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Abstract 

In this paper, wavelet transform on a generalized helix space curves are investigated, 
including of local continuous wavelet transform at some point and discrete wavelet 
transform on a class of helix curves. Firstly, a class of helix space curves are introduced 
and the parameter equations are given. Then the dilation operator and transla-
tion on the function ψ(ξ0) is properly defined by the local projection at some point 
from a space curve on the unit sphere onto its tangent line. The local continuous 
wavelet transform and its reconstruction formula are deduced at some point of a space 
curve on the unit sphere. On the other hand, According to the discretization of length-
preserving projection, discrete wavelet transform is lifted onto a helix space curve, such 
as a circular helix curve. Based on length-preserving projection, the some properties 
are discussed, such as two-scale sequences of scaling function and wavelet, orthogo-
nality, decomposition formula and so on. Finally, two examples are given for our 
discussion. One example is illustrating the application of local continuous wavelet 
transform at some point of a space curve. The result shows the signal at some point 
of a space curve can be reconstructed by local continuous wavelet method. The 
norm of the error is 0.3783 between original signal and reconstructed signal in this 
example. The other numerical example is given for decomposing and reconstructing 
with the signal on a circular helix curve. The result shows the signal on a helix space 
curve can be decomposed and reconstructed by the length-preserving projection. The 
norm of the error is 8.0741 × 10−11 between original signal and reconstructed signal. 
The figures are shown for the simulation results.

Keyword:  Discretization of length-preserving projection, Helix space curves, Tangent 
projection

1  Introduction
In recent years, the development of wavelet method is rapid and profound. It can pro-
cess non-stationary data, localize in time domain, and perform multi-scale analysis 
of signals. Wavelet analysis is widely applied in many fields, such as signal processing, 
the image denoising, object detection [1], facial biometrics [2], medicine (some organs 
are regarded as sphere-like surfaces), financial data [3–6] and so on. Some data in the 
real world may be involved in a particular smooth manifold, such as the two-sheeted 
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hyperboloid, the paraboloid; or other various two-dimensional smooth manifolds; and 
various abstract manifolds. One feasible method to study the wavelet on a manifold is 
based on Lie groups, Lie algebras, and its representation theory. For example, Leduc dis-
cussed continuous spatiotemporal wavelet transform by unitary representation of the 
kinematical Group [7]. Continuous spatiotemporal wavelet is widely used for missile 
warhead detection [8] and tracking; analysis of multi-scale phenomena in geophysical 
[9, 10], a particular form of a stochastic wavelets [7] and so on. Another feasible method 
to discuss the wavelet and its application on a manifold [11] is by using bijective pro-
jection, such as the vertical projection, the radial projection, stereographic projection, 
area-preserving projection, length-preserving projection and so on. Based on the wave-
let method on a particular curve, some new interpretation are presented in dealing with 
financial data (bitcoin transaction data, data of deposit balances of financial institutions 
and so on), such as ‘volatility on regression growth trend’, ‘error on regression growth 
trend’, ‘wavelet approximate data on the regression trend line’ and so on [5, 6]. These 
financial data processing are mainly on a plane curve, such as a linear regression curve 
[5], a logarithm curve and so on. Moreover, many data in the real world may be in some 
space curves, such as flight data, satellite orbit data, biology (DNA double helix struc-
ture) and so on. For example, seismic data form a spatial curve on the earth’s surface. 
Taking wavelet transform on this kind of data is a useful example of the wavelet analysis 
on the spatial curve. The seismic data was decomposed into three levels by DWT to con-
struct the linear response spectrum of single degrees of freedom (SDOF) systems under 
the main and decomposed earthquakes [17]. Moreover, Kamgar et al. [18, 19] proposed 
an innovative method to reduce the computational volume and time of NDA by discrete 
wavelet transform. Several far- and near-field ground motion records are selected and 
decomposed into three levels by Wavelet Db4. Then, several single-degree-of-freedom 
systems are generated and modeled by OpenSees with different beam-to-column stiff-
ness ratios. Heidari et al. [20] investigated a method by DWT, select far-field near-field 
ground motion data and decompose it into three levels to reduce the quantity and 
time. In the work, Strong Ground Motion (SGM) parameters are calculated in different 
kinds of soil with different magnitudes by DWT. The Main Earthquake Record (MER) 
is divided into approximation and detailed signals by wavelet denoising. The high and 
low frequencies of MER are separated from each other. These data may be on a space 
or a surface which is on a sphere. The wavelet method should be generated onto a space 
curves. In this paper, wavelet analysis is discussed for dealing with some data on a class 
of space curves. Two cases are discussed respectively. The first is the continuous wavelet 
transform at an interval of a point on a spherical space curve. In this case, we compute 
the Frenet frame of a local point on the spherical space curve, the continuous wave-
let transform and inverse transform of the local point. This provides the basis for the 
approximate wavelet analysis of local points in later studies. The second is to discuss the 
discretized wavelet transformation and reconstruction on the circular helix curve by the 
Euler discretization scheme of a spatial curve. This is a discretization method that can 
flatten the spatial curve approximatively.

This paper will be organized as follows: In Sect. 2, the preliminaries are introduced, 
such as definitions of a class of helix space curves, local bijection projection on a space 
curve and so on. In Sect. 3, local continuous wavelet transform on a space curve on a 
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unit sphere is discussed by local bijection projection and the local dilation. Moreover, the 
reconstruction formula is also obtained. In Sect. 4, discrete wavelet transform is lifted 
onto a helix space curve by length-preserving projection, including of scaling function 
and wavelet on a helix space curves, decomposition and reconstruction on a helix space 
curve. Finally, two examples are given for our discussion. One example is illustrating the 
application of local continuous wavelet transform at some point of a space curve on a 
unit sphere. The other numerical example is given for decomposing and reconstructing 
with the signal on a circular helix curve. The figures are shown for the simulation results.

2 � Preliminary
In this section, we introduce a class of helix space curves, local bijection projection and 
other concepts.

2.1 � The equations of helix space curves

The equation of a circular helix is given by the following movement. It is known to all 
that a particle around a fixed axis to do a uniform circular movement and move with a 
constant speed parallelly to the axis. Its trajectory is a cylindrical helix. The equation is 
as follows:

If the movement with a constant speed parallel to the axis is changed to another cir-
cular motion in the above motion. That means a particle around a fixed axis to do a uni-
form circular movement and do another circular movement with a constant speed, such 
as a satellite moving around the earth and also around the sun. Its trajectory is a circular 
helix. The equation is given in the following definitions.

