |S| = 25 , the partial minimization 
problem is solved using Gurobi; when |S| = 4 and |S| = 1 , the partial minimization prob-
lem is solved using exhaustive enumeration.

Comparison with Gold and Weil codes. The BCD methods were compared against 
the Gold codes [18] in the case of n = 127 , and the Weil codes [19, 20] in the case of 
n = 257 . The Gold and Weil codes are well-known families of binary sequences that 
are commonly used in satellite communications due to their good correlation proper-
ties [10].

For length n = 127 , there are a total of 129 Gold codes. Among them, only 65 satisfy 
the ACZ constraint. Although there are fewer Gold codes satisfying the ACZ prop-
erty than the number of codes in the BCD-optimized code family, the BCD-optimized 
codes may still be compared against the Gold codes in terms of the mean-of-squares 
objective. For length n = 257 , there are only 128 Weil codes, none of which satisfy the 
ACZ constraint. Although there are fewer Weil codes than the number of codes in the 
BCD-optimized code family, the two code families may also be compared in terms of 
the mean-of-squares objective.

4.2 � Variable subset selection

In this experiment, we compared the time required to solve the partial minimization 
problem for the two problem settings, where the variable subset sizes were fixed to 
be |S| = 25 and the number of active columns were varied. For each active column 
count |CS | , the number of variable indices in each active column was limited to be 
⌈25/|CS|⌉ , i.e., the variable indices were roughly evenly divided among the active col-
umns. For example, if we take |CS | = 4 , then the number of variable indices in each 
selected active column is limited to be at most 7. When |CS | = 1 , all of the indices 

(9)JMOS(x) =
1

nm(m+ 1)/2

m−1
∑

i=0

m−1
∑

j=i

n−1
∑

k=0

(

xi ⋆ xj
)2

k
.



Page 12 of 16Yang et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:67 

in S were selected from a single column, and when |CS | = m , all of the indices were 
selected from different columns.

Figure 1 compares the average time needed to solve the partial minimization problem 
for different numbers of active columns. The time taken by the Gurobi MICP solver is 
plotted, along with the total elapsed time, which also includes the time required to form 
and compile the partial minimization MICPs. Each plotted point is the average time 
taken over 30 runs, where each run involved a random code family and a random vari-
able subset S. The random code families were generated uniformly at random, and the 
partial minimization problems were solved without the ACZ constraint.

For the n = 127 , m = 66 problem instance, the amount of time required to solve the 
partial minimization problem decreases monotonically with the number of active col-
umns. However, this is not the case in the n = 257 , m = 130 case. In that case, the total 
time required initially decreases with the number of active columns, but then increases 
again. This is due to the overhead required to compile the MICP into a form that can be 
handled by the solver, since the time taken by the solver itself decreases monotonically 
with the number of active columns.

4.3 � Comparison of BCD methods

Next, we evaluate the performance of the two-stage BCD method with variable subset 
sizes |S| = 25 , |S| = 4 , and |S| = 1.

Variable subset selection strategy. We use the following selection scheme, which is 
based on the results in Sect. 4.2. In the n = 127 case, the variable indices were selected 
by choosing a single variable index from |S| different columns. In the n = 257 case, the 
variable indices were selected by choosing the indices at random, with the constraint 
that the number of the number of active columns and the number of variable indices in 
each active column were limited to five each.

Fig. 1  Average BCD iteration time for n = 127 , m = 66 (top) and n = 257 , m = 130 (bottom). In each case, 
the variable subset size |S| = 25 , and the number of indices in each active column is limited to ⌈|S|/|CS|⌉ (i.e., 
the indices were roughly evenly divided among the active columns). Each plotted point is the average of 30 
runs, where each run was computed using a random code family and random indices S. We show both the 
total time taken to form and solve the partial minimization problems, as well as the time taken by only the 
solver (Gurobi)
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Results Figure 2 shows the objective value versus iteration for the three subset sizes. 
The top left and bottom left plots show the ACZ objective value (8) versus iteration for 
the first stage of BCD, for the n = 127 and n = 257 problem settings, respectively. The 
first stage is terminated when the ACZ constraint is satisfied. The top right and bottom 
right plots show the mean-of-squares metric (9) versus iteration for the second stage of 
BCD, for the n = 127 and the n = 257 problem settings, respectively. The plots show the 
objective values for the first hour of computation.

