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Abstract 

Semantic communication and spectrum sharing are pivotal technologies in address-
ing the perennial challenge of scarce spectrum resources for the sixth-generation (6G) 
communication networks. Notably, scant attention has been devoted to investigat-
ing semantic resource allocation within spectrum sharing semantic communication 
networks, thereby constraining the full exploitation of spectrum efficiency. To mitigate 
interference issues between primary users and secondary users while augmenting 
legitimate signal strength, the introduction of Intelligent Reflective Surfaces (IRS) 
emerges as a salient solution. In this study, we delve into the intricacies of resource 
allocation for IRS-enhanced semantic spectrum sharing networks. Our focal point 
is the maximization of semantic spectral efficiency (S-SE) for the secondary semantic 
network while upholding the minimum quality of service standards for the primary 
semantic network. This entails the joint optimization of parameters such as seman-
tic symbol allocation, subchannel allocation, reflective coefficients of IRS elements, 
and beamforming adjustment of secondary base station. Recognizing computational 
intricacies and interdependence of variables in the non-convex optimization problem 
formulated, we present a judicious approach: a hybrid intelligent resource allocation 
approach leveraging dueling double-deep Q networks coupled with the twin-delayed 
deep deterministic policy. Simulation results unequivocally affirm the efficacy of our 
proposed resource allocation approach, showcasing its superior performance relative 
to baseline schemes. Our approach markedly enhances the S-SE of the secondary net-
work, thereby establishing its prowess in advancing the frontiers of semantic spectrum 
sharing (S-SE).

Keywords: Semantic communication, Intelligent reflection surface, Spectrum sharing, 
Semantic spectral efficiency, Deep reinforcement learning

1 Introduction
The problem of spectrum scarcity is further exacerbated by the massive smart devices 
and massive connections that characterize 6 G wireless communication networks [1–3]. 
However, it is difficult for the existing conventional communication paradigms to further 
improve the spectral efficiency, as revealed in the Shannon rate limit [4–6]. Recently, the 
artificial intelligence (AI)-driven semantic communication paradigm has received much 
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attention due to the great promise it shows in breaking the Shannon limit and improving 
spectral efficiency [7]. Specifically, semantic communication is a communication para-
digm over the semantics, where the parties communicate the intention. In task-oriented 
semantic communications, the task-related necessary information is transmitted, while 
the unnecessary information, e.t. the task-unrelated information, is ignored [8]. Seman-
tic encoding networks are able to utilize the powerful knowledge representation capa-
bilities of machine learning to extract and encode key task-relevant information, greatly 
avoiding information redundancy [9, 10]. Under the semantic communication paradigm, 
joint source channel coding techniques have been developed and demonstrate better 
performance than separated coding [11].

Spectrum sharing technology has been widely used due to its high spectrum utiliza-
tion efficiency [12]. Specifically, the secondary network is able to share the spectrum of 
the primary network while minimizing the impact on the primary network [13]. How-
ever, under the same active channel, the interference between primary and secondary 
users (SUs) is unavoidable during the sharing period. This may have an impact on the 
main network. Recently, spectrum sharing networks assisted by smart reflective sur-
faces have been widely studied [14]. Intelligent Reflective Surfaces (IRS), a future-proof 
technology, can enhance target signal strength and attenuate interfering signals in a low-
energy way [15, 16]. Specifically, a smart reflective surface consists of a planar array of 
passive transmitting elements, which can be programmed to adjust the reflection factor 
of the reflective elements to achieve signal-phase adjustment during the signal reflection 
process [17].

Due to the superior ability of solving large-scale complex problems and real-time per-
formance [18], deep reinforcement learning (DRL) has recently attracted a lot of atten-
tion. This trend of interest reflects the growing recognition of the superior effectiveness 
of DRL in dealing with complex situations where traditional methods may not perform 
well. It is likely that the citation refers to an in-depth discussion of specific advances or 
applications within the field, contributing to a more comprehensive understanding of the 
importance and impact of DRL in contemporary problem solving paradigms. The advan-
tage of DRL over traditional convex optimization methods is its ability to handle high-
dimensional, nonlinear, and complex problems, and to adapt to diverse environments 
and tasks by extracting features and optimization strategies from experience through 
learning [19]. However, the traditional convex optimization methods usually face prob-
lems with low dimensionality and linear structure, which make it difficult to effectively 
deal with complex real-world scenarios. Deep reinforcement learning is able to learn 
autonomously and gradually improve its performance through end-to-end learning of 
neural networks and thus has more advantages when facing variable and uncertain prob-
lems in the real world [20]. Hence, it is promising to propose an DRL-based AI-native 
resource allocation scheme for semantic spectrum sharing networks.