Definition 2.1  If the trajectory of a prime point satisfies the following parameter 
equation:

where |v0| < a , a, v0 denotes the radius of two circular motions, ω is the angular speed, 
then the trajectory is a circular helix.

If the circle parallel to the XOY plane becomes an elliptic in the above equation, the 
trajectory equation can be obtained in Definition 2.2.

Definition 2.2  If the trajectory of a prime point satisfies the following parameter 
equation:

where |v0| < a , a, b are the long half axis and the short half axis of an ellipse and v0 
denotes the radius of the circle, ω is the angular speed, then the trajectory is a elliptic 
helix.

⇀
r = {u cos(v),u sin(v), av}.

(1)⇀
r = {(a+ v0 cos(ωt)) cos(t), (a+ v0 cos(ωt)) sin(t), v0 sin(ωt)}

(2)⇀
r = {(a+ v0 cos(ωt)) sec(t), (b+ v0 cos(ωt)) tan(t), v0 sin(ωt)}
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Generalizing the Definitions 2.1 and 2.2, we have

Definition 2.3  For a continuous plane guide curve F(x,y) = 0, its parameter equation is

Then the general equation of a generalized helix is

where a, v0,ω are constants satisfying some conditions.

Next, two examples are given for showing the adjacent structure of a point on a gener-
alized helix. For the equation of a generalized helix,

The following derivative can be obtained that by simple computation.

Moreover,
⇀

r′ ×
⇀

r′′ = ω3v20g(t)− g ′′(t)ωv0 cos(ωt)(a+ v0 cos(ωt))+ ω2v0 sin(ωt)g
′(t)(v0 cos(ωt)− a) ,

− ω3v20 f (t)+ f ′′(t)ωv0 cos(ωt)(a+ v0 cos(ωt))− ω2v0 sin(ωt)f
′(t)(v0 cos(ωt)− a),

(a+ v0 cos(ωt))
2(f ′(t)g ′′(t)− g ′(t)f ′′(t))− ωv0 sin(ωt)(a+ v0 cos(ωt))(f (t)g

′′(t)− g(t)f ′′(t))

− ω2v0 cos(ωt)(a+ v0 cos(ωt))+ 2ω2v20 sin
2(ωt) f ′(t)g(t)− g ′(t)f (t) .

The Frenet frame can be established by the following vectors:

Example 2.1  Choose the parameters a = 0, v0 = 1,ω = 1 and the function 
f (t) = cos t, g(t) = sin t in Eq.  (3). Then the parameter equation of a space curve is 
rewritten as follows:

It is easy to be identified that this space curve is on the unit sphere. Its figure is shown 
in Fig. 1. By computing simply, its tangent vector is

{

x = f (t)
y = g(t)

, t is a parameter.

(3)⇀
r = {(a+ v0 cos(ωt))f (t), (a+ v0 cos(ωt))g(t), v0 sin(ωt)}

⇀
r = {(a+ v0 cos(ωt))f (t), (a+ v0 cos(ωt))g(t), v0 sin(ωt)},

⇀

r′ = {(a+v0 cos(ωt))f
′(t)−ωv0 sin(ωt)f (t), (a+v0 cos(ωt))g

′(t)−ωv0 sin(ωt)g(t), v0ω cos(ωt)}

⇀

r′′ =
{

(a+ v0 cos(ωt))f
′′(t)− 2ωv0 sin(ωt)f

′(t)− ω2v0 cos(ωt)f (t), (a+ v0 cos(ωt))g
′′(t)

−2ωv0 sin(ωt)g
′(t)− ω2v0 cos(ωt)g(t),−v0ω

2 sin(ωt)
}

(4)
⇀
α =

⇀

r′
∣

∣

∣

∣

⇀

r′
∣

∣

∣

∣

,
⇀
γ =

⇀

r′ ×
⇀

r′′
∣

∣

∣

∣

⇀

r′ ×
⇀

r′′
∣

∣

∣

∣

,
⇀

β =
⇀
γ ×⇀

α .

⇀
r = {cos(t) cos t, cos(t) sin t, sin(t)}

(5)
⇀

r′ = {− sin 2t, cos 2t, cos(t)}
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Since 
⇀
r (t0) ·

⇀

r′(t0) = 0 , for every point t0 , 
⇀
r (t0) is vertical with 

⇀

r′(t0) , that means 
⇀
r (t0)⊥

⇀

r′(t0) . Choose the point t0= π
10 and compute its tangent vector by Eq. (4). The fig-

ure of its tangent line at point t0= π
10 is shown by the red line in Fig. 1. Moreover, The 

Frenet frame at point t0= π
10 can be established by computing Eq. (4). By computing the 

curvature κ0 and scratch rate τ0 at point t0= π
10 , the space coordinate (x, y, z) of the adja-

cent points can be denoted by

Fig. 1  A space curve and its tangent line on a unit ball

Fig. 2  The adjacent structure of the space curve at point t0= π
10



Page 6 of 24Zhou ﻿EURASIP Journal on Advances in Signal Processing         (2024) 2024:70 

where s is a length parameter of the curve.

Choose an interval 
[

0, π2
]

 at point t0= π
10 . Combined the space coordinate (x, y, z) of the 

adjacent points and Frenet frame at point t0= π
10 , the adjacent structure and tangent vec-

tors of the space curve at point t0= π
10 are shown in the left graph of Fig. 2. The raw space 

curve is shown by the blue curve. In order to demonstrate the adjacent structure more 
clearly and intuitively, local enlarged detail is shown in the right graph of Fig. 2. The ⇀α  is 

shown by the orange vector, the 
⇀

β  is shown by the purple vector, and the 
⇀
γ  is shown by 

yellow vector. The green curve implicates an approximation of the spatial curve at point 
t0= π

10 . The closer to the point t0= π
10 , the better the green curve is approximated to the 

raw blue curve(seen in the right graph of Fig. 2).

Example 2.2  Consider the adjacent structure of a point on a circular helix. For a circu-
lar helix, it satisfies the following equation:

For a circular helix, choose the parameters a = 6, v0 = 1,ω = 8 . so

Its figure is shown in Fig. 3. By computing simply, its tangent vector is obtained as

Moreover,

x = s, y = 1

2
κ0s

2, z = 1

2
κ0τ0s

2,

(6)⇀
r = {(a+ v0 cos(ωt)) cos t, (a+ v0 cos(ωt)) sin t, v0 sin(ωt)}.

