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Abstract 

Global Navigation Satellite Systems (GNSS)-based positioning plays a crucial role in vari-
ous applications, including navigation, transportation, logistics, mapping, and emer-
gency services. Traditional GNSS positioning methods are model-based, utilizing 
satellite geometry and the known properties of satellite signals. However, model-based 
methods have limitations in challenging environments and often lack adaptability 
to uncertain noise models. This paper highlights recent advances in machine learning 
(ML) and its potential to address these limitations. It covers a broad range of ML meth-
ods, including supervised learning, unsupervised learning, deep learning, and hybrid 
approaches. The survey provides insights into positioning applications related to GNSS, 
such as signal analysis, anomaly detection, multi-sensor integration, prediction, 
and accuracy enhancement using ML. It discusses the strengths, limitations, and chal-
lenges of current ML-based approaches for GNSS positioning, providing a comprehen-
sive overview of the field.

Keywords: GNSS, GPS, Machine learning, Deep learning, Survey

1 Introduction
Global navigation satellite systems (GNSS)-based positioning underpins numerous 
essential applications, enabling efficiency, safety, and reliability across various industries. 
It serves various applications, including navigation, transportation, logistics, mapping, 
surveying, and precision agriculture. Additionally, emergency services rely on GNSS 
for search and rescue operations. Maritime navigation and aviation also heavily rely on 
GNSS for positioning information, which enhances situational awareness and reduces 
response times. Furthermore, GNSS is crucial in synchronizing critical infrastructure 
systems such as power grids, telecommunication networks, and financial transactions 
[1, 2].

However, GNSS measurements are subject to various sources of error that can 
affect positioning accuracy [3–5]. One source of error is signal interference caused 
by natural or man-made obstructions, such as tall buildings or dense foliage. In urban 
environments, this can lead to signal blockage, non-line-of-sight (NLOS) errors, 
and multipath (MP) effects. Another factor is atmospheric delays caused by the 
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ionosphere and troposphere, which can influence the speed of the signals and intro-
duce errors in distance measurements. Additionally, clock inaccuracies in both the 
satellites and receivers can contribute to errors in timing and positioning calcula-
tions. Other sources of error include satellite orbit inaccuracies and receiver noise. 
Mitigating these error sources is crucial in improving GNSS positioning performance 
for various applications.

Traditionally, model-based methods are used for GNSS positioning and error mitiga-
tion/detection because of the following advantages. Model-based methods incorporate 
knowledge about signal propagation characteristics in urban environments via statistical 
models that capture the characteristics of GNSS signals in urban environments. These 
models are based on well-understood physical principles, which have been refined and 
validated over decades. This makes their behavior predictable in different environments. 
Model-based algorithms are also less computationally intensive and do not necessarily 
need vast amounts of labeled data for training.

Model-based methods for GNSS positioning include Newton–Raphson [6], weighted 
least squares (WLS) [1], and Kalman filters [7]. While the Newton–Raphson method 
enables iterative refinement of the receiver’s position estimate [6, 8], WLS statistically 
optimizes the solution by assigning weights to each observation based on the meas-
urement quality [9]. Kalman filters estimate the state recursively by combining meas-
urements with known system dynamics [7]. Other techniques include differential 
positioning, which uses measurements from both the receiver and a reference station 
to correct for common errors affecting both the reference and receiver, such as atmos-
pheric delays, clock errors, and orbit inaccuracies [1, 10]. Real-time kinematic (RTK) is a 
commonly used differential positioning technique in applications such as surveying and 
precision agriculture [11, 12]. It involves using a base station with known coordinates 
and a rover receiver. The base station provides correction data to the rover in real time, 
allowing for centimeter-level positioning accuracy. Similarly, another technique, notably, 
precise point positioning (PPP), can achieve centimeter-level accuracy without external 
reference stations [13]. It utilizes precise satellite orbit, clock information, and correc-
tion models for atmospheric delays. Differential positioning techniques, such as RTK 
and PPP, often rely on the availability of reference stations or precise orbit and clock 
data. This dependency can limit their practicality and flexibility in remote or challenging 
environments [14]. Some methods, like PPP, involve computationally intensive opera-
tions and require longer observation times for accurate results. Real-time processing of 
high-precision positioning can be challenging, particularly in time-critical applications.

Traditionally, NLOS errors are identified and mitigated using the signal-to-noise 
ratio (SNR), weighting models, statistical approaches, and consistency checking [4, 
15]. MP errors are handled using elevation-enhanced maps, successive-time double 
differences [16], and analysis of the SNR fluctuation [17], among others. Receiver 
clock errors are typically mitigated using a clock-steering mechanism [18], differenc-
ing between satellites and estimating the error as an additional unknown parameter 
in the position estimation process [19]. Signal propagation errors, such as ionospheric 
and tropospheric errors, are removed using dual-frequency receivers [20] and with 
models such as the Klobuchar [21] and Saastamoinen models [22]. Satellite orbital 
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errors are mitigated using a global or local network of corrections for the satellite 
positions or in a post-processed manner [23, 24].

While model-based methods are extensively used for positioning, error detection, 
and mitigation, they have certain limitations. Model-based techniques face challenges 
due to their strict initial assumptions concerning sensor noise and model parameters. 
Conventional model-based methods often assume noise to be Gaussian (or normally 
distributed), simplifying the mathematics involved in filtering and estimation pro-
cesses, such as applying Kalman filters for real-time positioning. However, the noise 
affecting GNSS signals can deviate significantly from Gaussian behavior in real-world 
scenarios. Sources such as MP effects, where signals bounce off surfaces before reach-
ing the receiver, create a complex error structure that is not well modeled by a normal 
distribution. Similarly, atmospheric disturbances, signal reflection, and interference 
can introduce noise with heavy tails or skewed distributions that Gaussian models fail 
to capture accurately. Noise characteristics can vary with location, time, and environ-
mental conditions, introducing further complexity. For instance, urban environments 
might experience more significant MP effects due to tall buildings, while rural areas 
might have different noise profiles. Temporal changes like atmospheric conditions 
can also affect noise characteristics over time. Such assumptions limit the adapt-
ability of model-based techniques, especially in challenging environments where the 
noise characteristics, model parameters, and error models may not adhere to the 
predefined assumptions [25–28]. In contrast, ML techniques have emerged as novel 
approaches in GNSS-based positioning, addressing the limitations of model-based 
methods. These techniques are more suitable for handling nonlinear relationships 
between variables, can learn from large amounts of data, and can adapt to new and 
changing environments. ML algorithms can learn hidden and nonlinear relationships 
from data directly without relying on noise assumptions. These algorithms are also 
robust to missing data and handle outliers more effectively than model-based meth-
ods [29–32].

Given the significance of ML techniques in enhancing GNSS positioning and per-
formance, a comprehensive survey paper is needed to consolidate and disseminate 
knowledge in this field. In this regard, Jagiwala et al. [33] provide an insightful review, 
emphasizing the role of support vector machines (SVMs) and convolutional neu-
ral networks (CNNs) in enhancing position accuracy. While a systematic review of 
machine learning techniques for GNSS use cases is covered in [34], our survey paper 
distinguishes itself by making the following contributions.

• It comprehensively reviews various ML methods applied to GNSS positioning, 
including supervised, unsupervised, deep, and hybrid approaches. This provides a 
broader perspective on the subject by showcasing the diverse applications of ML 
in the field.

• It includes the latest research developments and advancements post-2021 in ML 
techniques for GNSS positioning. This equips readers with a current understand-
ing of recent trends, innovations, and the state-of-the-art in the domain.

• Beyond the performance evaluation of machine learning techniques, the paper 
describes various ML use cases in GNSS. Key topics include using machine 
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learning for signal analysis, anomaly detection, multi-sensor integration, predic-
tion, forecasting, and more.

• By evaluating the strengths, challenges, and potential limitations of existing ML 
techniques, the paper provides readers with an improved understanding of the 
potential and constraints of ML in enhancing GNSS positioning accuracy.

The paper is organized as follows. Section 2 provides a brief background on the rele-
vance of ML methods to GNSS positioning. Section 3 discusses various ML methods 
for analyzing and classifying GNSS signals, including supervised machine learn-
ing techniques such as SVM and decision trees, unsupervised ML methods, deep 
learning techniques, and hybrid approaches. Section 4 focuses on ML techniques for 
environmental context and scenario recognition using GNSS measurements, while 
Sect. 5 explores ML techniques for anomaly detection and quality assessment. Sec-
tion 6 covers ML methods for GNSS-based multi-sensor integration, and Sect. 7 dis-
cusses prediction and forecasting techniques leveraging GNSS measurements and 
AI. Section  8 discusses techniques for enhancing positioning accuracy and posi-
tion error modeling. Section  9 highlights other notable applications of using ML 
for improving GNSS. Section 10 addresses the limitations and challenges associated 
with the discussed ML methods. Finally, Sect. 11 identifies potential areas for future 
research and development in AI-based GNSS positioning.

2  Background of ML methods
2.1  Regression methods

Regression methods predict continuous numerical values by mapping input features 
to a target variable using a mathematical model with adjustable parameters. The 
model is trained by minimizing the difference between predicted and actual values. 
We discuss commonly used regression techniques below.

• Quantile regression, an extension of traditional regression analysis [35], esti-
mates different quantiles of the target variable’s conditional distribution. Unlike 
ordinary least squares regression, which focuses on the conditional mean, quan-
tile regression provides a comprehensive understanding of the conditional distri-
bution by considering multiple quantiles. It minimizes a loss function that meas-
ures the discrepancy between predicted and actual quantiles. This optimization 
process determines the optimal parameters governing the relationship between 
input features and the target variable’s quantiles.