1.1  Related works

1.1.1  Semantic coding network

A great number of works have paid attention to semantic communication networks. 
According to the data source modality, the type of semantic coding research can be 
divided into text [21, 22], image [23, 24], and speech [25]. The authors in [21] exploited 
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inference rule from the knowledge graph, which aimed to obtain the inexplicable and 
inflexible of the semantic communication networks. The authors in [24] investigated 
the unmanned aerial vehicle (UAV) image-sensing-driven semantic communication 
for a triple-based scene construction. In [25], the authors considered a speech seman-
tic communication network, where speech synthesis at the receiver entails a dedicated 
process wherein the regeneration of speech signals transpires. This involves inputting 
the recognized text and speaker information into a neural network module for the pur-
pose of generating the synthesized speech signals. There is little work [26–28] that pays 
attention to the resource allocation for semantic communication networks. In [26], the 
authors defined the semantic spectral efficiency (S-SE) for the first time. Then, based on 
the [26], the authors in [27] further considered the quality of experience of the users. 
The authors in [28] proposed a novel semantic-bit quantization method and considered 
an adaptive resource allocation scheme for semantic communications over the physi-
cal wireless channels. In [29], the IRS-assisted secure semantic communication network 
was investigated, while the spectrum sharing technology was not considered for fur-
ther improvement of spectrum efficiency. Moreover, IRS was used to counter semantic 
eavesdropping in [29], while IRS has not been used to eliminate inter-user interference 
and ensure the quality of service of the primary network. As the best knowledge of the 
authors, there has been little work considering the IRS-assisted semantic communica-
tion networks with spectrum sharing.

1.1.2  IRS‑assisted spectrum sharing networks

Given that IRS employs passive reflective elements devoid of signaling methods on 
received signals, the IRS demonstrates a capacity to reshape signals with minimal over-
head [30]. Notably, a substantial body of research has concentrated on unraveling the 
extensive potential inherent in IRS technology [31–36]. The authors in [32] considered 
the IRS-assisted secure spectrum sharing network, where the IRS can significantly 
enhance the legal signal and suppress the eavesdropping at the eavesdroppers. The 
authors in [34] introduced the multiple IRS for wide convergence and the secure perfor-
mance improvement of the secondary network. Nevertheless, it is noteworthy that only 
a limited number of studies have delved into the augmentation of semantic spectrum 
efficiency (S-SE) for task performance in the context of semantic spectrum sharing net-
works operating under low signal-to-noise ratios. Furthermore, a majority of the previ-
ously mentioned investigations [31, 33–36] have predominantly relied on conventional 
methodologies grounded in convex optimization, a less time-efficient paradigm when 
confronted with the complexities of large-scale connections. Consequently, there exists 
a compelling imperative to delve into and develop time-efficient intelligent resource allo-
cation schemes [37].

1.1.3  Intelligent resource allocation approach

DRL-based resource allocation approaches have been widely used due to its power-
ful computational ability [38–43]. The authors in [39] proposed a DRL-based intelligent 
resource allocation scheme, which can rapidly solve the tricky non-convex problem. The 
authors in [40] proposed a hybrid intelligent resource allocation to address the formulated 
optimization problem for CR networks. In the work [41], the authors intricately devised 
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DRL-based schemes with the explicit goal of diminishing output dimensionality, elevating 
learning efficiency, and formulating a judicious resource allocation policy. Moreover, the 
DRL-based resource allocation scheme was used for mobile edge computing in railway 
Internet of Things (RIoT) networks to jointly optimize the subcarrier assignment, offload-
ing ratio, power allocation, and computation resource allocation. Note that the computa-
tional complexity comparison conducted in the [34], the DRL-based scheme performed 
better time efficiency and achieved the close performance compared to the traditional 
mathematical methods. Further considering the semantic resource allocation in the UAV-
assisted semantic communication system, DRL-based resource allocation scheme and 
intelligent trajectory planning scheme were proposed in [43].