(7)⇀
r = {(6+ cos(8t)) cos t, (6+ cos(8t)) sin t, sin(8t)}.

⇀

r′ = {−(6+ cos 8t) sin t − 8 sin 8t cos t, (6+ cos 8t) cos t − 8 sin 8t sin t, 8 cos(8t)}.

〈

⇀
r ,

⇀

r′
〉

= −48 sin 8t

Fig. 3  A circular helix and its tangent line
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It shows that the vector ⇀r  is orthogonal with its tangent vector ⇀r′ at some points 
t = kπ

8  , k ∈ Z , such as t = π
8 ,

π
4  and so on.

Note 1 At some points, the vector ⇀r  is orthogonal with its tangent vector ⇀r′.The calcu-
lation at these points are relatively simple in the construction of the local tangent projec-
tion. Naturally, they are the more appropriate points for constructing the projection.

Choose t0=π
2 and compute its tangent vector by Eq. (7). The figure of its tangent line at 

point t0=π
2 is shown in Fig. 3. The Frenet frame at point t0=π

2 can be established by Eq. (4). 
However, by computing the curvature κ0 and scratch rate τ0 at point t0=π

2 , the space coor-
dinate (x, y, z) of the adjacent points can be denoted by

where s is a length parameter of the curve. The above equations show the new coordi-

nate near the point 
⇀
r
(

π
2

)

 . It implies the approximate curve shape near the point 
⇀
r
(

π
2

)

 
of the original curve, that is determined by the curvature κ0 and scratch rate τ0 at point 
t0=π

2  . It is also the approximate for the tangent line.
Combined the space coordinate (x, y, z) of the adjacent points and Frenet frame at point 

t0=π
2 , the adjacent structure of the space curve at point t0=π

2 is shown in Fig. 4. It implies 
an approximation of the spatial curve at point t0=π

2.
Choose an interval [0, 1] of length parameter s at point t0=π

2  , that is,s ∈ [0, 1][0, 1] . 
Combined the space coordinate (x, y, z) of the adjacent points and Frenet frame at point 
t0=π

2  , the adjacent structure and tangent vectors at point t0=π
2  are shown in the left 

graph of Fig. 4. The raw space curve is shown by the blue curve. In order to demonstrate 
the adjacent structure more clearly and intuitively, local enlarged detail is shown in the 
right graph of Fig. 4. The ⇀α  is shown by the orange vector, the 

⇀

β  is shown by the pur-
ple vector, and the 

⇀
γ  is shown by yellow vector. The green dotted curve implicates an 

approximation of the spatial curve at point t0=π
2  . The closer to the point t0=π

2  , the bet-
ter the green dotted curve is approximated to the raw blue curve (seen in the right graph 
of Fig. 4).

x = s, y = 1

2
κ0s

2, z = 1

2
κ0τ0s

2,

Fig. 4  The adjacent structure of the space curve at point t0= π
2
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2.2 � Some Projection for a helix space curves

2.2.1 � Projection from a spatial curve on the unit sphere to its tangent line

According to the theory of the vector algebra, a projection of a vector onto a axis or direc-
tion vector can be defined by their inner product. Consider the space curve on a unit sphere 
in Example 2.1 and its tangent vector at point t0 can be expressed as follows:

So 
∣

∣

∣

∣

⇀

r′(t0)

∣

∣

∣

∣

=
√

cos2 t0 + 1 . The unit tangent vector 
⇀
α(t0) at point t0 can be computed 

by

The projection of a space curve on a unit sphere onto its tangent line can be con-
structed as follows:

From this projection, The distance from the projection point on the tangent line to 
point t0 is the inner product 

∣

∣

∣

〈

⇀
r (t),

⇀
α(t0)

〉∣

∣

∣
 . A number axis with the point 

⇀
r (t0) as the 

origin is established by the tangent line of the point 
⇀
r (t0) on the curve 

⇀
r (t) . There is a 

neighbourhood at point t0 such that a one-to-one correspondence is established 

between the real numbers 
〈

⇀
r (t),

⇀
α(t0)

〉

 and a point on this axis. So the projection of 

a space curve on the unit sphere onto its tangent line can be defined as:

⇀

r′(t0) = {− sin(2t0), cos(2t0), cos(t0)}.

⇀
α(t0) =

⇀

r′(t0)
∣

∣

∣

∣

⇀

r′(t0)

∣

∣

∣

∣

.

(8)P : ⇀r (t) → ⇀
r (t0)+

〈

⇀
r (t),

⇀
α(t0)

〉

⇀
α(t0).

(9)p : t → T =
〈

⇀
r (t),

⇀
α(t0)

〉

.

Fig. 5  Figures of the local space curve at point t0= π
10

 and its projection
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The local space curve at point t0= π
10 is shown in Fig. 3. And its projection is also 

given in Fig. 5. Take the Example2.1 as an example. The local space curve at the inter-
val 

(

− 3π
10 ,

4π
10

)

 , that is a neighborhood of point t0= π
10 , is shown by the blue curve in 

Fig. 5. This local space curve is projected onto its tangent line by the projection p at 
point t0= π

10 in Eq. (8), which is shown as the red line in Fig. 5.

2.2.2 � Length‑preserving projection for a circular helix

Similar to the area-preserving projection [13], it is convenient to lift the traditional 
multi-resolution analysis onto a smooth curve (more detail can be seen in relative work 
[5, 6, 13, 22]). According to the algorithm of discretization length-preserving projection 
p on a smooth curve [5, 6], the discretized projection p is obtained in this section.

Consider a circular helix C :

Choose the parameters a = 6, v0 = 1,ω = 8 . So

By calculating, we have

According to the Euler discretization method: For a finite interval [T0,T1],
T0 = t0 < t1 < · · · < tn = T1, then , then

where �ti = ti − ti−1,�Li = Li − Li−1.
The discretization length-preserving projection p can be denoted as follows:

where (x0, y0, z0) → L0 = 0 . And its inverse p−1 is

where L0 → t0 , (x(t0), y(t0), z(t0)) can be obtained.
For example, Fig.  6 shows that a circular helix with length 12 is projected onto a 

straight line with the same length by the discretized length-preserving projection 
p . In the other word, by the discretized inverse projection p−1 , every point on the 
straight line with length 12 can be projected to the corresponding point on the circu-
lar helix.

⇀
r = {(a+ v0 cos(ωt)) cos t, (a+ v0 cos(ωt)) sin t, v0 sin(ωt)}.