• SVMs are used for both classification and regression tasks [36]. They identify 
optimal hyperplanes to separate classes and handle nonlinear data through the 
kernel trick. Support vector regression (SVR), a variation of SVM, fits data by 
allowing a margin for error and utilizes kernel functions to capture linear and 
nonlinear relationships [37]. An example SVM is shown in Fig. 1. Support vec-
tors, identified during training, play a vital role in generalization and prediction. 
SVR estimates numerical values for new data points by applying learned param-
eters and support vectors.
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2.2  Unsupervised learning methods

Unsupervised learning involves training models on unlabeled data without explicit 
guidance or predefined labels. Instead of predicting specific outcomes, unsupervised 
learning algorithms focus on discovering hidden patterns, structures, or relationships 
within the data. The primary categories of unsupervised learning methods include the 
following.

• K-means algorithm is a widely used method for clustering, which partitions a 
dataset into k distinct, non-overlapping subsets or clusters [39]. The algorithm 
assigns each data point to the cluster with the nearest mean, serving as a clus-
ter prototype. This process iteratively adjusts the positions of the centroids (the 
means of the clusters). It reassigns the data points to their closest centroids until 
the positions of the centroids stabilize, indicating that the clusters are as compact 
and distinct from each other as possible.

• Autoencoders are neural networks commonly used for dimensionality reduc-
tion [40]. As illustrated in Fig.  2, they consist of an encoder network that maps 
the input data to a lower-dimensional representation and a decoder network that 
reconstructs the original input from this representation. Autoencoders learn a 
compressed and efficient input data representation, capturing essential features.

• Variational autoencoders (VAE) learn a lower-dimensional latent-space represen-
tation of input data, capturing its underlying structure and distribution [42]. VAEs 
consist of an encoder network and a decoder network. The encoder maps input 
data to a latent space, typically represented by a Gaussian distribution’s mean and 
variance. The decoder reconstructs input data from latent-space samples. Training 
VAEs involves optimizing two objectives: reconstruction loss and the Kullback–
Leibler (KL) divergence regularization term. The reconstructed output resembles 
the original input, while the regularization term encourages a structured latent 
space. VAEs can generate new samples resembling training data and compress 
data by encoding and decoding it from the latent space.

Fig. 1 Illustration of SVM from [38]. SVM is a supervised learning algorithm that finds the hyperplane that 
best separates different classes with the maximum margin. It uses support vectors and kernels to optimize 
the separation boundary in linear and nonlinear classification tasks
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2.3  Classification methods

AI algorithms for classification utilize machine learning techniques to automatically 
assign data instances into predefined categories or classes based on their features or 
attributes. These algorithms learn from labeled training data to build models that can 
accurately classify new, unseen data. Two common classification approaches are deci-
sion trees and Naive Bayes.

• Decision trees: As illustrated in Fig.  3, a decision tree is a flowchart-like structure 
where each internal node represents a decision based on a feature, each branch rep-
resents an outcome or decision rule, and each leaf node represents a class label or 
a final decision [43]. The tree is constructed by recursively splitting the data based 
on the values of input features until a stopping criterion is met, such as maximum 
depth.

• Naive Bayes is a classification algorithm based on Bayes’ theorem, assuming condi-
tional independence of features given the class label [45]. It estimates the likelihood 
of each feature value for each class in the training dataset. For categorical features, it 
calculates the probability of occurrence in each class, while for numerical features, 
it assumes a probability distribution and estimates parameters for each class. By 
considering prior probabilities and using Bayes’ theorem, posterior probabilities for 
unlabeled instances are calculated. The class label with the highest posterior prob-
ability is assigned as the predicted class.

• The k-nearest neighbors (KNN) algorithm is a nonparametric classification algo-
rithm based on the principle that similar data points are close in the feature space 

Fig. 2 Illustration of an autoencoder from [41]. Autoencoder compresses the inputs into a latent-space 
representation and then reconstructs the output from this representation, aiming to match the original input
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[46]. As illustrated in Fig. 4, when a new, unseen instance needs to be classified, the 
KNN algorithm evaluates the distances between this instance and all other instances 
in the dataset, identifying the k-nearest neighbors. The algorithm then assigns the 
most frequent label of these nearest neighbors to the new instance.

2.4  Reinforcement learning

Reinforcement learning (RL) enables agents to learn and make decisions in an environ-
ment through interactions and feedback [48]. The agent takes action, receives rewards or 
punishments, and updates its decision-making strategy accordingly, as shown in Fig. 5. 
The RL algorithm aims to develop an optimal policy that maximizes cumulative rewards 
over time. Key components of RL include the agent, environment, state, action, and 

Fig. 3 An example illustrating how decision trees are used in classification tasks [44]. Decision trees make 
decisions by recursively partitioning the data set into smaller subsets based on the most discriminative 
features. The goal is to create branches that lead to homogenous leaves, where each leaf node corresponds 
to the most probable target outcome

Fig. 4 An example illustrating how KNNs are used in classification tasks [47]. KNN is a nonparametric learning 
algorithm that classifies new cases based on the majority vote of the k most similar instances from the 
training data, often using distance metrics like Euclidean distance to determine similarity
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reward. The agent interacts with the environment by selecting actions based on its cur-
rent state. The environment provides feedback through rewards or penalties. The agent’s 
decision-making strategy is determined by its policy. The feedback received after taking 
an action is known as the reward. RL algorithms can be categorized as model-free or 
model-based. Model-free algorithms directly learn the optimal policy without explicitly 
modeling the environment, while model-based algorithms learn environment dynam-
ics to plan and make decisions. Notable RL algorithms include Q-learning, deep Q-net-
works (DQN), proximal policy optimization (PPO), and advantage actor-critic (A2C) 
[49, 50].

2.5  Deep neural networks

Deep neural networks (DNNs) refer to neural networks with multiple hidden layers 
between the input and output layers. These hidden layers enable the network to learn 
hierarchical representations of the input data, allowing for more complex and abstract 
feature extraction. Various categories of DNNs include the following:

• Convolution neural networks (CNNs) are widely used in computer vision tasks. They 
are designed to automatically learn and extract meaningful features from images or 
other grid-like data through convolutional layers. Convolutional layers apply filters 
to input data, enabling the network to capture local patterns and spatial dependen-
cies. The pooling layers then downsample the feature maps, reducing their spatial 
dimensions while retaining important information. Finally, fully connected layers at 
the network’s end perform classification or regression based on the learned features. 
CNNs have demonstrated remarkable success in tasks such as image classification, 
object detection, and image segmentation due to their ability to capture and exploit 
local patterns and hierarchical representations in visual data.

• Recurrent neural networks (RNNs) [53] are designed to process sequential or 
time-dependent data. RNNs have feedback connections, allowing information 
to be fed back into the network at each time step, as illustrated in Fig.  6. This 
recurrent nature enables RNNs to maintain an internal state and capture tempo-

Fig. 5 Reinforcement learning (RL) involves agents learning to make decisions by taking actions in an 
environment to maximize cumulative reward. The agent refines its policy through trial and error to achieve 
optimal outcomes. Figure adapted from [51]
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ral dependencies. Long short-term memory (LSTM) [54] is an RNN architecture 
designed to model sequential data. Unlike standard feed-forward neural networks, 
which process inputs independently, LSTMs have memory cells that can retain 
information over time. This memory mechanism makes LSTMs effective in cap-
turing temporal dependencies and long-term patterns in sequential data.

• Multilayer perceptron (MLP) [55] consists of an input layer, one or more hidden 
layers, and an output layer. Each neuron in the MLP is connected to neurons in 
adjacent layers, and these connections have associated weights. MLPs use activa-
tion functions to introduce nonlinearity into the model, enabling the network to 
learn complex relationships between the input features and the target variable.

• Radial basis function neural network (RBFNN) [56] is a type of neural network 
that uses radial basis functions as activation functions in its hidden layers. The 
radial basis functions compute the similarity between the input data and a set of 
learned prototypes or centers.

• Transformer-based deep learning models, as introduced by Vaswani et al. [57] and 
shown in Fig.  7, use self-attention to capture dependencies among all elements 
in a sequence concurrently. These models calculate the significance weights for 
each element through the attention mechanism, allowing for effective modeling 
of relationships between words or tokens. Transformers comprise an encoder and 
decoder, consisting of self-attention layers and feed-forward neural networks. 
The self-attention mechanism employs query, key, and value vectors to compute 
attention weights and produces outputs that prioritize crucial elements in the 
sequence.

• Graph neural networks (GNNs) are a class of deep learning models specifically 
designed for processing data represented as graphs or networks [58, 59]. In recent 
years, they have gained significant attention for their effectiveness in various appli-
cations, including social network analysis, recommendation systems, and biologi-
cal network analysis. GNNs handle irregular, graph-structured data by aggregating 

Fig. 6 An example RNN architecture from [52]. RNN is a class of neural networks where connections 
between nodes form a directed graph along a temporal sequence, allowing it to use its internal state or 
memory to process a sequence of inputs. RNNs process sequential data by maintaining a hidden state that 
captures information from previous inputs in the sequence. This state is updated at each time step as the 
network processes the next input, making RNNs ideal for time series prediction
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information from neighboring nodes, enabling them to capture complex relation-
ships and dependencies within the data. An example GNN is illustrated in Fig. 8.

Fig. 7 Illustration of the Transformer architecture from [57]. While this architecture has revolutionized 
language models, it has been used recently to capture temporal and spatial dependencies in GNSS 
measurements and improve positioning accuracy

Fig. 8 Graph neural networks (GNNs) process data on graphs by aggregating information from neighboring 
nodes. Through iterative updates, they capture complex patterns and relationships inherent in graph 
structures. An example graph structure (GraphSAGE) is shown here [60]
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2.6  Ensemble methods

Ensemble methods combine the predictions of multiple individual models to improve 
overall predictive accuracy and robustness. By aggregating the predictions of diverse 
models, ensemble models can capture different aspects of the data and reduce individual 
model biases. The key categories of ensemble models include the following.