1.2  Motivations and contributions

We investigate IRS-assisted semantic spectrum sharing networks in this paper to 
optimize the S-SE of the secondary network. The noteworthy contributions of this 
paper are as follows.

• In this paper, we explore for the first time IRS-assisted semantic spectrum shar-
ing communication networks. Specifically, IRS is able to simultaneously enhance 
the performance of semantic tasks in the secondary network while minimizing the 
interference of the secondary network to the primary network. Semantic spec-
trum efficiency is utilized to evaluate the secondary network spectrum efficiency. 
The S-SE is maximized by jointly optimizing the allocation of subchannel, seman-
tic symbols, IRS reflection array elements, and the beamforming of secondary 
base station.

• To solve our proposed complex non-convex problem, based on dueling double-
deep Q networks (D3QN) twin-delayed deep deterministic policy (TD3), an intel-
ligent resource allocation scheme is introduced for semantic spectrum sharing 
networks. Specifically, the discrete action space, i.e., semantic symbol number 
allocation and subchannel allocation, is handled by utilizing D3QN. TD3, on the 
other hand, can effectively address continuous action spaces, i.e., tuning the trans-
mit beam and optimizing the IRS reflection elements. Such a hybrid algorithm 
design can fully utilize the powerful Q-value computation capability of D3QN and 
the powerful exploration capability of TD3 in high-dimensional space.

• Simulation results demonstrate that our proposed IRS-assisted semantic spec-
trum sharing network can significantly enhance the S-SE of the secondary net-
work while guaranteeing the communication quality of service in the primary 
network compared to the benchmark scheme lacking IRS and the conventional 
communication scheme. In addition, we demonstrate that our proposed hybrid 
intelligent resource allocation scheme can reach convergence in a short period of 
time, proving its powerful exploration capability.
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The rest of the paper is organized as follows: Section II presents the IRS-assisted 
semantic spectrum sharing network model. Section III presents the problem of maxi-
mizing the semantic spectral efficiency of the sub-network. Section IV presents the 
hybrid resource allocation scheme. Section V demonstrates the simulation results. 
Finally, Section VI gives the conclusion of this paper.

2  System model and optimization problem
2.1  Semantic coding framework

Here, we consider an IRS-enhanced semantic spectrum sharing network designed for 
the text recovery task, featuring a transmitter and a receiver and a IRS (Fig.  1). The 
transmitter incorporates a semantic encoder and channel encoder for extracting features 
and semantically encoding text sources, while the receiver includes the channel decoder 
and semantic decoder to decode semantics and recover mission-critical information. Let 
S = [s1, . . . , si, . . . , sl] represent a sentence, where l is the sentence length, si is the i-th 
word. We employ DeepSCs with multi-level semantic symbol outputs for higher trans-
mission efficiency. Specifically, the different DeepSC networks can produce the semantic 
information with different length. Let O = {1, . . . ,O} be the set of different DeepSC set.

The encoding process for the input sequence s involves the semantic encoder, yield-
ing semantic information P through the expression P = E̺o(s) , where E̺o(·) represents 
the encoder o characterized by parameters ̺o . This encoded information, denoted as 
X = Cα(P) , is then passed through channel encoder Cα(·) , defined by parameter α . At 
the receiver, the received signal is expressed as Y = hX + n , where h represents channel 
coefficients and n denotes the background noise. Decoding of the received symbols is 
carried out by the channel decoder, represented as X ′ = C−1

β (Y ) . Finally, semantic infor-
mation X ′ is reconstructed at the receiver through the decoder, denoted as m = S−1

σo
(X ′) , 

where S−1
σo

(·) signifies the inverse operation of the semantic decoder with parameters σo . 
Let ζk ,o denote whether user k select o-th DeepSC. If user k select o-th DeepSC, then 
ζk ,o = 1 ; otherwise, ζk ,o = 0.

Fig. 1 The proposed semantic spectrum sharing communication
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The received signal, denoted as y ∈ C
Nr×1 , is succinctly expressed by

Here, H ∈ C
Nr×Nl denotes the channel matrix, H ∈ C

Nr×Nl denotes the IRS reflective 
coefficients, and n ∈ C

Nr×1 ∼ CN (0, σ 2I) is additive white Gaussian noise (AWGN), 
where σ 2 denotes noise variance and I denotes identity matrix.