⇀
r = {(6+ cos(8t)) cos t, (6+ cos(8t)) sin t, sin(8t)}.

(10)dL =
√

64 + (6+ cos 8t)2dt.

dL =
√

64 + (6+ cos 8t)2dt ⇔
√

64 + (6+ cos 8ti−1)2�ti = �Li

p : ti → Li = Li−1 +
√

64 + (6+ cos 8ti−1)
2(ti − ti−1)

(11)p−1 : Li → ti = ti−1 +
1

√

64 + (6+ cos 8ti−1)2
(Li − Li−1),

(x(ti), y(ti), z(ti)) = {(6+ cos(8ti)) cos ti, (6+ cos(8ti)) sin ti, sin(8ti)},
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3 � The local continuous wavelet transform on a space curve
Assume that ℘ = L2(C , dµ) be a Hilbert space of the square integrable function on a space 
curve C, with a suitable measure dµ and the scaling product < ·, · >℘ . The symbol Tξ (C) 
denote the tangent space at ξ ∈ C . In order to discuss the local wavelet transform on a 
space curve C, a compactly supported square integrable function ψ(ξ) ∈ ℘ should be con-
structed as a mother wavelet in the neighborhood B(ξ) , ξ ∈ C . The size of B(ξ) depends on 
the property of the local geometry of C. Moreover, a suitable local dilation operator need 
to be defined on a space curve C. In order to establish wavelet basis on a space curve C by 
dilating and translating the mother wavelet, an effective method is That the points in the 
neighborhood B(ξ) is projected onto the tangent line at and then the dilated and translated 
points are pulled back onto the space curve. In the follows, consider a space curve on a unit 
ball as an example.

According to the discussion in Sect.  2.1, the projection from a space curve on a unit 
sphere onto its tangent line can be constructed as follows:

So pt0(t0) = T0 = 0 . According to the equations of a spatial curve in Sect. 2, the inner 

product 
〈

⇀
r (t),

⇀
α(t0)

〉

 can be computed. It is easy to see that pt0 is continuous and there 

exists an interval I containing t0 such that pt0 is a diffeomorphism.
In Ref. [2], the local dilation of coordinates is defined as

And the maximum local dilation at point t0 is amax = supt∈I pt0 , where a is a positive real 
number dilation factor in Sect. 3. So, pt0(ta) = a · pt0(t).

Similar to Ref. [2], a dilation operator is constructed for acting on functions with a support 
in B(ξ0) . A subspace of ℘ is denoted by ℘(B(ξ0)) . Given a wavelet function ψ(ξ0) ∈ ℘(B(ξ0)) , 
the dilation operator of ψ(ξ0) is defined as follows:

(12)pt0 : t → T =
〈

⇀
r (t),

⇀
α(t0)

〉

da : t �→ ta = p−1
t0

· a · pt0 , a > 0

Fig. 6  Projecting a circular helix to a straight line by length-preserving projection p
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where ξ0 =
⇀
r (t0) and �(a, t) is the corresponding Radon-Nikodym derivative defined as

which is related to the possible change of the measure µ under the dilation. According 
to the differential method for an implicit function, Radon-Nikodym derivative �(a, t) can 
be obtained from the equation pt0(ta) = a · pt0(t) , that is,
p′t0(ta)dµ(ta) = a · p′t0(t)dµ(t).
So

If there exists a t∗
a−1 such that pt0(t∗a−1) = a−1 · pt0(t)− p(b) , where 

⇀
r (b) ∈ C,

If ψ(ξ0) is a bounded function with compactly supported in [t0 − ε, t0 + ε] ⊂ I , the 
shorter notation ψ(ξ0)

a  can be used for denoting the expression Dξ (a)ψ
(ξ0)(t) , that is

and the maximum local dilation applicable to the wavelet ψ(ξ0)
a  is amax = aψ(ξ0).

Moreover, the translation of a function ψ(ξ0) can be defined at point ξ0 by

where 
⇀
r (b) ∈ C . Acting the dilation operator and translation on the function ψ(ξ0)(t) 

yields a simple expression:

If a signal f ∈ ℘(B(ξ0)) , the continuous wavelet transform between the signal f (t) and 
dilated wavelet can be rewritten as the following form:

Definition 3.1  Assume that ψ(ξ0) ∈ ℘(B(ξ0)) , which satisfies

(13)Dξ0(a) : ψ(ξ0)(t) �→ �
1
2 (a, t)ψ(ξ0)

(

ta−1

)

(14)�(a, t) = dµ(ta−1)

dµ(t)

(15)�(a, t) = dµ(ta−1)

dµ(t)
=

a−1p′t0(t)

p′t0(ta−1)
.

(16)�(a, t) =
dµ(t∗

a−1)

dµ(t)
= dµ(ta−1)

dµ(t)
=

a−1p′t0(t)

p′t0(ta−1)
.

ψ(ξ0)
a := �

1
2 (a, t)ψ(ξ0)

(

ta−1

)

,

Tbψ
(ξ0)(t) = ψ(ξ0) ◦ p−1(p(t)− p(b)),

(17)ψ
(ξ0)

a,b (t) = �
1/2(a, t)ψ(ξ0) ◦ p−1(a−1p(t)− p(b)).

(18)
W

ψ
(ξ0)

a,b

f =
〈

f ,ψ
(ξ0)

a,b

〉

℘
=

∫

C
f (t)ψ

(ξ0)

a,b dt

=
∫

C
�

1
2 (a, t)ψ(ξ0) ◦ p−1(a−1p(t)− p(b))f (t)dt.

(19)0 < Cψ =
aψ(φ)
∫

0

∥

∥

∥
ψ̂(ωa)

∥

∥

∥

2

a2
da < ∞.
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Then ψ(ξ0) is a local mother wavelet on a space curve on a unit ball, and Eq.  (19) is 
called the admissibility condition.

Theorem  3.1  (Reconstruction formula). Assume that ψ(ξ0) ∈ ℘(B(ξ0)) , a function 
f ∈ ℘(B(ξ0)) , the local wavelet transform of f  at a point ξ0 is W

ψ
(ξ0)

a,b

f (a, b) , then for every 

f ∈ ℘(B(ξ0)), there is

The result of Theorem 3.1 is similar to the conclusions in the literature [12, 15, 21].

4 � Lifting discrete wavelet transform on a helix space curve C 
via length‑preserving projection

In this section, discrete wavelet transform is lifted onto a helix space curve by length-
preserving projection. Some conclusions are similar to the results in [1, 5, 13, 14].