In each case, it can be seen that increasing the subset size |S| leads to a lower objec-
tive in fewer iterations, but also fewer total iterations, since the cost of each itera-
tion is higher. Table  1 compares the mean-of-squares of the BCD-optimized codes 
with the Gold and Weil codes, where the BCD methods were run for 12 h. The BCD-
optimized code with |S| = 25 found a code with the lowest mean-of-squares in both 

Fig. 2  Top: objective value versus iteration for stage-one (left) and stage-two (right) BCD, for problem setting 
n = 127 . Bottom: objective value versus iteration for stage-one (left) and stage-two (right) BCD, for problem 
setting n = 257 . Stage-one BCD (left) is terminated when the ACZ property is satisfied. Objective values for 
stage-two BCD (right) are shown for the first hour of computation

Fig. 3  Autocorrelation of one of the 66 optimized binary sequence, compared with the autocorrelation of 
one of the Gold codes
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problem settings. Table  2 shows the number of BCD iterations taken in the 12-h 
period, for each subset size |S|.

Autocorrelation visualization Finally, Fig. 3 shows a superposition of the autocorre-
lations of the codes found using the BCD method with subset size 25, compared with 
a superposition of the autocorrelations of the Gold and Weil codes. Both the BCD-
optimized codes and the selected Gold codes satisfy the ACZ constraint, while it 
may be seen that the Weil codes do not. The BCD-optimized codes appear to strictly 
outperform the Weil codes. While the BCD-optimized codes appear to have autocor-
relation closer to zero than the Gold codes on average, they have a larger peak auto-
correlation magnitude than the Gold codes.

5 � Conclusions
In this work, we considered the problem of designing binary spreading codes with 
good auto- and cross-correlation properties, in particular for LEO applications, where 
the number of codes are large, relative to the code lengths. We proposed a two-stage 
BCD method for finding codes of arbitrary length and family size that both satisfy 
the ACZ property and have good correlation properties. We demonstrated that the 
method can find codes that outperform the Gold and Weil codes in terms of the mean 
of squared correlation values.

Finally, we discuss possible directions for future work. First, the BCD method pro-
posed in this work may be extended to account for the effects of Doppler shift, which 
can be significant in LEO navigation settings [44]. For example, the BCD method may 
be used to optimize the average of the objective function (2a) over a range of Dop-
pler shifts [45]. Second, this work did not consider the effects of any data or second-
ary codes, which are often superimposed on the primary spreading codes [12]. Those 

Table 1  Comparison of mean-of-squares of BCD-optimized codes with Gold and Weil codes

For both code lengths, the smallest objective values are given in bold

In the n = 127 case, BCD was used to optimize over m = 66 codes, while there were only m = 65 corresponding Gold 
codes. In the n = 257 case, BCD was used to optimize over m = 130 codes, whereas there were only m = 128 Weil codes. 
The BCD-optimized and Gold codes satisfy the ACZ constraint, while the Weil codes do not

n = 127 n = 257

BCD ( |S| = 25) 123.741 253.707
BCD ( |S| = 4) 123.745 254.092

BCD ( |S| = 1) 123.762 254.234

Gold 125.95 –

Weil – 255.99

Table 2  Number of BCD iterations taken in a 12-h period, for different subset sizes |S|

n = 127 n = 257

|S| = 25 15,756 8680

|S| = 4 70,966 10,278

|S| = 1 209,966 26,671



Page 15 of 16Yang et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:67 	

superimposed codes may adversely affect the correlation properties of the primary 
codes and may be worth consideration in future work.
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