2.2  IRS‑enhanced semantic spectrum sharing communication

We introduce an IRS, which is equipped with E reflective elements, strategically posi-
tions itself to improve the transmission efficiency of the secondary network. Let 
� = diag

(
̟1e

jφ1 ,̟2e
jφ2 , · · · ,̟ne

jφe
)
∈ C

E×E denote the IRS phase coefficients, where 
̟e ∈ [0, 1] signifies IRS amplitude coefficients, while φe ∈ [0, 2π ] symbolizes IRS phase 
coefficients. Let D = {1, . . . ,D} be primary users (PUs), and K = {1, . . . ,K } be SUs. 
Let hp,d ∈ C

M×1 , Gp,r ∈ C
E×M and gd ∈ C

E×1 be the channel coefficients from base 
station (BS) to PU d, from the primary base station (PBS) to IRS and from IRS to PU 
d, respectively. Similarly, let hs,k ∈ C

M×1 , Gs,r ∈ C
E×M , and gr,k ∈ C

E×1 be the chan-
nel coefficients from BS to SU k, from SBS to IRS, and from IRS to SU k, respectively. 
Let C = {1, . . . ,C} be subchannel set. The channel allocation of k-th SU is expressed as 
ρk = {ρk ,1, . . . , ρk ,c, . . . , ρk ,C} , where ρk ,c ∈ {0, 1} represents whether k-th user uses c-th 
subchannel. If k-th SU occupies c-th subchannel, then ρk ,c = 1 ; otherwise, ρk ,c = 0.

Let fpd  be the transmit beamforming of the d-th PU and f sk be the transmit beamform-
ing of the k-th SU. The transmission rate from PBS to d-th PU is denoted as

where B denotes the bandwidth. The interference Ŵp,d can be given by

where hs,d denotes the subchannel from the PBS to the d-th user. The δkd denotes 
whether d-th PU and k-th SU share the same channel. If the PU d and the SU k share the 
same subchannel, then δkd = 1 ; otherwise, δkd = 0 . The transmission rate from BS to k-
th user is expressed by

The interference Ŵs
k can be given by

where hp,k is the subchannel from PBS to k-th user.

(1)y = Hx + Ĥx + n.

(2)Rd =
B

C
log2
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2.3  Semantic similarity metrics

Similar to the semantic similarity metric proposed in [22], the Bidirectional Encoder 
Representations from Transformers (BERT) model is used. BERT is a cutting-edge natu-
ral language processing model characterized by its bidirectional attention mechanism, 
enabling it to capture contextual information in a given sequence. This innovative archi-
tecture, based on the transformer model, facilitates a deeper understanding of word 
relationships and semantic nuances within sentences, leading to superior performance 
in a wide array of language understanding tasks such as sentiment analysis, named entity 
recognition, and question answering. BERT’s pre-training strategy involves training on 
large corpora, empowering the model to grasp intricate linguistic patterns and foster 
transfer learning for downstream applications, making it a pivotal milestone in the field 
of NLP. The BERT-based semantic similarity can be obtained by

where B(·) is the pretrained BERT model [44] and ξ ∈ [0, 1].

2.4  Semantic Spectral Efficiency

Following the principles outlined in [26], the semantic unit (sut) is introduced for 
semantic information representation. The unit of the rate of semantic transmission (S-R) 
is sut/s . and the unit of the S-SE is suts/s/Hz . We introduce a text dataset D = {sd} , 
where sd is the d-th sentence. We considered a prior known probability of each sentence 
d used, expressed by p(sd) . Let P =

∑D
d=1 Pdp(sd) be the semantic information. Let 

L =
∑D

d=1 Ldp(sd) be the number of words per sentence. Considering a long-term 
semantic communication processing, P and L are fixed, which are randomly given in this 
paper. Let νk be the semantic symbols used. Hence, the semantic symbols used for sen-
tence representation denoted as Ŵk = νkL . Consistent with [26], the S-R is equivalent to 
channel bandwidth, where the S-R of k-th user over c-th subchannel is denoted by 
�k ,c =

WP
Ŵk

ξk ,c, where ξk ,c represents the semantic similarity difference. The ξk ,c is 
decided by symbol allocation, channel allocation, transmit beamforming of SBS, and the 
coefficients of the IRS reflective elements. Therefore, the achievable S-SE of k-th SU over 
c-th subchannel is expressed by

3  Problem formulation
The S-SE of the secondary network is maximized by semantic symbol allocation, 
subchannel allocation, beamforming of SBS, and the coefficients of the IRS reflective ele-
ments are jointly optimized. Hence, the problem can be formulated as follows 

(6)ξ =
B(S)B(Ŝ)T

�B(S)��B(Ŝ)�
,

(7)�k ,c =
�k ,c

W
=

P

Ŵk
ξk ,c.