• Random forest combines multiple decision trees to make predictions [61] as shown 
in Fig. 9. Each decision tree in the forest is trained on a different subset of the data, 
and the final prediction is obtained by aggregating the predictions of all trees.

• Gradient boosting decision tree (GBDT) builds trees sequentially, where each new 
tree is trained to correct the mistakes made by the previous trees [63].

• LightGBM uses a tree-based learning algorithm similar to GBDT but incorporates 
several optimizations to speed up training and improve memory efficiency [64]. 
LightGBM supports classification and regression tasks and has gained popularity for 
its fast training speed and high performance.

• Extreme gradient boosting (XGBoost) is another gradient boosting framework incor-
porating additional enhancements, such as regularization techniques, to improve 
model performance [65]. XGBoost is known for its flexibility, speed, and ability to 
handle various data types.

Fig. 9 Random forest is an ensemble learning method that constructs multiple decision trees during 
training and outputs the mode of the classes for classification tasks or mean prediction for regression tasks. 
It introduces randomness by selecting different subsets of features for each tree, improving the model’s 
accuracy and reducing overfitting. Figure adapted from [62]
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3  GNSS signal analysis and classification
In urban environments, GNSS positioning is primarily challenged by MP errors from 
signal reflections, NLOS errors, and signal blockage due to tall structures. These error 
sources are depicted in Fig.  10. Previous ML techniques have attempted to detect 
NLOS signals and MP errors and classify signals into direct, NLOS, blocked, and MP. 
Several comparative studies have analyzed the efficacy of different ML techniques for 
these tasks, and they are explained below.

NLOS Detection: In [67], various ML algorithms, including logistic regression, 
SVM, Naive Bayes, and decision tree, were used to detect NLOS signals. Decision tree 
and logistic regression models outperformed the other models, achieving an aver-
age NLOS prediction correctness rate of 90%. [68] demonstrated integrated GNSS 
shadow matching combined with an intelligent LOS/NLOS classifier based on ML 
algorithms. Various ML methods were evaluated, achieving classification accuracies 
between 69.50 and 86.47% for different urban scenarios. Integrating shadow match-
ing with the ML classifier improved positioning accuracy compared to traditional 
weighted least squares methods. For GNSS signal classification and weighting scheme 
design in built-up areas, [69] proposed an ML-based strategy. The study identified 
random forest as the highest-performing LOS/NLOS classification classifier, achiev-
ing a classification accuracy of 93.4%.

Time Series Modeling and Prediction: In [70], ML models, namely GBDT, LSTM, 
and SVM, were used for the modeling and prediction of GNSS time series. These ML 
techniques significantly outperformed traditional methods, enhancing the fitting pre-
cision by over 30%.

MP Detection: [71] introduced an ML approach in GPS MP detection leveraging 
dual antennas. The model, developed using GPS measurements and various algo-
rithms like GBDT, random forest, decision tree, and KNN, achieved classification 
accuracies between 82 and 96% for test data from identical training locations. How-
ever, the accuracy decreased to 44–77% when testing on different locations, with the 
random forest showing the best classification performance.

Fig. 10 The main error sources in GNSS positioning in urban environments include non-line-of-sight (NLOS) 
errors, blocked signals, and MP from reflected signals. By using ML techniques that can classify the signals 
into these categories, we can improve the accuracy and reliability of positioning. Figure adapted from [66]
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Monitoring GNSS Satellite Signals for Anomalies: In [72], anomalies were detected 
in GPS satellite signals using data from globally distributed stations to differentiate 
between intended and unintended anomalies. Validations involved datasets with known 
anomalies, testing both supervised and unsupervised algorithms.

We now discuss works that apply either a single technique or combine several ML 
techniques for enhancing GNSS-based positioning performance.

3.1  Supervised ML

3.1.1  SVM

Table 1 lists the studies that use SVMs for classification tasks.
Classifier Design: In the paper by Hsu et al. [73], a classifier is proposed, trained with 

SVMs, to categorize GNSS pseudorange measurements into clean, MP, and NLOS cat-
egories. Using features extracted from GNSS raw data, the classifier achieves an approxi-
mate classification accuracy of 75%. In [78], SVMs are proposed for correlator-level GPS 
LOS/MP/NLOS signal reception classification to enhance positioning performance in 
urban environments. Traditional LOS/MP/NLOS classifiers rely on attributes extracted 
from basic measurements such as received signal strength and satellite elevation angle. 
However, complex signal propagation limits their accuracy in urban settings. The pro-
posed approach improves classification rates by extracting LOS/MP/NLOS features at 
the baseband signal processing stage, providing valuable insights for enhancing GPS 
positioning in challenging urban scenarios.

MP Prediction: In Lee et al. [75], an MP prediction model based on SVR is designed to 
improve GNSS performance in deep urban zones. The model factors each satellite’s ele-
vation and azimuth angle to generate a nonlinear MP map, marking significant improve-
ments of 58.4% horizontally and 77.7% vertically in positioning accuracy within a deep 
urban region in Seoul, Korea.

NLOS Detection: Suzuki et al. [76] introduced a method to detect NLOS MP using two 
supervised learning techniques, SVM and NN. The evaluation shows that NN surpasses 
SVM and achieves a discrimination accuracy of 97.7% for NLOS signals. [79] designed 
an incremental learning method using an adaptive RBF SVM to detect NLOS signals. 
The proposed method considers the diversity and complexity of practical factors and 
shows enhanced performance in harsh canyon cities. Xu et al. [77] performed a study on 
improving the accuracy of GNSS shadow matching in urban environments. They com-
bined a robust estimator with an SVM-based LOS/NLOS classifier. The SVM classifier 
achieves a classification rate of 91.5% in urban scenarios. Ozeki et  al. [74] proposed a 
method for NLOS signal detection using an SVM classifier trained with unique features 

Table 1 GNSS signal classification methods using SVMs

Paper Task Accuracy

Hsu et al. [73] Categorizing pseudorange measurements 75%

Ozeki et al. [74] NLOS signal detection >80%

Lee et al. [75] MP prediction model 58.4% horizontal

Suzuki et al. [76] NLOS MP detection 97.7%

Xu et al. [77] GNSS shadow matching in urban environments 91.5%
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derived from receiver-independent exchange format-based information and GNSS pseu-
dorange residual check. By combining the SVM classifier and pseudorange residual 
check, they achieved more than an 80% improvement in positioning errors within 10 ms 
in static tests conducted in dense urban areas.

Assessing the Effectiveness of GNSS Features for Signal Classification: The research in 
[80] is centered around evaluating the efficacy of different GNSS observation features 
for signal classification using SVMs. The primary metric for evaluation is classification 
accuracy, and the study is based on an open-source dataset gathered from Hong Kong’s 
urban road segments.

The literature highlights the success of SVMs in categorizing GNSS pseudorange 
measurements into clean, MP, and NLOS categories, showcasing their accuracy in signal 
classification. SVMs have proven to enhance GPS signal reception and processing, par-
ticularly in software-defined receivers, outperforming traditional classifiers. They have 
been successfully utilized for NLOS signal detection and improving positioning accu-
racy in dense urban areas. Significant improvements in positioning accuracy have been 
demonstrated by combining SVM classifiers with other techniques, such as pseudorange 
residual checks and shadow-matching algorithms.

3.1.2  Decision trees

Table 2 lists studies that use decision trees to classify GNSS signals.
Classifier Design: In the study conducted by Guermah et al. [81], a signal classifier sys-

tem is proposed to fuse information from the left and right-polarized antennas using 
decision trees. The classifier achieves an accuracy of 99% by utilizing satellite elevation 
and C/N0 ratio as features, outperforming techniques such as KNN and SVM. Another 
variant of decision trees, namely the GBDT, is used in Sun et al.’s research [26] for GPS 
signal reception classification in urban areas, using features such as carrier-to-noise 
ratio (C/N0), pseudorange residuals, and satellite elevation angle. The GBDT algorithm 
achieves classification accuracies of 100% for LOS signals, 82% for MP signals, and 86 % 
for NLOS signals, surpassing other algorithms such as decision trees, KNNs, and adap-
tive network-based fuzzy inference systems.

RTK Positioning: Furthermore, Ye et  al. [82] designed a robust real-time kinematic 
(RTK) positioning method that incorporates a decision tree for NLOS signal detection 
and real-time estimation of double-differenced MP errors. Their method shows remark-
able results, achieving an NLOS detection rate of 95.64% and enhancing the ambiguity 
fixing rate by 43% in the instantaneous mode. This leads to an approximately 81.77% 
improvement in 3D position accuracy compared to standard RTK methods.

Table 2 GNSS signal classification methods using decision trees and GBDT

Paper Task Accuracy

Guermah et al. [81] Fusion of left and right antennas 99%

Sun et al. [26] GPS signal reception classification 100% LOS, 82% MP, 86% NLOS

Ye et al. [82] RTK positioning 95.64% NLOS detection

Pan et al. [83] MP mitigation 24.9–36.2% residual reduction
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MP Mitigation: In [83], the authors proposed a machine learning-based method for 
mitigating MP in high-precision GNSS data processing. They used XGBoost and for-
mulated MP modeling as a regression task. The XGB-based MP model outperformed 
conventional methods, achieving substantial residual reduction rates ranging from 24.9 
to 36.2% for various GPS observations. After implementing the XGB-based MP correc-
tions, significant improvements in kinematic positioning precision were observed.