Assume that a helix space curve C satisfies parameter equation in Eq. (3):

A length-preserving projection p : ξ → X is constructed in Sect.  2.2.2. It is obvi-
ously bijective and its inverse is p−1 : X → ξ . The length-preserving projection p 
means that the length element dL(ξ) on a helix space curve is equal to the length ele-
ment dX  on a line.

According to length-preserving projection p , for arbitrary functions f̃ , g̃ ∈ L2(C) , 
we have

Similarly, If f , g ∈ L2(R),

In order to establish the multi-resolution analysis of L2(C) , the multi-resolution anal-
ysis [23–29] of L2(R) and a useful Lemma are rewritten as follows. For an increasing 
sequence of closed subspace Vj , where Vj = closL2(R) < φj,k = 2j/2φ(2jt − k) : k ∈ Z >, 
φj,k = 2j/2φ(2jt − k) , φ ∈ L2(R), it satisfies the following conditions:

(1)	Vj ⊂ Vj+1 , ∀j ∈ Z;
(2)	

⋂

j∈Z Vj = {0} , 
⋃

j∈Z Vj = L2(R);

(3)	 f (t) ∈ Vj ⇒ f (2t) ∈ Vj+1;
(4)	 there exists a function φ(t) ∈ L2(R) the set {φ(t − k), k ∈ Z} is a orthogonal basis 

of V0.

(20)Cψ(ξ0) f (t) =
∫

C

a
ψ(ξ0)
∫

0

W
ψ

(ξ0)

a,b

f (a, b)ψ(ξ0)
a (t)

da

a2
dt0

ξ = (x(t), y(t), z(t)) = {(a+ v0 cos(ωt))f (t), (a+ v0 cos(ωt))g(t), v0 sin(ωt)}, t ∈ R.

(21)< f̃ , g̃ >L2(C)=< f̃ ◦ p−1, g̃ ◦ p−1 >L2(R) .

(22)< f , g >L2(R)=< f ◦ p, g ◦ p >L2(C) .
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Lemma 4.1  ([5, 6, 13, 22]) Assume that J  be a countable set and {fk}k∈J ∈ L2(R) . For 
each k ∈ J  , we define {f̃k}k∈J ∈ L2(C) as f̃k = fk ◦ p . Then we have:

(1)	 If {fk}k∈J is an orthogonal basis of L2(R) , then {f̃k}k∈J is also an orthogonal basis of 
L2(C).

(2)	 If {fk}k∈J is a Reisz basis of L2(R) with Riesz constants A and B , then {f̃k}k∈J is a Reisz 
basis of L2(C) with the same Riesz constants.

(3)	 If {fk}k∈J is a frame of L2(R) with frame bounds A and B , then {f̃k}k∈J is a Reisz basis 
of L2(C) with the same frame bounds.

Based on Lemma 4.1, Eqs. (21) and (22), we have the following definition.

Definition 4.1  ([1, 5, 13, 14]) If a sequence of subspaces νj satisfy the following 
properties

(1)	 νj ⊂ νj+1 , ∀j ∈ Z;
(2)	

⋂

j∈Z νj = {0} , 
⋃

j∈Z νj = L2(C);

(3)	 f C ∈ νj ⇒ D2f
C ∈ νj+1 , where D2 is defined in Eq. (24);

(4)	 the set {φC

0,k , k ∈ Z} is an orthogonal basis of ν0 , where νj = closL2(R) < φC

j,k : k ∈ Z >,

φC

j,k = φj,k ◦ p , an orthogonal multi-resolution analysis of L2(C) is generated by the 
induced subspaces νj.

Note 2 From property (1) to property (4), they are consistent monotony, asymptotic 
completeness, scaling regularity, existence of orthogonal bases, respectively. These prop-
erties are lifted onto a helix space curve C.

For every j ∈ Z, assume that wj denotes an orthogonal complement of coarse space νj 
into νj+1 such that νj+1 = νj ⊕ wj . The wj is called the wavelet subspace into νj+1 . If there 
is a wavelet function ψ, the function ψC on a helix space can be induced by ψC = ψ ◦ p. 
It is easy to see that for each j ∈ Z , {ψC

j,k , k ∈ Z} is an orthogonal basis of wj and so 

{ψC

j,k , j ∈ Z, k ∈ Z} is an orthogonal basis of ⊕j∈Zwj = L2(C).Thus φC is called the scaling 
function on a helix space curve C , and ψC is called the corresponding wavelet on a helix 
space curve C.

The translation operator and dilation operator in the space L2(C) can be defined as 
follows:

where φC ∈ L2(C) , and combining two operators, a unitary operator U(b, a) = DaTb can 
be written as:

(23)(1) Translation operator : Tbφ
C(ξ) =

(

φC ◦ p−1
)

(p(ξ)− b), b ∈ R;

(24)(2) Dilation operator : Daφ
C(ξ) =

(

φC ◦ p−1
)

(a · p(ξ)), a > 0;
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According to the induced multi-resolution analysis of L2(C) , for a scaling function 
φC ∈ L2(C) , the two-scale equation can be deduced as follows:

where a sequence 
{

hCk
}

 is called the two-scale sequence of φC(η) . Based on the length- 
preserving projection p , the associated function φ = φC ◦ p−1 satisfies the two-scale 
equation:

where a sequence 
{

hk
}

 is the two-scale sequence of φ . the sequence 
{

hCk
}

 has the follow-
ing conclusion.

Theorem 4.1  Assume that p is a length-preserving projection from a helix space curve 
C to a subset of real axis X . If φC is the scaling function in L2(C) , which is induced from 
φ ∈L2(R) by p , then the sequences 

{

hk
}

 and 
{

hCk
}

 satisfy hCk = hk , where the sequences 
{

hk
}

 is the two-scale sequence of the scaling function ϕ.

Similar to the results in Ref. [1, 5, 6], the Fourier transform of  φC in (24) is obtained as 
follows:

where HC

(

p(̟)

2

)

= 1
2

∑

k∈Z
hCk e

− ip(̟)·k
2  is called the two-scale symbol and 

p(̟) = ω,̟ ∈ C.
According to the results of orthogonality in Refs. [1, 5, 6, 23, 24], the similar conclu-

sion can be obtained in the following theorem.