(8a)P :

K∑

k=1

C∑

c=1

ρk ,c max
ρ,ζ ,�,F

�k ,c
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 where ξ thd  is the minimum task requirements of the PUs, and TPth
s  represents the upper 

bound of SBS transmit power. Constraint (8b) limits the subchannel assignment, where 
each subchannel can only be occupied by one SU. Constraints (8d) and (8e) limit the IRS 
reflective elements. Constraint (8f ) presents the upper bound of SBS transmit power. 
Constraint (8g) aims to maintain the requirements of QoS of the PUs.

4  Proposed DRL‑based resource allocation scheme for semantic spectrum 
sharing networks

We present our design of a DRL-based resource allocation method for semantic spec-
trum sharing network. We propose a hybrid intelligent resource allocation method based 
on D3QN-TD3, which is able to deal with discrete action spaces, including subchannel 
assignment and semantic symbol assignment, and continuous action spaces, including 
IRS reflective elements and the transmit beamforming of the SBS, efficiently, as detailed 
below.

4.1  MDP formulation

The Markov Decision Process (MDP) serves as cornerstones of reinforcement learning 
theory, providing a structured framework for modeling decision-making problems. In 
the context of this paper, the optimization problem defined in (8) is initially transformed 
into an MDP problem, laying the groundwork for employing reinforcement learning 
algorithms to achieve optimal performance. Within this MDP framework, the environ-
ment is conceptualized as the IRS-enhanced semantic spectrum sharing networks, with 
intelligent agents residing in the control unit of the SBS. The definition of the state space, 
action space, reward function, and transition probability becomes pivotal in formulat-
ing the RL problem specific to our IRS-assisted semantic spectrum sharing communica-
tion network. This MDP-based approach enables the reinforcement learning algorithm 
to navigate the dynamic environment, making informed decisions to enhance the overall 
performance and effectiveness of the system.

We designate S to denote the state space. At time step t, a state, represented as st ∈ S , 
encapsulates a comprehensive set of information, including subchannel information, 
selected actions, S-SE ( �t ), and obtained rewards. To be more explicit, the state st at 

(8b)s.t. ρk ,c ∈ {0, 1}, ∀c ∈ C, ∀k ∈ K,

(8c)φe ∈ {0, 2π}, ∀e ∈ E,

(8d)|�e| = 1, ∀e ∈ E,

(8e)ζk ,o ∈ {0, 1}, ∀k ∈ K, ∀o ∈ O,

(8f )
K∑

k=1

C∑

c=1

∥∥fk ,c
∥∥2 ≤ TPth

s ,

(8g)ξd ≥ ξ thd , ∀d ∈ D,
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time step t is characterized by the S-SE denoted as �t . This holistic representation 
ensures that the state captures the relevant aspects of the system’s history, facilitating 
the reinforcement learning algorithm’s ability to make informed decisions based on the 
accumulated knowledge of actions, subchannel dynamics, S-SE, and rewards.

The action space of the considered semantic spectrum sharing network is denoted as A . 
Specifically, at time step t, the semantic symbol allocation, subchannel allocation, the 
beamforming of SBS, and IRS reflective coefficients are, respectively, represented as ρt , 
ζ t , Ft and �t . This multi-faceted action space reflects the diverse choices and configu-
rations influencing the IRS-assisted semantic spectrum sharing network’s behavior and 
performance at each time step. The action is expressed by

The agent’s action selection strategy is significantly influenced by the pivotal role played 
by the reward function. This function establishes the goal of maximizing S-SE and 
assesses the agent’s performance following each iteration step. As a result, the reward 
function design holds paramount importance in determining the maximized S-SE. The 
loss function is designed as