Existing literature shows that decision tree-based classifiers can achieve high accuracy 
rates and provide robust NLOS signal detection, improving positioning performance. 
However, these classifiers have limitations that should be considered. They are sensitive 
to feature selection and engineering, requiring careful consideration for optimal per-
formance. Overfitting is a concern, necessitating regularization techniques and model 
validation. Additionally, decision trees may exhibit instability and lack robustness in data 
variations, requiring further exploration of ensemble methods and hybrid approaches.

3.2  Unsupervised ML

The literature on utilizing unsupervised learning techniques to enhance GNSS-based 
positioning is sparse and limited; however, we discuss a few notable works.

Classifier Design: [84] used an unsupervised ML approach to classify NavIC signals 
affected by MP interference. By leveraging unsupervised learning algorithms, the pro-
posed method classified signals based on unlabeled data, addressing the limitations of 
supervised learning algorithms that require labeled data. The approach demonstrated 
promise in detecting and removing MP-affected signals, contributing to more robust 
positioning applications.

MP Detection: An MP detection method based on K-means clustering proposed in the 
study by [85]. The authors applied the K-means algorithm to identify MP signals and 
evaluated the algorithm’s performance in an MP-prone environment. The results indi-
cated that the proposed method exhibited potential for MP detection in GNSS receivers. 
Similarly, in [86], an unsupervised machine learning approach for GNSS MP detection 
was introduced. The method utilizes a CNN within an autoencoder framework com-
bined with k-means clustering. Compared to baseline approaches, the proposed method 
improved MP detection accuracy and achieved a prediction accuracy of up to 99% using 
unsupervised domain adaptation.

While supervised learning algorithms, such as SVMs and decision trees, have been 
extensively explored and proven effective in GPS signal classification and position-
ing accuracy improvement, the application of unsupervised learning methods in this 
domain remains relatively unexplored. Unsupervised learning algorithms, such as clus-
tering or dimensionality reduction techniques, can potentially discover hidden patterns 
and structures in GNSS data without needing labeled training data. By leveraging unsu-
pervised learning, it may be possible to uncover valuable insights and improve position-
ing performance in novel ways.

3.3  Deep learning

Deep learning approaches are popular for GNSS signal analysis and classification since 
they can learn directly from raw GNSS signal data, eliminating the need for handcrafted 
feature engineering. This capability is advantageous in GNSS signal analysis, where the 
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underlying patterns and characteristics may be challenging to define explicitly. Table 3 
provides an overview of commonly used deep learning approaches for GNSS signal anal-
ysis and classification.

MP Detection: In [76], the authors proposed a method for detecting NLOS MP using 
two supervised learning methods, SVM and DNN. The evaluation shows that the NN 
outperforms SVM, achieving a 97.7% discrimination accuracy for NLOS signals. In [87], 
an ML-based framework is developed for mitigating MP in a GNSS pure L5 receiver. 
They quantified the performance of a pure L5 receiver in static and dynamic heavy MP 
signal environments and proposed a DNN-based methodology to leverage ML for MP 
mitigation. The proposed framework significantly improves positioning accuracy and 
reduces the standard deviation of the pseudorange error. Orabi et al. [88] developed a 
neural network (NN)-based delay-locked loop (DLL) for GPS code phase estimation in 
MP environments. The proposed NN-based DLL outperforms conventional techniques, 
including early-minus-late DLL, narrow correlator, and high-resolution correlator, in 
terms of code phase root mean squared error in high MP environments. The paper by 
[89] proposes a combination of wavelet transform and neural network for GNSS sig-
nal quality monitoring and MP detection. Signal features, including signal strength and 
spectral characteristics, are extracted using wavelet transform, while a trained neural 
network performs classification and MP detection. The proposed method is evaluated 
using real GNSS data and achieved high accuracy in signal quality monitoring and MP 
detection tasks. In a study by [90], DNN-based correlation schemes are investigated to 
mitigate the effects of MP propagation in GNSS. These DNN-based schemes perform 
better than standard correlation schemes, particularly in line-of-sight (LOS) scenarios. 
In [69], the authors also demonstrate that DNN-based correlation schemes outperform 
standard correlation schemes in line-of-sight scenarios by filtering out more noise and 
effectively distinguishing MP signals from line-of-sight signals. The proposed DNN-
trained models exhibit enhanced performance in time-delay tracking across realistic 
scenarios. Another research by [91] presents a neural network-based MP estimation 

Table 3 Deep learning approaches for GNSS MP mitigation

Study Method/Approach Application/Result

Suzuki et al. [76] SVM and NN-based method for detecting 
NLOS MP in GNSS

NN achieved 97.7% discrimination accuracy 
for NLOS signals, outperforming SVM

Maaref et al. [87] DNN-based framework for MP mitigation in 
GNSS pure L5 receivers

Significant improvement in positioning 
accuracy and reduction of pseudorange 
error standard deviation in heavy MP signal 
environments

Orabi et al. [88] NN-based DLL for GPS code phase estima-
tion in high MP environments

Outperformed conventional techniques in 
terms of code phase root mean squared error

Kim et al. [89] Wavelet transform and NN-based method 
for GNSS signal quality monitoring and MP 
detection

High signal quality monitoring and MP 
detection accuracy using real GNSS data

Li et al. [90] DNN-based correlation schemes for mitigat-
ing MP propagation in GNSS

Enhanced performance compared to stand-
ard correlation schemes in LOS scenarios

Klimenko et al. [91] Neural network-based MP estimation algo-
rithm for GNSS receivers

Promising results in compensating for 
MP errors in GNSS receivers, demonstrat-
ing advantages over existing parametric 
algorithms
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algorithm for GNSS receivers. The algorithm leverages a 5-point complex correlator 
implemented in a high-precision GNSS ASIC to mitigate MP errors. Evaluation against 
existing parametric algorithms demonstrates the algorithm’s advantages in accurate MP 
estimation.

The studies demonstrate that DNN-based methods outperform traditional approaches, 
such as SVM and conventional correlators, in discriminating NLOS signals and mitigat-
ing MP effects. Additionally, integrating wavelet transform with neural networks shows 
promise for signal quality monitoring and MP detection.

3.3.1  CNN

Several studies have explored the application of CNNs, as illustrated in Fig.  11, for 
addressing MP and NLOS reception issues and improving positioning accuracy in urban 
environments. Table 4 provides an overview of these studies.

Fig. 11 Convolutional Neural Networks (CNNs) use layered filters to automatically and adaptively learn 
spatial hierarchies of features from input images. Through pooling and convolution operations, they 
efficiently recognize and classify visual patterns. Figure adapted from [92]

Table 4 CNN methods for GNSS MP mitigation and signal analysis

Study Approach Result

Elango et al. [99] Transfer learning with pre-trained CNN mod-
els for detecting and classifying disruptive 
GNSS signals

99.8% accuracy in classifying disruptive signals

Jiang et al. [100] CNN-based method for signal classification 
using correlator-level measurements

CNN outperformed KNN and SVM in terms of 
classification accuracy

Liu et al. [101] CNN-based method for NLOS signal detec-
tion and correction in smartphone-based 
positioning

Enhanced positioning accuracy and stability in 
urban environments

Li et al. [69] DNN-based correlation for mitigating MP 
propagation

Improved performance in time-delay tracking 
and MP signal classification

Blais et al. [94] CNN-based method for MP prediction using 
correlation outputs of GNSS signals

Superior performance over SVM in MP predic-
tion even under poor receiving conditions

Guillard et al. [96] CNN-based approach using correlator out-
puts for GNSS MP detection

High accuracy in classifying signals as line-of-
sight (LOS) or MP, outperforming traditional 
ML classification models

Quan et al. [95] CNN-based method for MP detection in 
static and kinematic GNSS settings

80% detection of MP errors

Suzuki et al. [76] NN-based method for detecting NLOS MP in 
GNSS signals

NN achieved 97.7% correct discrimination of 
NLOS signals, outperforming SVM

Liu et al. [101] CNN-based approach using single-differ-
enced residual map

5 m accuracy for 84% epochs
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MP Detection: Correlator level measurements are used in [93] along with CNNs 
for MP detection in GNSS receivers. The correlator output signal is mapped as a 2D 
input image, and a CNN is trained to extract relevant features and achieve MP detec-
tion automatically. In [94], the correlation outputs of GNSS signals are mapped into 2D 
grayscale images and fed into a CNN for automatic feature extraction and MP pattern 
detection. The proposed CNN-based algorithm demonstrates superior performance 
over the benchmark SVM technique, achieving prediction accuracy of over 93% even 
under poor receiving conditions. CNNs are used for MP detection in static and kine-
matic settings in [95]. The proposed method leverages the ability of CNNs to learn and 
identify the features of MP characteristics from MP-contaminated GPS data. The results 
demonstrate that the CNN-based method can detect approximately 80% of MP errors, 
improving positioning accuracy when down-weighting the detected MP measurements. 
[96] developed a CNN-based approach to detect GNSS MP using only correlator out-
puts. The CNN was trained on images representing correlator output values as a func-
tion of delay and time. The proposed model achieved F scores of 94.7% for Galileo E1-B 
and 91.6% for GPS L1 C/A, demonstrating its effectiveness in MP detection. In [97], a 
CNN-based approach for GNSS positioning is proposed to mitigate MP NLOS recep-
tion issues. It introduces a new input feature called a single-differenced residual map, 
effectively mitigating MP/NLOS  signals. The network extracts features from residual 
maps and generates heat maps to indicate the user’s location. PositionNet significantly 
improves positioning accuracy in dense urban areas, achieving 5-meter-level accuracy 
for 84% of the epochs. In [98], a novel NLOS MP detection technique is presented using 
CNNs to improve positioning accuracy in urban environments. The CNN-based NLOS 
discriminator achieved approximately 98% correct discrimination of NLOS MP signals, 
outperforming a simple neural network. By applying the NLOS probability output of the 
CNN to positioning calculations, the proposed method improved positioning accuracy 
from 34.1 to 1.6 ms.