Definition 4.2  The scaling function φC(η) in  L2(C) is orthonormal, if it satisfies the 
following equation:

Theorem 4.2  If the scaling function φC(η) in  L2(C) is orthonormal, the following state-
ments are equivalent:

(1)	
{(

Tkφ
C
)

(η)|k ∈ Z
}

 is orthonormal, that is 
〈

φC(η),
(

Tkφ
C
)

(η)
〉

= δ0,k;

(2)	
∑

k∈Z

∣

∣

∣

̂φC ◦ p−1(ω + 2kπ)
∣

∣

∣

2
= 1 , a.e. ω ∈ R;

(3)	
∑

k∈Z
hCk h

C

k+2n = 2δ0,n;

[

U(b, a)φC

]

(ξ) =
(

φC ◦ p−1
)

(a · p(ξ)− b).

(25)φC(ξ) =
∑

k∈Z
hCk

[

U(k , 2)φC

]

(ξ) =
∑

k∈Z
hCk

(

φC ◦ p−1
)

(2 · p(ξ)− k),

φ(x) =
∑

k∈Z
hkφ(2x − k),

(26)φ̂C(̟) = HC

(

p(̟)

2

)

̂φC ◦ p−1

(

p(̟)

2

)

,

(27)
〈

φC(η),
(

Tkφ
C

)

(η)

〉

= δ0,k .



Page 15 of 24Zhou ﻿EURASIP Journal on Advances in Signal Processing         (2024) 2024:70 	

(4)	 HC

(

p(̟)

2

)

HC

(

p(̟)

2

)

+HC

(

p(̟)

2 + π

)

HC

(

p(̟)

2 + π

)

= 1

Proof  (1) ⇔ (2)

Since 
{(

Tkφ
C
)

(η)|k ∈ Z
}

 is orthonormal, that is 
〈

φC(η),
(

Tkφ
C
)

(η)
〉

= δ0,k , k ∈ Z.

According to Eq. (29),

Then 
{

φC ◦ p−1(t − k)|k ∈ Z
}

 is also orthonormal. So

(1) ⇔ (3),

(2) ⇔ (4),

The theorem is obtained.
According to the multi-resolution analysis, for the wavelet function ψC(η) corre-

sponding to the scaling function φC(η) , it satisfies the following two-scale equation:

δ0,k =
〈

φC(η),
(

Tkφ
C

)

(η)

〉

L2(C)
=

〈

φC ◦ p−1(t),φC ◦ p−1(t − k)
〉

L2(R)
, p(η) = t.

〈

φC ◦ p−1(t),φC ◦ p−1(t − k)
〉

L2(R)
= δ0,k is equal to

∑

k∈Z

∣

∣

∣

̂φC ◦ p−1(ω + 2kπ)
∣

∣

∣

2
= 1.

δ0,k =
〈

φC(η),
(

Tkφ
C

)

(η)

〉

=
∫

C

φC(η)
(

Tkφ
C
)

(η)dL(η)

=
∫

C

φC(η)
(

φC ◦ p−1
)

(p(η)− k)dL(η)

=
∫

R

φC(p−1(X))
(

φC ◦ p−1
)

(p(p−1(X))− k)dX

=
∫

R

φ(X)φ(X − k)dX

= 1

2

∑

l∈Z
hlhk+2n = 1

2

∑

l∈Z
hCl h

C

k+2n.

1 =
∑

k∈Z

∣

∣

∣

̂φC ◦ p−1(p(̟)+ 2kπ)
∣

∣

∣

2

=
∑

k∈Z

∣

∣

∣

∣

HC

(

p(̟)

2
+ kπ

)

̂φC ◦ p−1

(

p(̟)

2
+ kπ

)∣

∣

∣

∣

2

=
∑

k∈Z

∣

∣

∣

∣

HC

(

p(̟)

2
+ 2kπ

)

̂φC ◦ p−1

(

p(̟)

2
+ 2kπ

)
∣

∣

∣

∣

2

+
∑

k∈Z

∣

∣

∣

∣

HC

(

p(̟)

2
+ (2k + 1)π

)

̂φC ◦ p−1

(

p(̟)

2
+ (2k + 1)π

)∣

∣

∣

∣

2

=
∣

∣

∣

∣

HC

(

p(̟)

2

)∣

∣

∣

∣

2

+
∣

∣

∣

∣

HC

(

p(̟)

2
+ π

)∣

∣

∣

∣

2

.

(28)ψC(η) =
∑

k∈Z
gCk

[

U(k , 2)φC

]

(η) =
∑

k∈Z
gCk

(

φC ◦ p−1
)

(2 · p(η)− k)
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where the sequence 
{

gCk
}

 is called the two-scale sequence of ψC(η) . Based on the length-
preserving projection p , the sequence 

{

gCk
}

 has the following conclusion.

Theorem 4.3  Assume that p is a length-preserving projection from a helix space curve C 
to a subset of real axis X . If φC is the scaling function in L2(C) , which is induced from φ ∈
L2(R) , and ψC ∈ L2(C) is the wavelet function induced from ψ ∈L2(R) , then the sequences 
{

gk
}

 and 
{

gCk
}

 satisfy gCk = gk , where the sequences 
{

gk
}

 is the two-scale sequence of the 
wavelet function.

Similar to the results in Ref. [1, 5, 6], the Fourier transform of  ψC in (26) is obtained as 
follows:

where GC

(

p(̟)

2

)

= 1
2

∑

k∈Z gCk e
− ip(̟)·k

2  is called to be the two-scale symbol of ψC(η).

Definition 4.3  The wavelet ψC(η) corresponding to the scaling function φC(η) in  
L2(C) is orthonormal. If the following equations hold:

Theorem 4.4  Assume that p is a length-preserving projection from a helix space curve 
C to a subset of real axis X . The wavelet ψC(η) corresponding to the scaling function φC(η) 
in  L2(C) is orthonormal, then the following statements are equivalent:

(1)	 The wavelet ψC(η) is orthonormal, that is, Eq. (34) holds.
(2)	 If the wavelet ψC(η) is orthonormal, the sequence 

{

gCk
}

 satisfies

(3)	 If the wavelet ψC(η) is orthonormal, the two-scale symbol GC

(

p(̟)

2

)

 satisfies

Proof  (1) ⇔ (2) According to Theorems 4.1 and 4.4 and Eq. (34),

(29)ψC(̟) = GC

(

p(̟)

2

) ∧
φC ◦ p−1

(

p(̟)

2

)

(30)

{

〈

φC(η),
(

Tkψ
C
)

(η)
〉

L2(C)
= 0,

〈

ψC(η),
(

Tkψ
C
)

(η)
〉

L2(C)
= δ0,k .