The policy serves as a crucial component in reinforcement learning, representing the 
probability with which the agent chooses a specific action a through current state s. It 
encapsulates the agent’s strategy and decision-making process as it interacts with its sur-
roundings. The overarching goal of the intelligent agent lies in gaining insights into an 
optimal resource allocation strategy. In pursuit of this objective, the long-term reward 
is intricately linked to the action selection process guided by the policy. This reward is 
a measure of the agent’s success in achieving its goals and is essential for shaping the 
learning process. The formulation of an effective policy becomes pivotal, as it sig-
nificantly influences the agent’s ability to navigate and make informed decisions in the 
dynamic environment, ultimately contributing to the attainment of superior long-term 
performance, represented by

In this context, the symbol γ ∈ [0, 1) represents a discount factor, a pivotal parameter 
governing the impact of past decision-making steps in the reinforcement learning pro-
cess. The value of γ operates within the range [0, 1), where a larger γ indicates a further 
consideration of rewards. Conversely, a small γ suggests that the agent places greater 
emphasis on more recent decisions, tailoring its strategy to prioritize the most imme-
diate and relevant information for optimal decision-making within the dynamic envi-
ronment. The judicious selection of the discount factor is integral to shaping the agent’s 

(9)st =

{
Ht ,�t , at−1, rt

}
.

(10)at =
{
ρt , ζ t ,Ft ,�t

}
.

(11)r =

K∑

k=1

C∑

c=1

ρk ,c�k ,c +

D∑

d=1

(�d −�th
d ).

(12)R =
∑

t

γ t [rt+1 | st , at ].
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temporal perspective and influencing its adaptability to different scenarios, thus playing 
a crucial role in achieving effective and context-aware learning.

Let π represent the policy. Therefore, the formulation of the optimal policy can be rep-
resented by

4.2  Intelligent resource allocation approach based on D3QN‑TD3

We consider a DRL-based resource allocation approach using D3QN-TD3 for semantic 
spectrum sharing communication networks. Our proposed scheme can be seen in Fig. 2.

4.2.1  D3QN algorithm for semantic symbol allocation and subchannel assignment

The incorporation of an additional advantage function into the DQN framework 
enhances the precision of Q-value estimations in Dueling DQN, requiring fewer discrete 
action data and thereby improving sample efficiency. Conversely, the concern of Q-value 
overestimation is tackled by double DQN through the prediction of Q-values using two 
sets of Q networks.

(13)π∗(s, a) = arg max
π

Eπ [r(s, a)].

Fig. 2 Proposed DRL-based resource allocation scheme for the IRS-enhanced semantic spectrum sharing 
communication
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D3QN, a synergistic integration of dueling DQN and double DQN, leverages the 
strengths of both algorithms. In this context, D3QN is employed for the DeepSC alloca-
tion and channel allocation. The Q-value can be calculated by

where υ , τ and η are the parameters of hidden layers, action network, and value network, 
respectively.

Sample tuples (st , at , rt+1, st+1) with the size of N are randomly selected from the 
replay buffer. The target Q value in D3QN is expressed by

where υ ′ represents the parameters of hidden layers in target networks. The loss func-
tion is expressed by

4.2.2  TD3 algorithm for IRS reflective elements and transmit beamforming

The TD3 algorithm stands out in reinforcement learning by effectively addressing insta-
bility and sample inefficiency. Through the utilization of twin critics, TD3 enhances 
stability by minimizing overestimation bias in value function estimates, while the intro-
duction of delayed policy updates prevents premature convergence to suboptimal poli-
cies. Additionally, the incorporation of target policy smoothing regularization promotes 
exploration and prevents the algorithm from becoming overly deterministic. These inno-
vations collectively position TD3 as a robust solution, showcasing superior performance 
and potential applicability in diverse real-world scenarios, hence to address the continu-
ous actions including IRS reflective elements and transmit beamforming of the SBS.

Let ϑ and ϑ− , respectively, be parameters of the actor network and target actor net-
work. Let ǫ1 and ǫ−1  , respectively, be parameters of the critic networks, while ǫ2 and ǫ−2  
represent the parameters of the target critic networks. The target Q value in TD3 can be 
obtained by

The weights {ǫi} of the critic networks are updated by

4.3  Training processing for semantic communication networks

To encapsulate our proposed algorithm succinctly, we utilize the current system state as 
a decisive input for the next action, encompassing semantic symbol allocation, channel 

(14)Q(s, a; υ, η, τ ) =

(
A(s, a; υ, τ )+ V (s; υ, η)−

1

|A|

(
∑

a′

A
(
s, a′; υ, τ

)
))

,

(15)Q = r + γQ′

(
st+1, arg max
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Q(st+1, at+1; υ); υ
′

)
,

(16)L(υ) =
1

N
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2.
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(
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−
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)
.