Signal Classification: [99] proposed a robust deep learning-based technique for detect-
ing and classifying disruptive GNSS signals, including jammers, spoofing, and MP sig-
nals. The approach utilized transfer learning with pre-trained CNNs such as AlexNet, 
GoogleNet, ResNet-18, VGG-16, and MobileNet-V2. The MobileNet-V2 model achieved 
an accuracy of 99.8% in classifying different types of disruptive signals. In [100], a CNN 
is proposed that utilizes correlator-level measurements. They employ vector tracking to 
generate correlator-level measurements, and the CNN automatically extracts features 
and identifies the signal reception type. The proposed CNN outperforms other meth-
ods, such as KNN and SVMs, in terms of classification accuracy. In [76], the authors use 
GNSS signal correlation output as input for supervised learning methods, specifically 
SVMs and DNNs, to classify NLOS signals. The evaluation shows that the DNN outper-
forms SVM, achieving 97.7% correct discrimination of NLOS signals. For smartphone-
based positioning, [101] designed a method to detect and correct NLOS signals utilizing 
a CNN that achieves enhanced positioning accuracy in urban environments.

Based on the discussed papers, several key insights emerge regarding the effectiveness 
of CNNs in GNSS signal analysis and classification. Firstly, CNNs show promise in miti-
gating MP effects, resulting in notable enhancements in horizontal positioning accuracy 
and reduced pseudorange errors. Secondly, CNNs exhibit strong capabilities in detecting 
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and classifying MP signals, achieving high accuracy rates. Thirdly, CNN-based regres-
sion models outperform traditional methods in GNSS MP estimation, enabling uncer-
tainty modeling and maintaining estimation performance even with lower input image 
resolution. Fourthly, CNNs excel in signal classification tasks utilizing correlator-level 
measurements, surpassing alternative approaches. Lastly, CNNs contribute significantly 
to NLOS signal detection and correction, improving positioning accuracy and stability 
in urban environments.

3.3.2  RNN

We summarize key papers in Table  5 that utilize RNNs for GNSS signal analysis and 
classification.

NLOS classifier: In [102], the authors proposed an NLOS/LOS classification model 
based on RNNs to classify satellite signals received in urban canyon environments. The 
model achieves an accuracy of 91% in classification and demonstrates improved three-
dimensional positioning accuracy and stability in the BDS/GPS fusion system. The pro-
posed method outperforms traditional ML classification models like SVMs. Cho et al. 
[103] proposed an RNN-based NLOS classifier that discriminates between LOS and 
NLOS satellites in urban environments. The classifier achieved about 90% accuracy in 
NLOS classification and showed a 20% improvement in discrimination performance 
compared to the conventional SVM-based NLOS classifier. The proposed technique 
was also applied to pedestrian road crossing detection and demonstrated a position-
ing accuracy of about 45% better than that of conventional techniques. [104] proposed 
a hybrid RNN and fully connected network approach to distinguish between LOS and 
NLOS signals in GNSS positioning. The method considered inter-epoch information 
and time series data features to enhance classification accuracy. The proposed classifier 
achieved an overall testing accuracy improvement from 93.00 to 95.97% for Rinex-level 
observations.

Context Recognition: A gated recurrent unit (GRU) for real-time processing is pro-
posed in [105] to categorize fine-grained contexts based on the characteristics of differ-
ent environments and their corresponding integrated navigation method. The proposed 
method enhances context recognition using a new feature called the C/N0-weighted azi-
muth distribution factor and achieves a recognition accuracy of 99.41% on a real-world 
urban driving dataset. Xia et  al. [106] proposed a scenario recognition method based 
on RNN and LSTM models, utilizing smartphone GNSS measurements. Their analysis 
focuses on the impact of multi-constellation satellite signals on scenario recognition 
performance. The results indicate that the accuracy of scenario recognition improves 
with an increased number of constellations received by smartphones. The proposed 

Table 5 GNSS NLOS/LOS classification methods using RNN

Paper Classification task Accuracy

Su et al. [102] NLOS/LOS classification 91%

Cho et al. [103] NLOS/LOS classification in urban environments 90%

Lyu et al. [104] LOS/NLOS signal classification 95.97%

Liu et al. [105] Context classification 99.41%
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algorithm achieves an impressive recognition accuracy of 98.65% and effectively handles 
scenario transitions with a maximum delay of only 3 s.

The papers discussed highlight the effectiveness of RNNs for NLOS/LOS classification 
and GNSS positioning in urban environments. These RNN-based models achieve high 
classification accuracy, improving positioning accuracy compared to models like SVMs, 
which do not consider inter-epoch information and time series data features.

3.4  Hybrid approach

In [77], robust estimation and ML techniques are combined for LOS/NLOS classifi-
cation and improving shadow matching in urban GNSS positioning. The proposed 
approach utilizes a robust estimator for initial positioning and an SVM for satellite vis-
ibility classification. The classification rate of the SVM reaches 91.5% in urban scenarios, 
contributing to improved shadow-matching accuracy.

Hybrid methods have also been recently proposed in other domains, for example, in 
the context of Kalman filtering and particle filtering, which could be directly applied to 
improving GNSS positioning accuracy. KalmanNet [107] introduces a novel approach 
to real-time state estimation for dynamical systems with nonlinear dynamics or partial 
information, merging the classic Kalman filter’s structure with a recurrent neural net-
work to learn from data. This hybrid model enhances the traditional filter’s capabilities, 
allowing it to adapt to complex dynamics and outperform conventional filtering meth-
ods, regardless of the accuracy of the domain knowledge. In [108], the authors intro-
duce an unsupervised learning adaptation for KalmanNet, a deep neural network system 
inspired by the Kalman filter, eliminating the need for ground-truth states by using 
its hybrid architecture to predict observations and compute loss. It demonstrates that 
unsupervised KalmanNet can match the performance of its supervised counterpart and 
adapt to changing state space models without new data, showcasing flexibility and effi-
ciency in dynamic environments. Similarly, in [109], a novel approach called DANSE 
is introduced for nonlinear state estimation, offering a model-free method to compute 
the posterior state in a Bayesian framework with linear measurements. By employing 
recurrent neural networks to capture nonlinear dynamics and utilizing a combination 
of maximum likelihood and gradient descent for unsupervised training, DANSE oper-
ates effectively without process model knowledge. Its performance is demonstrated to be 
competitive with both classic model-based estimators.

The authors in [110] introduced a particle filter RNN (PF-RNN) architecture that 
combines an advanced RNN architecture with uncertainty modeling by maintaining a 
distribution of latent states represented as particles. This approach contrasts with tradi-
tional RNNs’ single deterministic latent vector. PF-RNNs leverage a differentiable par-
ticle filter mechanism for updating the latent state distribution in line with Bayes’ rule, 
enhancing the model’s adaptability to variable and multi-modal data. In [111], a particle 
filter network is designed that integrates a system model and particle filter algorithm 
into a unified, fully differentiable neural network. Although it has been only applied to 
visual localization tasks, it has demonstrated superior performance and generalization 
over traditional and alternative learning-based approaches, adapting effectively to vari-
ous and unseen sensor inputs. Hybrid particle filters were also explored in [112] wherein 
neural networks were integrated with particle filters for scalable real-world applications, 
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focusing on optimizing dynamic and measurement models without access to expensive 
or unavailable true states. The approach improves state estimation accuracy by utiliz-
ing a differentiable implementation of particle filters and an end-to-end learning objec-
tive based on maximizing a pseudo-likelihood function, even when true states are largely 
unknown. The effectiveness of this method is evaluated through state estimation tasks in 
robotics, using both simulated and real-world datasets.

3.5  Other approaches

In [113], a novel approach is proposed for predicting and eliminating MP errors, par-
ticularly in urban areas with complex signal reflections. The proposed method utilizes a 
graph transformer neural network (GTNN) to learn environment representations from 
irregular GNSS measurements. Experimental results on real-world GNSS data show 
that the GTNN achieves over 96% accuracy in satellite visibility prediction and outper-
forms existing MP prediction methods in terms of generalization performance. In [114], 
a novel method using Neural City Maps, built on Neural Radiance Fields, is proposed 
to represent urban geometry accurately. The study evaluates different prediction meth-
ods for NLOS effects using Neural City Maps and demonstrates their effectiveness in 
improving localization accuracy in challenging urban environments.

4  Environmental context and scenario recognition
We discuss ML approaches used for scenario recognition and environmental context 
detection.

Supervised machine learning is used in the study by Baldini et al. [115] to train a clas-
sifier for propagation scenario identification. The researchers extracted various features 
from GNSS pseudorange measurements and demonstrated the classifier’s accurate 
identification of propagation scenarios affected by MP. The adoption of an overlapping 
window approach further enhances identification accuracy. The article by İşik et  al. 
[116] presents a machine learning-based performance prediction algorithm for GNSS 
in urban air mobility applications. The algorithm considers environmental parameters 
and evaluates the prediction performance of three algorithms: KNN, SVR, and random 
forest. The researchers analyze the performance prediction results and the importance 
of parameters across different urban environments using synthetic data generated by a 
GNSS simulator.