(31)











�

k∈Z
hCk g

C

k+2n = 0,

�

k∈Z
gCk g

C

k+2n = 2δ0,n.

(32)











HC

�

p(̟)

2

�

GC

�

p(̟)

2

�

+HC

�

p(̟)

2 + π

�

GC

�

p(̟)

2 + π

�

= 0,

GC

�

p(̟)

2

�

GC

�

p(̟)

2

�

+ GC

�

p(̟)

2 + π

�

GC

�

p(̟)

2 + π

�

= 1.
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Similarly, 
∑

k∈Z gCk g
C

k+2n = 2δ0,n.

Let a function φ=φC ◦ p−1 be induced by φC(η) and the wavelet function ψ=ψC ◦ p−1 
be induced by ψC(η) . According to Theorems 4.1 and 4.4,

Analogously,

If a signal function f C is square integrable on a helix space curve, that is f C ∈ L2(C) , 
and the projection operators PCj  and TC

j  , PCj f
C ∈ νj , TC

j f
C ∈ wj , then

According to νj+1 = νj ⊕ wj , the coefficients cCj,k and dCj,k can be computed by the 
length-preserving projection, Definitions 4.1 and 4.2. So the decomposition algorithm is 
given as follows:

0 =
〈

φC(η),
(

Tkψ
C

)

(η)

〉

=
∫

C

φC(η)
(

Tkψ
C
)

(η)dL(η)

=
∫

C

φC(η)
(

ψC ◦ p−1
)

(p(η)− k)dL(η)

=
∫

R

φC(p−1(X))
(

ψC ◦ p−1
)

(p(p−1(X))− k)dX

=
∫

R

φ(X)ψ(X − k)dX

= 1

2

∑

l∈Z
hlgl+2k = 1

2

∑

l∈Z
hCl g

C

l+2k .

(2) ⇔ (3)

0 = H
(ω

2

)

G
(ω

2

)

+H
(ω

2
+ π

)

G
(ω

2
+ π

)

= 1

2

∑

k∈Z
hke

−ik ω
2

(

1

2

∑

k∈Z
gke

−ik ω
2

)

+ 1

2

∑

k∈Z
hke

−ik( ω2 +π)

(

1

2

∑

k∈Z
gke

−ik( ω2 +π)

)

= 1

2

∑

k∈Z
hCk e

−ik
p(̟)
2

(

1

2

∑

k∈Z
gCk e

−ik
p(̟)
2

)

+ 1

2

∑

k∈Z
hCk e

−ik
(

p(̟)
2 +π

)

(

1

2

∑

k∈Z
gCk e

−ik
(

p(̟)
2 +π

)

)

= HC

(

p(̟)

2

)

GC

(

p(̟)

2

)

+HC

(

p(̟)

2
+ π

)

GC

(

p(̟)

2
+ π

)

.

GC

(

p(̟)

2

)

GC

(

p(̟)

2

)

+ GC

(

p(̟)

2
+ π

)

GC

(

p(̟)

2
+ π

)

= 1.

PCj f
C =

∑

k∈Z
cCj,kφ

C

j,k , T
C
j f

C =
∑

k∈Z
dCj,kψ

C

j,k .

(33)











cCj,k =
√
2
2

�

k∈Z
cCj+1,kh

C

k−2k ′

dCj,k =
√
2
2

�

k∈Z
cCj+1,kg

C

k−2k ′
.



Page 18 of 24Zhou ﻿EURASIP Journal on Advances in Signal Processing         (2024) 2024:70 

The formula is similar to the traditional decomposition formula by the length-preserv-
ing projection. Moreover, the reconstruction formula can also be obtained as follows:

It is also similar to the traditional reconstruction formula by the length-preserving 
projection.

5 � Numerical examples
In this section, two numerical examples are given for our discussion. Example 5.1 is 
given for discussing the applications of local continuous wavelet transform and its 
reconstruction formula on a space curve. Based on the length-preserving projection, 
discrete wavelet transform on a helix space curve is illustrated in Example 5.2.

Example 5.1  Consider a space curve on the unit sphere, and its parameter equation is 
given as follows:

where t ∈ [−1, 1] . By choosing the Morlet wavelet, an local Morlet wavelet at point 
t= 0 can be lifted onto the space curve by the projection of a space curve 

⇀
r (t) on a unit 

sphere in Sect. 2.2, where the Morlet [16] wavelet is

and C is the normalized constant in the reconstruction. The figures are shown in the 
Fig. 7. The first row and first column graph of Fig. 7 shows the graph of the Morlet wave-
let, and the second row and first column graph of Fig.  7 gives the graph of the local 

(34)cCj+1,k =
√
2

2

(

∑

k ′∈Z
cCj,k ′h

C

k−2k ′ +
∑

k∈Z
dCj,k ′g

C

k−2k ′

)

.

⇀
r = {cos(t) cos t, cos(t) sin t, sin(t)},

ψ(t) = Ce−
t2

2 cos 5t

Fig. 7  Morlet wavelet and local Morlet wavelet at point t= 0
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Morlet wavelet projected onto the space curve at point t= 0 on the space curve. In order 
to demonstrate more clearly and intuitively, local enlarged detail is shown in the second 
column graph of Fig. 7.

An numerical example is given for discussing the applications of local continuous 
wavelet transform and its reconstruction formula on a space curve 

⇀
r (t) . Construct a 

local original signal f (T ) on the tangent line the space curve at point t= 0 as follows:

where T ∈ [−0.5, 0.5] . The local original signal f (T ) can be lifted onto the space curve 

by the projection of a space curve 
⇀
r (t) on the space curve in Sect. 2.2. The figures are 

shown in the Fig. 8. The space curve 
⇀
r (t) is shown by the blue curve in the first row and 

first column graph of Fig. 8. The original signal lifted on the space curve 
⇀
r (t) at point 

t= 0 is shown by the yellow curve in the first row and first column graph of Fig. 8. The 
original signal on the space curve oscillates near point t= 0 . According to the Matlab 
program [15] of the continuous wavelet transform and its reconstruction formula dis-
cussed in Theorem 3.1, the reconstruction signal on the space curve 

⇀
r (t) at point t= 0 

is can be computed and shown by the yellow curve in the second row and first column 
graph of Fig. 8. In order to demonstrate more clearly and intuitively, local enlarged detail 
is shown in the second column graph of Fig. 8. The local original signal is shown by the 
yellow curve in the first row and second column graph of Fig. 8. The local space curve 
is shown by the blue curve in the first row and second column graph. The local recon-
structed signal by CWT is shown by the yellow curve in the second row and second col-
umn graph of Fig. 8, compared to the blue space curve, which is the original signal. The 
norm of the error is 0.3783 between original signal and reconstructed signal.