(18)L(ǫi) =
1

N

∑

i

[Q − Qi(st , at; ǫi)]
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allocation, transmit beamforming, and IRS reflective coefficients. This decision-making 
process is facilitated through the integration of D3QN and TD3 networks. Primarily, we 
introduce a semantic similarity estimation algorithm based on DeepSC [22] to gauge 
semantic similarity and subsequently compute S-SE. This involves a domain transfer of 
the network, tailoring it to the specifics of our considered semantic task domain. The 
experiential knowledge accumulated through each training step finds residence in replay 
buffer E . At predefined intervals I, the parameters of the evaluation network are syn-
chronized with those of the target network. For clarity, the salient steps of our proposed 
approach, employing D3QN-TD3, are encapsulated in Algorithm 1. 

Algorithm 1 D3QN-TD3-Based Hybrid Intelligent Resource Allocation Scheme for Semantic Spectrum Sharing 
Networks

5  Numerical analysis
In the specified scenario, there are three PUs, denoted by D=3, positioned at coordinates 
(200, 120, 0) , (170, 160, 0) , and (165, 170, 0) , with a PBS located at the origin (150, 150, 30) 
equipped with six antennas. Simultaneously, there are three SUs, denoted by K=3, 
located at (40, 30, 0) , (20, 50, 0) , and (0, 30, 20) , with a six-antenna SBS at (0, 0, 50) . The 
system configuration includes C=3 subchannels, the minimum SBS transmit power 
TPth

s = 20 dBm , and the PBS transmit power of TPp = 30 dBm . The total bandwidth is 
set to B = 120 kHz . A IRS is strategically located at (60, 60, 30) with E = 36 IRS reflec-
tive elements. The variance of background noise is set to σ 2 = 0.01.

This section is dedicated to evaluating and contrasting the performance of proposed 
approaches with benchmark schemes. Channel characteristics are meticulously mod-
eled, incorporating Rician fading for channels from BSs to IRS and from IRS to users. 
Concurrently, Rayleigh fading is assumed for channels from the BSs to the users and 
from the BSs to the IRS. The path fading is quantified as PL = (PL0 − 10τ log10(d/D0)) 
dB, with parameters set to PL0 = 30 dB and D0 = 1 m . The loss exponents τbu , τbr , and 
τru governing channels from BSs to Users, BSs to IRS, and IRS to users, respectively, 
are established as 3.6, 2.0, and 2.1. The convert method in [26] that equates the SE of 



Page 13 of 17Zhang et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:69  

conventional communication to S-SE of semantic communications is introduced. This 
conversion is symbolized by �′

n,m = Rn,m
I
µL , where Rn,m = Cn,m/W  represents the 

SE. The threshold �th and ξ thd  are, respectively, set to 0.2 suts/s/Hz and 0.9. Within the 
D3QN configuration, two Q networks and two target Q networks are utilized, each 
incorporating three hidden layers with 256 neurons per layer. The learning rate of D3QN 
is explicitly set to 0.003. In the TD3 setup, there exist one actor network, two critic net-
works, two target networks, and one target actor network. Each of these networks is 
configured with three hidden layers, comprising 512 neurons. The learning rate of TD3 
is set to 0.003. The buffer size is U = 20, 000.

To comprehensively validate and compare the effectiveness of our proposed approach, 
we introduce several benchmark schemes as outlined below. The random IRS scheme 
can assess the impact of optimizing IRS reflective coefficients. In this setup, IRS reflec-
tion coefficients are assigned randomly, allowing us to evaluate the performance gain 
achieved through the optimization process. The random scheme is designed to highlight 
the significance of our proposed intelligent approach; this scheme incorporates random 
generation of IRS reflection coefficients using the random algorithm. This comparison 
aims to showcase the added value brought by the intelligent optimization process. The 
5  G Communication standard, following the approach outlined in [26], is introduced 
as a benchmark. This comparison serves to access the performance of our proposed 
approach in the context of evolving communication standards, emphasizing its adapt-
ability and superiority in contemporary communication scenarios.