Dovis et al. [117] explored the utilization of GNSS signals alongside ML algorithms to 
characterize the operational environment for Unmanned Aerial Vehicles and Unmanned 
Ground Vehicles by extracting features relevant to situational awareness in urban and 
harsh conditions. It presents case studies demonstrating how digital signal processing 
techniques combined with unsupervised and supervised ML algorithms (like K-means 
and SVMs) can analyze GNSS observables to identify propagation scenarios affected by 
MP, interference, and atmospheric conditions. The study in [118] focuses on enhanc-
ing GNSS accuracy for train localization by identifying environmental characteristics 
across scenarios like tunnels, open areas, and urban canyons. Utilizing NMEA-0183 
protocol data from GNSS receivers, such as PRN codes, azimuth, elevation, and SNR, 
the research creates heatmap states of these scenarios through satellite observations, 
interpolation, and position transformation. The study successfully recognizes varying 
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environmental scenarios by training a vision transformer model on these heatmap data-
sets, achieving an overall accuracy of 88.7% on the validation set.

In [119], the authors propose to improve high-precision GNSS positioning for intel-
ligent transportation systems through a context-aware model, addressing the challenges 
posed by complex environmental contexts and feature variability. The study evaluates 
eight models, including various neural networks and SVM, for their ability to recognize 
context. The LSTM model outperforms others, achieving high accuracy and mean aver-
age precision in distinct and continuous context areas. The study in [120] introduces 
a novel signal-based environment recognition algorithm designed for vehicular posi-
tioning in urban settings, capable of distinguishing between six distinct environmental 
conditions. By constructing a signal feature vector that encapsulates signal attenuation, 
blockage, and MP effects, the algorithm leverages the SVM for scene classification. A 
temporal filtering technique is integrated to improve accuracy, allowing the model to 
adapt and function in real time for the receiver. Demonstrating the algorithm’s broad 
applicability, datasets for training and testing were gathered from various cities, achiev-
ing an overall recognition accuracy of 89.3% across diverse environments. In [121], the 
authors improve scenario recognition for mobile applications by classifying environ-
ments into four categories and using a hidden Markov model and an RNN. The RNN 
method effectively handles scenario transitions and environmental changes, achieving 
an overall accuracy of 98.65% and a transition recognition accuracy of 90.94%, with min-
imal transition delay. Xia et  al. [106] introduced a deep learning method for scenario 
recognition using smartphone GNSS measurements, categorizing environments into 
four types: deep indoors, shallow indoors, semi-outdoors, and open outdoors. Leverag-
ing Voronoi tessellations for spatial structuring and employing CNNs and ConvLSTM 
networks for feature extraction and sequence processing, the technique achieves accura-
cies of 98.82% with CNNs and 99.92% with ConvLSTMs. This approach, relying solely 
on GNSS measurements without additional sensors, demonstrates both efficiency and 
suitability for real-time applications with minimal computational latency.

5  Anomaly detection and quality assessment
The characterization and assessment of signal quality in multi-GNSS systems are cru-
cial for enhancing the performance of GNSS-based positioning. In [122], the focus is 
on evaluating measurement signal quality and developing an ML-based MP detection 
model for multiple GNSS systems, including GPS, GLONASS, Galileo, BDS, and QZSS. 
The proposed model achieves high accuracy rates using simulated and real GNSS data. 
Additionally, [123] combined clustering-based anomaly detection with supervised clas-
sification to improve positioning accuracy significantly in different directions. These 
studies highlight ML-based approaches for evaluating signal quality, detecting anoma-
lies, and enhancing GNSS positioning performance.

M. Kiani introduces a machine learning algorithm tailored for GNSS position time 
series prediction, demonstrating superior accuracy in outlier and anomaly detection and 
earthquake prediction capabilities by analyzing over three thousand GNSS station time 
series globally [124]. This method outperforms seventeen other algorithms and offers 
practical applications in detecting time series outliers and earthquake forecasting, exem-
plified by the Tohoku 2011 case study. In [125], the authors explore enhancing GNSS 



Page 23 of 40Mohanty and Gao  EURASIP Journal on Advances in Signal Processing         (2024) 2024:73  

signal anomaly detection for navigation systems using time-delayed neural networks 
(TDNN), proposing a TDNN-based integrity monitoring system that significantly out-
performs standard receiver autonomous integrity monitoring (RAIM) methods in speed 
and reliability. An innovative approach for automatic anomaly detection is proposed in 
[126] for monitoring GNSS reference stations. The authors use predictive modeling and 
statistical rules to identify anomalous signals, demonstrating the method’s effectiveness 
on historical data. ML algorithms such as random forest [127] and SVMs [128] are used 
to detect GPS and Galileo satellite oscillator anomalies, respectively, with high accu-
racy, outperforming other algorithms and demonstrating global applicability for satellite 
anomaly monitoring.

Unsupervised ML methods are used for autonomous GNSS data anomaly detec-
tion in [129], focusing on volcanic activity monitoring. Unsupervised methods are also 
used for spatial outlier detection in GNSS velocity fields using a robust Mahalanobis-
distance-based classification method [130]. Their approach, validated on synthetic and 
real datasets, yields high classification accuracy, enhancing GNSS data reliability without 
requiring predefined labels.

6  GNSS integration with other sensors
Integrating ML methods in GNSS-based positioning systems, particularly in combi-
nation with other sensors like inertial measurement units (IMUs), has opened up new 
possibilities for improving accuracy and addressing challenges in various environmental 
contexts. We discuss some notable works below.

NLOS Detection:  In their paper, Wang et al. [131] introduced a method that utilizes 
the K-means clustering algorithm to detect MP and NLOS signals in urban areas for 
GNSS/INS integrated positioning. The method incorporates multiple feature parame-
ters derived from GNSS raw observations, significantly improving positioning accuracy. 
The offline dataset exhibits a remarkable improvement of 16% and 85% in the horizontal 
and vertical directions, respectively, while the online dataset showcases improvements 
of 21% and 41% in these two directions.

MP Prediction:  [132] proposed a two-part architecture for GNSS MP prediction 
and detection in IMU/GNSS integration for urban navigation. It employs signal qual-
ity monitoring techniques to identify and exclude MP-contaminated GNSS signals. The 
architecture dynamically adjusts the integration Kalman filter based on a crowdsourced 
GNSS MP environment map, which is extended to unsurveyed areas using a random 
forest ML model. Evaluation in an automotive scenario shows a significant accuracy 
improvement compared to a conventional Kalman filter (13–17%).

Positioning Improvement: Han [133] proposed a reinforcement learning-based 
approach to optimize the process noise covariance matrix of a GNSS/IMU integration 
Kalman filter. Experimental results show improved navigation performance by utilizing 
the learned process noise covariance matrix effectively. Additionally, Shin et  al. [134] 
designed an Actor-Critic (A2C) reinforcement learning algorithm that achieves higher 
scores than the baseline. Gao et al. [135] presented the RL-AKF (adaptive Kalman fil-
ter) navigation algorithm, which adaptively estimates the process noise covariance 
matrix using a reinforcement learning approach. The RL-AKF demonstrates an average 
positioning error of 0.6517 m within a 10 s GNSS outage for the GNSS/INS integrated 
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navigation system. For the GNSS/INS/Odometer (ODO) and GNSS/INS/Non-Holo-
nomic Constraint (NHC) integrated navigation systems, the RL-AKF achieves position-
ing errors of 14.9426 m and 15.3380 m, respectively, within a 300  s GNSS outage. In 
their study, Li et al. [136] enhanced the GNSS/INS integration methodology for vehicle 
navigation by using the LightGBM regression model. This model predicts vehicle posi-
tion changes during GNSS outages based on INS data. The proposed methodology dem-
onstrates reduced errors in predicting vehicle positions during GNSS outages compared 
to the existing methodology based on random forest. The integration of artificial intel-
ligence improves the accuracy of GNSS/INS integrated navigation systems in situations 
where GNSS signals are unavailable or during GNSS outages. Chiou et al. [137] devel-
oped an ML model to enhance the utilization of GNSS positions in a loosely coupled 
GNSS/IMU system. The proposed model combines rule-based methods with machine 
learning techniques to classify the quality of GNSS position outputs. The results show 
that the model achieves a true positive rate of 90% in identifying bad GNSS position 
outputs. In [138], the authors integrated GNSS and INS sensors using deep learning 
techniques. They combine DNN, LSTM, and CNN to optimize Kalman filter gain and 
improve navigation accuracy for land vehicles.

The papers in this section present valuable contributions to GNSS integration with 
other sensors for navigation in urban environments. These contributions include apply-
ing ML techniques, such as clustering algorithms and reinforcement learning, to enhance 
positioning accuracy. Dynamic sensor integration models based on environmental maps 
and MP detection techniques have been shown to offer improved performance.

7  Prediction and forecasting
ML methods have also proven instrumental in prediction and forecasting tasks in geod-
esy and GNSS analysis domains.

Time Series Prediction: In their study, Shahvandi et al. [139] used deep transformers to 
predict time series in the field of geodesy. They modify the original network architecture 
and optimization procedure, resulting in a remarkable improvement of 21.5% in predic-
tion accuracy compared to traditional statistical methods. Furthermore, their approach 
outperforms other machine learning algorithms by at least 2.7%. The method exhibits 
the potential to achieve millimeter accuracy in time series prediction. Loli Piccolomini 
[140] introduced a network architecture based on LSTMs for denoising and predic-
tion tasks in GNSS time series analysis. Despite being a shallow network, it reduces 
scattering from real GNSS time series, removing nearly 50% of the noise. Additionally, 
the architecture achieves coordinate prediction with a mean squared error of 1.1 mms. 
The approach is evaluated using both synthetic and real GNSS time series data. In their 
research, Ji et  al. [141] presented a weighted wavelet analysis-based signal extraction 
method for GNSS position time series. This method successfully extracts signals from 
daily position time series data by considering noise characteristics and variations in sig-
nal strength. The application of weighted wavelet analysis enhances the accuracy of sig-
nal extraction, particularly in the presence of noise and disturbances.