f (T ) = 0.2 sin(10T )+ 0.1 cos(50T )

Fig. 8  Original signal and its reconstruction signal on the space curve
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Example 5.2  Consider the wavelet ‘Db3’ in Refs. [5, 16]. The scaling function of ‘Db3’ 
wavelet satisfies the two-scale equation:

and the wavelet function of ‘Db3’ wavelet satisfies

According to the length-preserving projection on a circular helix in Sect. 2.2.2, the 
above scaling function φ and wavelet function ψ can be lifted onto a circular helix C . So 
the scaling function φC and wavelet function ψC can be deduced and the correspond-
ing two-scale sequence can also be determined. According to Theorems 4.1 and 4.4, the 
two-scale equations of φC and ψC can be obtained by Eqs. (26) and (31) and given as 
follows:
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√
10− 2

√

5+ 2
√
10

16
φ(2x − 3)

+ 5+
√
10− 3

√

5+ 2
√
10

16
φ(2x − 4)

+ 10+
√
10−

√

5+ 2
√
10

16
φ(2x − 5)

ψ(x) = 5+
√
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√
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√
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√
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√
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√
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and

where p(ξ) = x . According to the length-preserving projection on a circular helix curve 
C , the figure of the scaling function φC and wavelet ψC can be shown in Fig. 9, where the 
circular helix curve is in Sect. 2.

In first row of Fig. 9, scaling function φ of Db3 is given at left side and wavelet func-
tion ψ is shown at right side. The corresponding scaling function φC and wavelet 
function ψC on a circular helix curve are shown by the red curve at left side and right 
side of second row in Fig. 9, respectively.

Consider an original signal f (t)  as follows:

where εt ∼ N (0, σ 2) . And the length of a part of the circular helix curve is 60. The orig-
inal signal is generated onto the circular helix curve by lifting onto the circular helix 
curve. The circular helix curve is shown in the first row of Fig. 10 and the original sig-
nal on the circular helix curve is also shown by the red dotted line in the first row of 
Fig.  10. According to wavelet “db3” lifted onto the circular helix curve C, the original 
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16
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f (t) = 0.5 sin(10t)+ 0.2εt

Fig. 9  Figures of scaling function φC and wavelet ψC on a circular helix curve
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signal on the circular helix curve can be decomposed to scale 3 on a scale-by-scale basis 
by decomposition and reconstruction on a helix space curve in Sect. 4. Low frequency 
signal ca1, high frequency signals cd1, cd2 and cd3 can be obtained. In the second row of 
Fig. 10, the low frequency signal ca1 is given and it captures the main approximate signal 
of the original signal on the circular helix curve. In Fig. 10, the high frequency signals 
cd1, cd2 and cd3 are also given and they capture the detailed information of the original 
signal with the circular helix curve, according to different scales. By the length-preserv-
ing projection, the circular helix curve can be flatten. Moreover, original signal and its 
decomposition on a circular helix curve can also be flatten for the comparison.

By reconstruction algorithm and length-preserving projection, the low-frequency 
signal ca1, high-frequency signal cd1, cd2 and cd3 can be reconstructed to obtain the 
reconstructed signal. It is shown in the second row graph of Fig. 11, compared to the 
original signal in the first row graph of Fig.  11. And the error signal is also shown in 
the third row of Fig. 11. The norm of error is 8.0741 × 10−11 between original signal and 
reconstructed signal.

Fig.10  Original signal on the circular helix curve and its decomposition

Fig. 11  Original signal, reconstructed signal on a circular helix curve and its error signal
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6 � Discussion and conclusion
In this paper, wavelet analysis on a class of helix space curves is discussed, including 
of local continuous wavelet transform at some point and discrete wavelet transform 
on a class of helix curves. Based on the tangent projection at some point from a space 
curve on the unit sphere onto its tangent line, local continuous wavelet transform and its 
reconstruction formula are deduced at some point of a space curve on the unit sphere. 
Moreover, an example is given for illustrating the application of local continuous wavelet 
transform at some point of a space curve, such as Example 5.1. According to the dis-
cretization of length-preserving projection and orthogonal multi-resolution analysis on 
a space curve, discrete wavelet transform is lifted onto a helix space curve, such as a 
circular helix curve. Based on length-preserving projection, the some properties, such 
as two-scale sequences of scaling function and wavelet, orthogonality, decomposition 
formula and so on, are discussed. Some results are are similar to the formula about the 
traditional wavelet transform. Moreover, an example and figures are given for illustrat-
ing wavelet function and discrete wavelet transform on a circular helix curve. Finally, 
an numerical example is given for decomposing and reconstructing with the signal on a 
circular helix curve.

Both local wavelet transform on a space curve on the unit sphere and discrete wavelet 
transform a helix space curve implicate a new wavelet method for dealing with a sig-
nal on a space curve. Local continuous wavelet transform on a space curve on the unit 
sphere is a method for processing the data on a space curve locally. The points of the 
neighborhood B(ξ0) is projected onto the tangent line at point ξ0 and then the dilated 
and translated points are pulled back onto the space curve by the tangent projection. Its 
adjacent structure is beneficial for exploring local approximate wavelet approaches. It 
is also a local approximation method of projecting the data to the tangent line. Discrete 
wavelet transform a helix space curve is another method for processing the data on a 
helix space curve. This method is based on the Euler discretization scheme of length-
preserving projection. A helix space curve with length L can be projected onto a straight 
line with the same length by the discretized length-preserving projection p . In the other 
word, by the discretized inverse projection p−1 , every point on the straight line with 
length L can be lifted onto the corresponding point on a helix space curve. It is also 
approximation method and more convenient in computing inner product and wavelet 
transform. In Example 5.1, the norm of the error is 0.3783 between original signal and 
reconstructed signal. And the norm of error is 8.0741 × 10−11 in Example 5.2. The error 
by discrete wavelet transform based on Euler discretization scheme of length-preserving 
projection is much smaller than that by local continuous wavelet transform based on 
tangent projection. These have a new inspiration for dealing with some data on a space 
curves, such as satellite running data on its orbit. These may also provide an idea to esti-
mate the orbit of celestial objects through local observational data. We will do a further 
discussion in our follow up study.
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