Figure  3 provides a comprehensive assessment of the convergence behavior of our 
intelligent resource allocation scheme for semantic spectrum sharing communication 
networks based on the integration of D3QN and TD3 across episodes. Two distinct sce-
narios are considered in this evaluation: one with E = 64 IRS reflective elements and 
another with E = 128 IRS reflective elements. The maximum transmit power of the SBS 
is set to 20 dBm . Notably, the proposed resource allocation approach consistently dem-
onstrates a progressive improvement in rewards, reaching a fast convergence and show-
casing substantial performance enhancements. When E = 128 and E = 64, the algorithm 
can reach the convergence around 2× 102 due to the fact that our proposed framework 
is high-efficient in addressing the optimization problem. This observation serves as 
robust validation for the efficacy of our intelligent resource allocation strategy. It is note-
worthy that achieving convergence in scenarios with E = 128 presents a more challeng-
ing task compared to the E = 64 scenario, given the heightened complexity associated 
with a larger number of IRS elements. It is evident that our proposed approach adeptly 
solves the challenges linked to a high-dimensional adjustment of IRS reflective elements, 
effectively navigating the exploration of optimal solutions. This effectiveness is attrib-
uted to the powerful exploration ability inherent in our proposed scheme, where the Q 
value of the actions can be evaluated accurately.

In Fig. 4, we present a comprehensive comparison of the achievable S-SE in the sec-
ondary network using proposed resource allocation approach against several bench-
mark schemes across varying numbers of IRS reflective elements. The results clearly 
demonstrate a significant improvement of S-SE as the number of IRS reflective elements 
increases. This improvement can be directly attributed to the growing number of IRS 
reflective elements, which significantly improves the beamforming accuracy and signal 
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gain. Consequently, it is easy to make a pronounced enhancement in S-SE, showcas-
ing a significant advantage over schemes that lack IRS integration. Furthermore, our 
intricately crafted intelligent approach demonstrates the ability to effectively leverage 
the advantages provided by a substantial number of IRS elements, consistently yielding 
exceptional performance. In contrast, the fixed IRS scheme displays suboptimal perfor-
mance, as their incapacity to dynamically adjust IRS array elements impedes their effec-
tiveness in adapting to proposed semantic spectrum sharing network. Figure 4 vividly 
illustrates the advantageous impact of leveraging IRS to augment S-SE.

In Fig. 5, we depict the achievable S-SE of the secondary network under varying trans-
forming factors, drawing a comparison with the conventional communication scheme. 
Notably, semantic communication demonstrates a consistent and stable S-SE performance 
versus transforming factors, in stark contrast to the declining trend observed in the S-SE 
of conventional communication. This is because of the fundamental nature of semantic 

Fig. 3 The convergence performance of our proposed approach for semantic spectrum sharing semantic 
communication networks

Fig. 4 The S-SE of the secondary network versus different number of IRS reflective elements
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communication, which strives to extract and transmit the important information. Impor-
tantly, the IRS-assisted semantic communication exhibits remarkable S-SE performance 
when compared to conventional communication standards. This is due to the inherent capa-
bility of IRS-enhanced communication to further enhance resource utilization efficiency, 
leading to significant gains in S-SE. The effectiveness of semantic communication schemes 
assisted by IRS is underscored, especially in scenarios with limited transforming factors.

6  Conclusion
We addressed the critical resource allocation challenges where IRS is employed for 
semantic spectrum sharing. The objective is to ensure QoS for primary network while 
simultaneously maximizing gains in the secondary network. To achieve this, we jointly 
optimize semantic symbol assignment, subchannel allocation, transmit beamforming of 
the SBS, and IRS reflective elements to maximize the S-SE of the secondary network. 
In order to enhance computational efficiency and intelligence in resource allocation, we 
introduce an intelligent hybrid method based on D3QN-TD3 to solve the non-convex 
optimization problem. Specifically, the D3QN component is responsible for determin-
ing semantic symbol and subchannel allocation, while the TD3 component focuses on 
optimizing the transmit beamforming of the SBS and IRS reflective elements. Simulation 
results validate the effectiveness of our DRL-based resource allocation approach, dem-
onstrating better S-SE performance compared to benchmark schemes.
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