Satellite Visibility Prediction: Zhang et  al. [142] proposed a deep learning network 
architecture that combines fully connected neural networks (FCNNs) and LSTM net-
works to predict GNSS satellite visibility and pseudorange error based on GNSS 
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measurement-level data. The proposed networks achieve an accuracy of 80.1% in satel-
lite visibility prediction and an average difference of 4.9 ms in pseudorange error pre-
diction. The LSTM layer effectively captures environment representations, leading to 
improved prediction performance.

8  Position error modeling/accuracy enhancement
A significant body of work focuses on utilizing ML techniques to model GNSS errors in 
the position domain and directly enhance positioning accuracy. These works form the 
majority of research efforts in this field and are summarized in Tables 6 and 7. Figure 12 
shows the distribution of different ML methods to improve GNSS positioning accuracy. 
These various approaches highlight the effectiveness of ML techniques in enhancing 
GNSS positioning accuracy and addressing specific challenges in different domains and 
environments.

Improving PPP and RTK: Qafisheh et al. [143] utilized SVMs to reduce latency in real-
time Precise Point Positioning (PPP), leading to improved clock corrections. Menzori 
and Teunissen [144] adopt decision trees for classifying PPP/GNSS coordinates based 
on precision. Additionally, Yun et  al. [145] proposed leveraging dual-frequency GNSS 
measurements, and Mendonca et al. [146] introduced a genetic algorithm (GA)-based 
machine learning classifier to improve RTK positioning. Lacambre et al. [147] designed 
machine learning and outlier detection methods to optimize RTK positioning, achieving 
a substantial boost in real-world positioning performance.

Improving Accuracy in MP Environments: Ziedan et  al. [148] proposed two novel 
ML-based algorithms that use maps and neural networks to estimate MP environment 
positions accurately. Sun et al. [149] addressed the challenges of achieving accurate posi-
tioning in urban terrains. They introduced a GBDT-based method that predicts pseu-
dorange errors and corrects positioning inaccuracies caused by MP and NLOS signals, 

Fig. 12 Distribution of Papers that use ML methods for Position Error Modeling and Accuracy Enhancement
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achieving a marked 70% improvement in 3D positioning accuracy compared to tradi-
tional methodologies.

Improving Accuracy for Smartphone Positioning: Google has also shown active involve-
ment in refining urban GNSS accuracy, focusing on mitigating inaccuracies experienced 
by Android devices in dense urban settings, a vital endeavor for widely used location 
apps [161]. Hybrid methods that combine traditional models with deep neural networks 
are introduced by Gupta et al. [153] and Kanhere et al. [154] to enhance data efficiency 
and positional accuracy for smartphones. Additionally, Dai et  al. [155] presented a 
global optimization strategy for smartphone GNSS positioning. Lastly, in [162–164], the 
authors proposed advanced GNSS solutions using graph convolution neural networks 
and a combination of RL and GNN, demonstrating significant improvements in smart-
phone positioning accuracy in various environments.

Recurrent Neural Networks: Kim et al. [151] used LSTM-based recurrent neural net-
works to enhance accuracy and stability in autonomous vehicle navigation. Yang et al. 
[152] furthered this effort by developing an LSTM RNN model tailored for real-time 
prediction of GPS positioning errors. Other works, such as those by Thomas et al. [157] 
and Zhou et  al. [158], explored ML-based post-processing techniques for improving 

Table 6 ML methods for improving GNSS positioning accuracy

Study Method/Approach Application/Result

Qafisheh et al. [143] SVM-based solution for latency reduc-
tion in PPP

Reduced standard deviation and range 
of clock corrections by approximately 
30% and 20%, respectively

Ziedan et al. [148] ML-based algorithms improve position 
estimation accuracy in MP environ-
ments

Accuracy enhancements of up to 96% 
compared to traditional methods

Mendonca et al. [150] ML algorithms (decision tree, neural 
network, etc.) to enhance integrity 
measurements in GNSS positioning

Neural network model increased 
information metric by 20-fold compared 
to EKF

Menzori and Teunissen [144] Decision tree classification of the accu-
racy of PPP/GNSS coordinates

Prediction of accuracy from the precision 
with a large dataset of known coordi-
nates

Kim et al. [151] Multilayer RNN with LSTM algorithm Improved position accuracy by 40% 
compared to GNSS-only navigation

Yang et al. [152] Real-time LSTM RNN for predicting GPS 
positioning errors

Prediction accuracy within 1–3% of 
ground-truth values

Gupta et al. [153] Hybrid learning-based approach com-
bining traditional positioning models 
with DNNs

Low positioning errors with reduced 
memory requirements

Kanhere et al. [154] DNN-based corrections using set 
transformer

Improved accuracy over WLS

Dai et al. [155] Global optimization method incorpo-
rating various constraints for smart-
phone positioning

Second place in Google Smartphone 
Decimeter Challenge 2022.

Liu et al. [156] LSTM-based prediction method Improved prediction accuracy by 16%

Thomas et al. [157] ML-based post-processing techniques 
for low-cost GPS receivers

Improved position accuracy

Zhou et al. [158] LSSVM-KF algorithm for estimating 
dynamic modeling bias

Reliable and accurate GNSS navigation 
solutions

Gao et al. [159] Decision tree model for estimating 
vehicle positioning accuracy

Achieved probability of accurate posi-
tioning estimation of more than 95%

Wei et al. [160] GRNN-based satellite selection algo-
rithm for optimizing visible satellites

Improved robustness, accuracy, and real-
time performance
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position accuracy in autonomous vehicle applications and GNSS navigation integrated 
with Kalman filtering, respectively. Liu et  al. [156] used LSTM-based prediction to 
enhance GPS accuracy in vehicular navigation.

Other Methods and Applications: The research by Neri et al. [166] is tailored specifi-
cally for the rail domain. They aim to enhance the accuracy and reliability of train posi-
tioning systems by combining classical observables with advanced RAIM techniques. A 
unique approach is introduced in [168] to enhance high-precision GNSS positioning in 
dynamic urban terrains using a deep reinforcement learning framework. Random forest 
was explored in [169] along with conformal prediction to learn positioning errors and 
integrity intervals with 99.999% confidence.

9  Other use cases
In various GNSS applications, different ML methods have been employed to go beyond 
improving the receiver’s positioning performance. While these applications are not the 
main focus of our survey paper, we provide a concise overview of some existing works.

GNSS Augmentation Systems and Carrier Phase Measurements: The authors in [170] 
presented an anomaly detection algorithm tailored for carrier phase measurements in 
GNSS augmentation systems. Targeting safety-critical applications like autonomous 
vehicles, their machine learning-based approach estimates standard deviations of resid-
ual errors. This enables continuous fault monitoring even with single-frequency meas-
urements, and the real-world tests validate the method’s efficiency.

Direction-of-Arrival (DOA) Estimation: In [171], a novel method for DOA estimation is 
introduced. Unlike conventional neural network-based approaches, this method addresses 
real-world array imperfections. A Transformer-based calibration network (TCN) models 

Table 7 ML methods for improving GNSS positioning accuracy (continued)

Study Method/Approach Application/Result

Ragheb et al. [165] SlipNet LSTM neural network model for 
cycle slip detection

High-performance results with 99.7% 
detection and localization accuracy

Neri et al. [166] ML architecture for local hazard detec-
tion and RAIM in the rail domain

Optimizing ML architecture to enhance the 
accuracy and reliability of train positioning 
systems

He et al. [167] LSTM neural network model for BDS-3 
satellite clock bias prediction

Outperformed traditional models for long-
term satellite clock bias prediction

Yun et al. [145] Practical approach using dual-frequency 
GNSS measurements to improve smart-
phone position accuracy

Overcoming limitations of smartphones 
and leveraging dual-frequency measure-
ments for quality monitoring

Mendonca et al. [146] Genetic algorithm-based machine learn-
ing classifier for validating ambiguity 
terms in RTK positioning

Improved classification performance com-
pared to traditional ratio test

Lacambre et al. [147] Methodology incorporating ML methods 
for optimizing and qualifying new RTK 
GNSS algorithms

Improved real-world positioning perfor-
mance through outlier detection and 
reference comparison

Sun et al. [149] GBDT-based approach for correcting GPS 
positioning errors caused by MP and 
NLOS signals

Significant improvement in 3D position-
ing accuracy compared to conventional 
methods

Mohanty et al. [162, 163] Graph convolution network and Kalman 
filter

Improved accuracy compared to model-
based and learning-based methods

Zhao et al. [164] Graph neural network combined with 
reinforcement learning

26% improvement in urban datasets; 10% 
improvement in semi-urban
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these imperfections at the antenna level, utilizing global and long-term properties of array 
errors. Experiments indicate superiority over traditional techniques, especially under 
amplitude and phase deviations and antenna position perturbations.

Velocity and Acceleration Measurements: The study in [172] analyzed the performance of 
a stand-alone GNSS receiver after incorporating sparse kernel learning. This AI-based solu-
tion improves accuracy in measuring velocity and acceleration, paving the way for vehicle 
dynamics analysis and geodetic monitoring applications.

Ionospheric Prediction and Total Electron Content (TEC) Variations: The work in [173] 
presented a real-time ionosphere prediction model using LSTM, utilizing International 
GNSS Service products to estimate and correct ionospheric delays. In [174], LSTM and 
Transformer networks predict TEC variations, showing performance enhancements over 
traditional methods. A spatiotemporal graph neural network, coupled with transformers, is 
also utilized in [175] for predicting VTEC maps. Graph nodes in this approach symbolize 
pixels holding VTEC values, while edges are determined by inter-node distances. Another 
deep learning-based system in [176] is used to forecast TEC maps for South America’s ion-
osphere. Finally, the global TEC map prediction framework in [177] compared LSTM and 
Transformer networks, illustrating the superiority of the suggested networks over IGS rapid 
products.

Earthquake Detection and Environmental Characterization: The research in [178] used 
supervised machine learning for analyzing GNSS velocities tied to earthquake-strong 
motion signals. The models, trained on strong motion event datasets, offer increased seis-
mic activity detection accuracy.

GNSS Functional Safety and Satellite Orbit Predictions: Ensuring GNSS functional safety 
is at the forefront of [179]. This research addressed potential safety hazards in GNSS sys-
tems by leveraging machine learning. Orbit prediction for Low Earth Orbit satellites, 
as explored in [180], combined analytical models with ML techniques to predict orbits, 
respectively. Another model, presented in [181], employed a transformer deep learning 
framework for satellite orbit correction prediction, outclassing existing prediction methods.

Satellite Selection, Interference Detection, and Data Fusion: The deep learning network 
in [182] performed optimal satellite selection in GNSS positioning. This model promises 
enhanced positioning accuracy by intelligently accounting for signal quality, satellite geom-
etry, and user demands. Works like [183, 184] used ML for GNSS interference detection 
and classification. Finally, [185, 186] used ML techniques for innovative GNSS science 
applications, unlocking potential in atmospheric sensing and climate studies.

Spoofing Detection and Signal Security: Several contributions target GNSS spoofing 
detection. Research like [187–190] employed diverse machine learning techniques ranging 
from tree-based models to deep learning for effective spoofing detection. While [191, 192] 
focused on jamming detection and measurement association in spoofing environments, 
[193] used supervised ML for detecting GNSS signal spoofing, further showcasing the sig-
nificance of ML in ensuring GNSS signal integrity and security.
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10  Limitations of discussed methods and potential solutions
Although the methods discussed for enhancing GNSS positioning through ML dem-
onstrate promising results, it is essential to consider their limitations. Additionally, we 
provide potential solutions to address these limitations, which include the following 
directly: 

1. Data Dependency: Many ML-based methods rely heavily on the availability of large 
and diverse datasets for training. While data-driven approaches have successfully 
improved GNSS positioning, gathering and maintaining such datasets can be chal-
lenging. Insufficient or biased training data may limit the generalizability and effec-
tiveness of the ML models. Furthermore, collecting data for specific environments or 
rare scenarios may be time-consuming and resource-intensive. Adequate data collec-
tion efforts and quality control measures are necessary to ensure the reliability of ML 
models.

2. Computational Requirements: ML models, especially deep learning models, often 
require significant computational resources for training. Training deep learning 
models on large datasets can be computationally intensive and time-consuming. 
Deploying these models in resource-constrained environments, such as embedded 
systems or low-power devices, may pose challenges. Developing lightweight ML 
models or exploring alternative architectures that balance computational efficiency 
and accuracy is essential for practical deployment.

3. Generalizability to Unseen Scenarios: While ML models trained on extensive data-
sets can exhibit impressive performance in controlled test environments, their gen-
eralizability to unseen or evolving scenarios remains a concern. Changes in satellite 
constellations, emerging technologies, or novel interference sources may require 
model retraining or adaptation. Ensuring the long-term effectiveness and adaptabil-
ity of these models in dynamic GNSS environments requires continuous monitoring, 
updating, and reevaluation of the models.

4. Dependency on GNSS Signal Availability: ML models designed to improve GNSS 
positioning heavily rely on the availability of GNSS signals. However, there are 
instances when GNSS signals may be temporarily unavailable or degraded due to sig-
nal blockage, jamming, or interference. In such cases, the performance of ML mod-
els that rely solely on GNSS inputs may be limited. Developing hybrid positioning 
approaches that combine GNSS with other sensors, such as inertial sensors or envi-
ronmental context data, can help mitigate this limitation and provide robust posi-
tioning solutions.

5. Lack of Standardization: The field of ML for improving GNSS positioning is still 
evolving, and there is a lack of standardized methodologies, evaluation metrics, 
and benchmark datasets. The absence of standards makes comparing and replicat-
ing results across different studies challenging. Developing standardized evaluation 
frameworks, sharing benchmark datasets, and promoting reproducibility are essen-
tial for advancing the field and enabling meaningful comparisons between AI-based 
methods.

6. Integration Complexity: Integrating ML-based algorithms into existing GNSS posi-
tioning systems can be complex and may require system architecture or hardware 
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modifications. Compatibility issues, system interoperability, and deployment chal-
lenges must be addressed to ensure seamless integration and practical implementa-
tion of ML techniques. Collaborative efforts among ML researchers, GNSS experts, 
and industry stakeholders are necessary to overcome integration barriers and facili-
tate the adoption of ML in real-world GNSS positioning applications.

7. Cost and Scalability: Implementing ML-based methods for improving GNSS posi-
tioning may involve initial investment costs, including infrastructure, computational 
resources, and expertise. The scalability of ML models to handle large-scale position-
ing systems and accommodate increasing data volumes may also pose challenges. 
Ensuring cost-effective solutions and scalability is crucial for practically adopting 
ML techniques in GNSS positioning. Exploring cloud-based solutions, distributed 
computing, or edge computing approaches can help address scalability concerns and 
optimize resource utilization.

11  Promising opportunities
Several promising opportunities arise for applying ML techniques to enhance GNSS 
positioning systems. We discuss some key opportunities below. 

1. Integration with Other Sensor Modalities: ML techniques offer opportunities for 
seamless integration of GNSS data with other sensor modalities, such as IMUs, 
odometers, or digital maps. By leveraging the complementary information from dif-
ferent sensor modalities, ML-based integration methods can overcome limitations 
associated with individual sensors and provide more reliable and accurate position-
ing solutions. GNNs can also integrate GNSS measurements with data from other 
sensors, such as LiDAR or camera sensors. By representing the sensor data as a 
graph structure and leveraging GNNs, the models can capture the complex relation-
ships and dependencies between different sensor modalities. This integration allows 
for more comprehensive and accurate positioning solutions, especially when GNSS 
signals may be affected by obstructions or limitations.

2. Adaptive Algorithms for Dynamic Environments: ML algorithms can adapt and learn 
from dynamic environments, allowing for real-time adjustments in GNSS position-
ing. These algorithms can continuously analyze and update models based on chang-
ing environmental conditions, satellite availability, or user dynamics. By considering 
factors such as satellite constellation health, signal quality, and user motion patterns, 
ML-based algorithms can dynamically optimize positioning solutions to provide 
accurate and reliable results.

3. Crowdsourced Positioning: ML techniques can harness the power of crowdsourced 
data to enhance GNSS positioning accuracy. Collecting positioning data from 
many users and applying machine learning algorithms, patterns, and trends can be 
extracted to improve the overall accuracy of positioning solutions. This approach can 
be especially beneficial in areas with limited GNSS coverage or challenging signal 
conditions, as it relies on collective data contributions to overcome individual limita-
tions.

4. Transfer Learning for Cross-Domain Positioning: Transfer learning techniques can be 
applied to leverage knowledge gained from one GNSS domain to another with lim-
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ited data. Such an approach can save data collection efforts and enhance the perfor-
mance of GNSS systems in underrepresented domains.

5. Meta-Learning for Adaptive GNSS Algorithms: Meta-learning algorithms can be 
used to learn the optimal algorithmic configurations for GNSS positioning based 
on historical performance data. Training a meta-learning model on various datasets 
allows it to learn which algorithms work best under different conditions and adap-
tively select or combine them to achieve optimal positioning accuracy. This adaptive 
approach allows GNSS systems to improve performance and continuously adapt to 
changing environments.

6. Generative Adversarial Networks (GANs) for Data Augmentation: GANs can be used 
to generate synthetic GNSS data that closely resemble real-world measurements. By 
training a GAN on a large dataset of GNSS observations, it can learn the underlying 
distribution of the data and generate additional samples. These synthetic samples can 
augment the training data for GNSS positioning algorithms, thereby improving their 
performance, especially in scenarios with limited training data.

7. Uncertainty Estimation using Bayesian Neural Networks: Utilize Bayesian neural net-
works to estimate uncertainty in GNSS positioning solutions, providing confidence 
intervals and probabilistic measures of accuracy for better decision-making in criti-
cal applications.

8. Federated Learning: Employ federated learning approaches to train positioning mod-
els collaboratively across multiple devices or users, ensuring privacy while improving 
the accuracy and robustness of GNSS positioning.

9. Edge Computing for Real-time GNSS Processing: Utilize edge computing architec-
tures to perform real-time GNSS data processing and positioning calculations at the 
network edge, reducing latency and enabling faster and more responsive positioning 
solutions.

12  Conclusion
In conclusion, this survey paper has explored the application of ML methods for GNSS-
based positioning. The paper provides a comprehensive overview of various ML tech-
niques and their relevance to different aspects of GNSS positioning. It covers topics 
such as signal analysis and classification, environmental context recognition, anomaly 
detection, multi-sensor integration, prediction and forecasting, accuracy enhancement, 
and position error modeling. Additionally, the paper discusses other notable applica-
tions of ML in GNSS and identifies the limitations and challenges associated with these 
methods. The survey highlights potential areas for future research and development in 
ML-based GNSS positioning. Overall, this survey contributes to a deeper understand-
ing of the role of ML in improving GNSS positioning and provides valuable insights for 
researchers and practitioners in the field.
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